Non-single Crystal, Or Recrystallized, Semiconductor Material Forms Part Of Active Junction (including Field-induced Active Junction) Patents (Class 257/49)
  • Publication number: 20140176843
    Abstract: A thin film transistor array substrate, a method for manufacturing the same, and a liquid crystal display device having the thin-film transistor array substrate are disclosed. The thin film transistor array substrate includes a data line formed on a transparent substrate, a first transparent electrode located in a same layer as the data line, an insulating layer covering the data line and the first transparent electrode, and a second transparent electrode located on the insulating layer. The second transparent electrode includes a first transparent sub-electrode and a second transparent sub-electrode, and the width of the first transparent sub-electrode is less than the width of the first transparent electrode, and the width of the second transparent sub-electrode is greater than the width of the data line.
    Type: Application
    Filed: May 8, 2013
    Publication date: June 26, 2014
    Applicant: Shanghai AVIC Optoelectronics Co., Ltd.
    Inventors: Zhaokeng CAO, Yujie ZHAO
  • Publication number: 20140151704
    Abstract: Embodiments of preparing substrates for subsequent bonding with semiconductor layer are described herein. A substrate may be prepared with one or more chemicals or a sacrificial layer to limit or remove substrate contaminants and reduce substrate surface damage. Other embodiments may be described and claimed.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 5, 2014
    Applicant: PEREGRINE SEMICONDUCTOR CORPORATION
    Inventor: Peregrine Semiconductor Corporation
  • Publication number: 20140132905
    Abstract: The present invention relates to an array substrate and a manufacture method of the same, a liquid crystal display panel, and a display device, which are relative to a liquid crystal display field. Further, source electrodes and drain electrodes of the array substrate are arranged on different layers. In the manufacture method of the array substrate, the source electrodes and the drain electrodes are formed on different layers by two patterning processes. According to the technical scheme of the present invention, a length of a channel between the source electrodes and the drain electrodes can be decreased as much as possible, thereby increasing a start current Ion of a TFT.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 15, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Chunfang ZHANG, Hee cheol KIM, Yan WEI, Chao XU
  • Publication number: 20140131711
    Abstract: A bipolar junction transistor built with a mesh structure of cells provided on a semiconductor body is disclosed. The mesh structure has at least one emitter cell with a first type of implant. At least one emitter cell has at least one side coupled to at least one cell with a first type of implant to serve as collector of the bipolar. The spaces between the emitter and collector cells are the intrinsic base of a bipolar device. At least one emitter cell has at least one vortex coupled to at least one cell with a second type of implant to serve as the extrinsic base of the bipolar. The emitter, collector, or base cells can be arbitrary polygons as long as the overall geometry construction can be very compact and expandable. The implant regions between cells can be separated with a space. A silicide block layer can cover the space and overlap into at least a portion of both implant regions.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 15, 2014
    Inventor: Shine C. Chung
  • Publication number: 20140133056
    Abstract: An Electro-Static Discharge (ESD) protection using at least one I/O pad with at least one mesh structure of diodes provided on a semiconductor body is disclosed. The mesh structure has a plurality of cells. At least one cell can have a first type of implant surrounded by at least one cell with a second type of implant in at least one side of the cell, and at least cell can have a second type of implant surrounded by at least one cell with a first type of implant in at least one side of the cell. The two types of implant regions can be separated with a gap. A silicide block layer (SBL) can cover the gap and overlap into the both implant regions to construct P/N junctions on the polysilicon or active-region body on an insulated substrate. Alternatively, the two types of implant regions can be isolated by LOCOS, STI, dummy gate, or SBL on silicon substrate. The regions with the first and the second type of implants can be coupled to serve as the first and second terminal of a diode, respectively.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventor: Shine C. Chung
  • Publication number: 20140131710
    Abstract: Electro-Static Discharge (ESD) protection using at least one ring-shape diode is disclosed. The ring-shape diode can be constructed from polysilicon, active region body on insulated substrate, or junction diode on silicon substrate. The diodes can have a first type of implant in an outer ring and a second type of implant in an inner ring to serve as two terminals of a diode coupled through contacts, vias, or metals. The two types of implant ring regions are separated with an isolation structure. The isolation can be LOCOS, STI, dummy gate, or silicide block layer (SBL). The ESD structure has at least a ring-shape diode with a first terminal coupled to an I/O pad and the second terminal coupled to a first supply voltage. The contours of the ring-shape diode can be circles, polygons, or other shapes. The ring-shape ESD structures can be multiple and be constructed in concentric manner.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventor: Shine C. Chung
  • Publication number: 20140117357
    Abstract: Embodiments provide a light emitting device package including a package body having a top-opened cavity disposed in at least a portion thereof, a first electrode layer and a second electrode layer electrically isolated from the package body with an insulating layer interposed therebetween, the first electrode layer and the second electrode layer being electrically isolated from each other at a bottom surface of the cavity, a light emitting device placed on the bottom surface of the cavity configured to emit light through the open region of the cavity, and a sensor placed on at least a portion of the package body at the outside of the cavity configured to measure output of the light emitting device.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 1, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Bum Chul CHO, Moon Sub KIM, Jin Kwan KIM
  • Publication number: 20140117356
    Abstract: A semiconductor device includes a substrate, a semiconductor layer, and a material layer. The semiconductor layer is formed over the substrate. The material layer is formed over the semiconductor layer. The semiconductor layer and the material layer have a tapered profile in a vertical direction extending from the substrate.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Jeng Hwa Liao, Jung Yu Shieh, Ling Wuu Yang
  • Patent number: 8704227
    Abstract: The present invention discloses an LED and its fabrication method. The LED comprises: a sapphire substrate; an epitaxial layer, an active layer and a capping layer arranged on the sapphire substrate in sequence; wherein a plurality of cone-shaped structures are formed on the surface of the sapphire substrate close to the epitaxial layer. The cone-shaped structures can increase the light reflected by the sapphire substrate, raising the external quantum efficiency of the LED, thus increasing the light utilization rate of the LED. Furthermore, the formation of a plurality of cone-shaped structures can improve the lattice matching between the sapphire substrate and other films, reducing the crystal defects in the film formed on the sapphire substrate, increasing the internal quantum efficiency of the LED.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 22, 2014
    Assignee: Enraytek Optoelectronics Co., Ltd.
    Inventors: Deyuan Xiao, Richard Rugin Chang, Mengjan Cherng, Chijen Hsu
  • Patent number: 8697456
    Abstract: A pattern of conductive ink is disposed on the topside of the unsingulated integrated circuits of a wafer, and, typically after wafer probing, the pattern of conductive ink is removed. The conductive ink pattern provides an electrical pathway between bond pads on an integrated circuit and large contact pads disposed on the topside of the integrated circuit. Each of the large contact pads is much greater in area than the corresponding bond pads, and are spaced apart so that the pitch of the large contact pads is much greater than that of the bond pads. In one aspect of the present invention, the conductive ink includes a mixture of conductive particles and wafer bonding thermoset plastic. In another aspect of the present invention, the conductive ink is heated and disposed on a wafer by an ink jet printing system.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: April 15, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T Johnson
  • Publication number: 20140097432
    Abstract: Methods of forming a laminate comprising a sheet of semiconductor material utilize a system. The system comprises a fibrous sheet, a guide member for guiding the fibrous sheet, and a melt of a semiconductor material. The sheet of semiconductor material and a laminate comprising the fibrous sheet and the sheet of semiconductor material are also included.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 10, 2014
    Applicant: Corning Incorporated
    Inventors: Samir Biswas, Douglass Lane Blanding, Glen Bennett Cook, Prantik Mazumder, Kamal Kishore Soni, Balram Suman
  • Publication number: 20140091304
    Abstract: A laser-radiation sensor includes a copper substrate on which is grown an oriented polycrystalline buffer layer surmounted by an oriented polycrystalline sensor-element of an anisotropic transverse thermoelectric material. An absorber layer, thermally connected to the sensor-element, is heated by laser-radiation to be measured and communicates the heat to the sensor-element, causing a thermal gradient across the sensor-element. Spaced-apart electrodes in electrical contact with the sensor-element sense a voltage corresponding to the thermal gradient as a measure of the incident laser-radiation power.
    Type: Application
    Filed: July 17, 2013
    Publication date: April 3, 2014
    Inventors: Robert SEMERAD, Erik KROUS, James SCHLOSS
  • Publication number: 20140091305
    Abstract: A polysilicon thin film and a manufacturing method thereof, an array substrate and a display device are disclosed. The manufacturing method of the polysilicon thin film comprises the following steps: forming a graphene layer and an amorphous silicon layer which are adjacent; forming polysilicon by way of crystallizing amorphous silicon so as to obtain the polysilicon thin film. The polysilicon thin film manufactured by the method possesses good characteristics.
    Type: Application
    Filed: August 9, 2013
    Publication date: April 3, 2014
    Applicant: BOE Technology Group Co., Ltd.
    Inventor: Tuo Sun
  • Publication number: 20140084290
    Abstract: The invention relates to a method for manufacturing a semiconductor on insulator type substrate for radiofrequency applications, comprising the following steps in sequence: (a) provision of a silicon substrate (1) with an electrical resistivity of more than 500 Ohm·cm, (b) formation of a polycrystalline silicon layer (4) on said substrate (1), said method comprising a step between steps a) and b) to form a dielectric material layer (5), different from a native oxide layer, on the substrate (1), between 0.5 and 10 nm thick.
    Type: Application
    Filed: March 22, 2012
    Publication date: March 27, 2014
    Applicants: Commissariat A L'Energie Atomique et aux Energies Alternatives, Soitec
    Inventors: Frédéric Allibert, Julie Widiez
  • Patent number: 8680522
    Abstract: An oxide semiconductor film which has more stable electric conductivity is provided. Further, a semiconductor device which has stable electric characteristics and high reliability is provided by using the oxide semiconductor film. An oxide semiconductor film includes a crystalline region, and the crystalline region includes a crystal in which an a-b plane is substantially parallel with a surface of the film and a c-axis is substantially perpendicular to the surface of the film; the oxide semiconductor film has stable electric conductivity and is more electrically stable with respect to irradiation with visible light, ultraviolet light, and the like. By using such an oxide semiconductor film for a transistor, a highly reliable semiconductor device having stable electric characteristics can be provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Kengo Akimoto, Hiroki Ohara, Tatsuya Honda, Takatsugu Omata, Yusuke Nonaka, Masahiro Takahashi, Akiharu Miyanaga
  • Publication number: 20140077210
    Abstract: A p-i-n photodetector includes at least one multilayer contact structure including wide gap and narrow gap layers to reduce dark current. The multilayer contact structure includes one or more wide band gap semiconductor layers in alternating sequence with one or more narrow band gap contact layers. A fabrication method of the photodetector includes transfer-doping of the narrow band gap contact layers, which are deposited in alternating sequence with wide band gap semiconductor layers.
    Type: Application
    Filed: September 20, 2012
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8673709
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a FinFET over the semiconductor substrate. The FinFET includes a semiconductor fin; a gate dielectric on a top surface and sidewalls of the semiconductor fin; a gate electrode on the gate dielectric; and a source/drain region at an end of the semiconductor fin. A first pair of shallow trench isolation (STI) regions includes portions directly underlying portions of the source/drain regions, wherein the first pair of STI regions is separated by, and adjoining a semiconductor strip. The first pair of STI regions further has first top surfaces. A second pair of STI regions comprises portions directly underlying the gate electrode, wherein the second pair of STI regions is separated from each other by, and adjoining, the semiconductor strip. The second pair of STI regions has second top surfaces higher than the first top surfaces.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Chang-Yun Chang, Feng Yuan
  • Publication number: 20140061645
    Abstract: A thin film transistor (TFT) array substrate, a manufacturing method thereof and a display device are provided. The manufacturing method comprises: forming a first passivation layer (8) on a substrate (1), and forming a board wiring PAD-region via hole (11) in the first passivation layer (8) above the board wiring PAD region (11) through a first patterning process; forming a second passivation layer (16) on the substrate (1) formed with the board wiring PAD-region via hole (11), and forming a pixel-region via hole (15) in the first passivation layer (8) and the second passivation layer (16) above the display electrode (7) through a second patterning process in such a way that the pixel-region via hole (15) has a top-size smaller than its bottom-size; and applying a transparent conductive layer on the substrate (1) formed with the pixel-region via hole (15) to form a second display electrode.
    Type: Application
    Filed: December 10, 2012
    Publication date: March 6, 2014
    Applicant: Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Tiansheng Li, Wenyu Zhang, Zhenyu Xie
  • Publication number: 20140062977
    Abstract: Embodiments of the present invention provide a pixel structure and a control method thereof and a display panel. The pixel structure comprises a plurality of sub-pixels, and a plurality of gate lines and a plurality of data lines that are crossed with each other, wherein the gate lines comprise a plurality of first gate lines and a plurality of second gate lines, each sub-pixel comprises a first part and a second part, and each sub-pixel comprises a first thin film transistor and a second thin film transistor, the first part is connected to a corresponding data line through the first thin film transistor, a gate of the first film transistor is connected to a corresponding first gate line, the first part and the second part of each sub-pixel are connected with each other through the second thin film transistor, and a gate of the second film transistor is connected to a corresponding second gate line.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 6, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Yanbing Wu
  • Publication number: 20140061646
    Abstract: Embodiments of the invention provide an array substrate and a display device. The array substrate comprises a common electrode and a pixel electrode that are formed on a base substrate. The common electrode comprises a first common electrode and a second common electrode, the first common electrode is provided below the pixel electrode and separated from the pixel electrode by an insulating layer, the second common electrode is provided in the same layer as the pixel electrode. The pixel electrode comprises a plurality of strip electrodes, the second common electrode also comprises a plurality of strip electrodes, and the strip electrodes of the pixel electrode and the strip electrodes of the second common electrode are alternately arranged.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicants: Beijing BOE Display Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventor: Sha Liu
  • Patent number: 8664657
    Abstract: A circuit is disclosed. The circuit includes at least one nanostructure and a carbon interconnect formed by a substantially carbon layer, wherein the nanostructure and the carbon interconnect are directly coupled to one another.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: March 4, 2014
    Assignee: Qimonda AG
    Inventors: Georg Duesberg, Franz Kreupl, Robert Seidel, Gernot Steinlesberger
  • Publication number: 20140054589
    Abstract: The present invention discloses a semi-insulating wafer of GaxAlyIn1-x-yN (0?x?1, 0?x+y?1) which is doped with bismuth (Bi). The semi-insulating wafer has the resistivity of 104 ohm-cm or more. Although it is very difficult to obtain a single crystal ingot of group III nitride, the ammonothermal method can grow highly-oriented poly or single crystal ingot of group III nitride having the density of dislocations/grain boundaries less than 105 cm?2. The invention also disclose the method of fabricating the semi-insulating group III nitride bulk crystals and wafers.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 27, 2014
    Applicants: Seoul Semiconductor Co., Ltd., SixPoint Materials, Inc.
    Inventors: Tadao HASHIMOTO, Edward LETTS, Sierra HOFF
  • Patent number: 8659019
    Abstract: At a semiconductor device, an integrated circuit including an optoelectronic conversion device is formed on a front face of a sensor chip. A rewiring layer, which leads from pad electrodes, and post electrodes, on the rewiring layer, are formed on the sensor chip. At least a portion of surroundings of the rewiring layer and the post electrodes is sealed with sealing resin, so as to be open above the integrated circuit face. A light-transmissive substrate is disposed over the sealed sensor chip. Penetrating electrodes, corresponding with positions of the post electrodes disposed on the sensor chip, are formed in the light-transmissive substrate, and external terminals such as solder balls or the like are formed so as to electrically connect with the penetrating electrodes.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: February 25, 2014
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Yoshinori Shizuno
  • Publication number: 20140048804
    Abstract: A method of forming a semiconductor device includes forming a mandrel on top of a substrate; forming a first spacer adjacent to the mandrel on top of the substrate; forming a cut mask over the first spacer and the mandrel, such that the first spacer is partially exposed by the cut mask; partially removing the partially exposed first spacer; and etching the substrate to form a fin structure corresponding to the partially removed first spacer in the substrate.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Chun-Chen Yeh
  • Patent number: 8653519
    Abstract: The electronic device includes a substrate, a first electrode formed over a surface of the substrate, a second electrode located on an opposite side of the first electrode from the substrate so as to face the first electrode, and a functional layer interposed between the first electrode and second electrode and formed by means of anodizing a first polycrystalline semiconductor layer in an electrolysis solution so as to contain a plurality of semiconductor nanocrystals. The electronic device further includes a second polycrystalline semiconductor layer interposed between the first electrode and the functional layer so as to be in close contact with the functional layer. The second polycrystalline semiconductor layer has an anodic oxidization rate in the electrolysis solution lower than that of the first polycrystalline semiconductor layer so as to function as a stop layer for exclusively anodizing the first polycrystalline semiconductor layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Ichihara, Kenji Tsubaki, Masao Kubo, Nobuyoshi Koshida
  • Patent number: 8653595
    Abstract: The present invention relates to a semiconductor device including a circuit composed of thin film transistors having a novel GOLD (Gate-Overlapped LDD (Lightly Doped Drain)) structure. The thin film transistor comprises a first gate electrode and a second electrode being in contact with the first gate electrode and a gate insulating film. Further, the LDD is formed by using the first gate electrode as a mask, and source and drain regions are formed by using the second gate electrode as the mask. Then, the LDD overlapping with the second gate electrode is formed. This structure provides the thin film transistor with high reliability.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Adachi
  • Publication number: 20140042395
    Abstract: Disclosed is a thin film transistor substrate which facilitates to improve output and transfer characteristics of thin film transistor, wherein the thin film transistor substrate comprises a thin film transistor comprising a lower gate electrode on a substrate, an active layer on the lower gate electrode, source and drain electrodes on the active layer, and an upper gate electrode on the source electrode, drain electrode and active layer, the upper gate electrode for covering a channel region defined by the source and drain electrodes; and a contact portion for electrically connecting the lower gate electrode with the upper gate electrode.
    Type: Application
    Filed: November 26, 2012
    Publication date: February 13, 2014
    Applicant: LG DISPLAY CO., LTD.
    Inventors: Jong Sik Shim, Woo Jin Nam, Hong Jae Shin, Min Kyu Chang
  • Publication number: 20140043096
    Abstract: Representative implementations of devices and techniques provide a bandgap reference voltage using at least one polysilicon diode and no silicon diodes. The polysilicon diode is comprised of three portions, a lightly doped portion flanked by a more heavily doped portion on each end.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Inventor: Adrian FINNEY
  • Patent number: 8647934
    Abstract: A thin film transistor (TFT) including a gate, a gate insulator, an oxide semiconductor channel layer, a source, and a drain is provided. The gate insulator covers the gate, while the oxide semiconductor channel layer is configured on the gate insulator and located above the gate. The oxide semiconductor channel layer includes a first sub-layer and a second sub-layer located on the first sub-layer. An oxygen content of the first sub-layer is lower than an oxygen content of the second sub-layer. The source and the drain are configured on a portion of the second sub-layer. In addition, a fabricating method of the above-mentioned TFT is also provided.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Au Optronics Corporation
    Inventors: Liu-Chung Lee, Hung-Che Ting, Chia-Yu Chen
  • Patent number: 8648342
    Abstract: A photodetector includes a waveguide on a substrate, and a photodetection portion connected to the waveguide. The photodetection portion includes a first semiconductor layer, graphene on the semiconductor layer, and a second semiconductor layer on the graphene. A first electrode and a second electrode separated from the first ridge portion and electrically connected to the graphene.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: February 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Taek Kim, Bok-ki Min
  • Publication number: 20140034948
    Abstract: An LED epitaxial structure includes the first layer thin film and the second layer thin film. The first layer thin film and the second layer thin film are polycrystalline aluminum nitride and single crystal aluminum nitride respectively, which have good thermal conductivity, insulation, mechanical intensity, and chemistry stability. Based on the substrate mentioned above, growing a single crystal gallium nitride on the second layer thin film as the third layer thin film allows the single crystal aluminum nitride and gallium nitride to have good lattice and thermal expansion match, resulting in the promotion of light emitting and thermal conduction efficiency.
    Type: Application
    Filed: September 12, 2012
    Publication date: February 6, 2014
    Inventors: Yang-Kuo Kuo, Chia-Yi Hsiang, Hung-Tai Ku
  • Patent number: 8642370
    Abstract: A process of forming a MEMS device with a device cavity underlapping an overlying dielectric layer stack having an etchable sublayer over an etch-resistant lower portion, including: etching through at least the etchable sublayer of the overlying dielectric layer stack in an access hole to expose a lateral face of the etchable sublayer, covering exposed surfaces of the etchable sublayer by protective material, and subsequently performing a cavity etch. A cavity etch mask may cover the exposed surfaces of the etchable sublayer. Alternatively, protective sidewalls may be formed by an etchback process to cover the exposed surfaces of the etchable sublayer. Alternatively, the exposed lateral face of the etchable sublayer may be recessed by an isotropic etch, than isolated by a reflow operation which causes edges of an access hole etch mask to drop and cover the exposed lateral face of the etchable sublayer.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Ricky Alan Jackson, Karen Hildegard Ralston Kirmse, Kandis Meinel
  • Publication number: 20140027773
    Abstract: A semiconductor device includes a transistor cell array in the semiconductor body of a first conductivity type. The semiconductor device further includes a first trench in the transistor cell array between transistor cells. The first trench extends into the semiconductor body from a first side and includes a pn junction diode electrically coupled to the semiconductor body at a sidewall.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thorsten Meyer, Andreas Meiser
  • Publication number: 20140021470
    Abstract: An integrated circuit device includes a semiconductor substrate and a gate electrode on the semiconductor substrate. The gate electrode structure includes an insulating layer of a dielectric material on the semiconductor substrate, an oxygen barrier layer on the insulating layer, and a tungsten (W) metal layer on the oxygen barrier layer.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MARTIN M. FRANK, VIJAY NARAYANAN
  • Patent number: 8633483
    Abstract: An original wafer, typically silicon, has the form of a desired end PV wafer. The original may be made by rapid solidification or CVD. It has small grains. It is encapsulated in a clean thin film, which contains and protects the silicon when recrystallized to create a larger grain structure. The capsule can be made by heating a wafer in the presence of oxygen, or steam, resulting in silicon dioxide on the outer surface, typically 1-2 microns. Further heating creates a molten zone in space, through which the wafer travels, resulting in recrystallization with a larger grain size. The capsule contains the molten material during recrystallization, and protects against impurities. Recrystallization may be in air. Thermal transfer through backing plates minimizes stresses and defects. After recrystallization, the capsule is removed.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Emanuel M. Sachs, James G. Serdy, Eerik T. Hantsoo
  • Patent number: 8633484
    Abstract: An organic light emitting display and method of fabricating thereof, the display including a substrate including a first thin film transistor region and a second thin film transistor region; a buffer layer on the substrate; a first and a second semiconductor layer on the buffer layer; a gate insulating layer on the substrate; gate electrodes on the gate insulating layer and corresponding to the first semiconductor layer and the second semiconductor layer, respectively; source/drain electrodes insulated from the gate electrode and being connected to the first semiconductor layer and the second semiconductor layer, respectively; an insulating layer on the substrate; a first electrode connected to the source/drain electrode electrically connected to the first semiconductor layer; an organic layer on the first electrode; and a second electrode on the organic layer, wherein portions of the buffer layer corresponding to a source/drain region of the first semiconductor layer include a metal catalyst.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Won-Kyu Lee, Tae-Hoon Yang, Bo-Kyung Choi, Byoung-Kwon Choo, Kyu-Sik Cho, Yong-Hwan Park, Sang-Ho Moon, Min-Chul Shin, Yun-Gyu Lee, Joon-Hoo Choi
  • Publication number: 20140008652
    Abstract: A through-substrate via structure including a substrate, a conductive layer, and a parasitic capacitance modulation layer is provided. The substrate has at least one opening. The opening is filled with the conductive layer. The parasitic capacitance modulation layer is disposed between the conductive layer and the substrate. The parasitic capacitance modulation layer is placed around the through-substrate via to reduce the depletion capacitance and further reduce the parasitic capacitance of the through-substrate via. Therefore, during transmission of signals with high frequency, the parasitic capacitance around the through-substrate via is rather small and thereby the operation speed of devices is increased.
    Type: Application
    Filed: August 20, 2012
    Publication date: January 9, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tzu-Chien Hsu, Tzu-Kun Ku, Cha-Hsin Lin
  • Patent number: 8624321
    Abstract: A thin film transistor is provided, which includes a gate insulating layer covering a gate electrode, a microcrystalline semiconductor layer provided over the gate insulating layer, an amorphous semiconductor layer overlapping the microcrystalline semiconductor layer and the gate insulating layer, and a pair of impurity semiconductor layers which are provided over the amorphous semiconductor layer and to which an impurity element imparting one conductivity type is added to form a source region and a drain region. The gate insulating layer has a step adjacent to a portion in contact with an end portion of the microcrystalline semiconductor layer. A second thickness of the gate insulating layer in a portion outside the microcrystalline semiconductor layer is smaller than a first thickness thereof in a portion in contact with the microcrystalline semiconductor layer.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 7, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kurokawa, Hiromichi Godo, Hidekazu Miyairi
  • Publication number: 20140001473
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Publication number: 20130341622
    Abstract: Provided is a polycrystalline silicon wafer produced by a melting and unidirectional solidification method, where the polycrystalline silicon wafer has a diameter of 450 mm or more, a thickness of 900 ?m or more, and an average crystal grain size of 5 to 50 mm, and is made up of one piece. The present invention provides a large-sized polycrystalline silicon wafer having a wafer size of 450 mm or more, of which: mechanical properties are similar to those of monocrystalline silicon wafers; the crystal size is large; the surface roughness is low; the surface has a high cleanliness; the polished surface has less unevenness by having a definite crystal orientation; and the sag value is similar to that of monocrystalline silicon wafers.
    Type: Application
    Filed: March 8, 2012
    Publication date: December 26, 2013
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Hiroshi Takamura, Ryo Suzuki
  • Publication number: 20130341621
    Abstract: An electrical device includes a first layer, a second layer and an intrinsic layer. The first layer is of a first conductivity type, wherein the second layer is of a second conductivity type opposite to the first conductivity type. The intrinsic layer is arranged between the first and the second layer and has a reduced thickness at at least one portion. An area of the at least one portion is less than 50% of an active area in which the first and second layer face each other.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Jakob Huber
  • Publication number: 20130328047
    Abstract: A structure for picking up a collector region including a pair of polysilicon stacks formed in the isolation regions and extending below the collector region; and a pair of collector electrodes contacting on the polysilicon stacks, wherein the pair of polysilicon stacks includes: an undoped polysilicon layer and a doped polysilicon layer located on the undoped polysilicon layer, wherein a depth of the doped polysilicon layer is greater than a depth of the collector region; the depth of the collector region is greater than a depth of the isolation regions.
    Type: Application
    Filed: May 22, 2013
    Publication date: December 12, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Wensheng Qian
  • Patent number: 8604579
    Abstract: Provided is a liquid crystal display device (1) comprising a substrate (2), a base coating film (3) disposed on the substrate (2), a base insulating film (4) disposed on the base coating film (3), and a semiconductor film (20) disposed on the base insulating film (4) and made of a polysilicon film. Below the semiconductor film (20), a light-shielding film (28) is formed, which is embedded in the base coating film (3).
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: December 10, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masahiro Mitani, Yutaka Takafuji
  • Publication number: 20130320342
    Abstract: A seed layer structure is annealed. The seed layer structure comprises a crystallization catalyst material on a seed semiconductor over a substrate. The seed semiconductor comprises an amorphous portion. Annealing of the seed layer structure converts the amorphous portion into a crystalline portion. The crystalline portion is connected to the substrate by subsurface crystal legs. The crystallization catalyst material formed underneath the crystalline portion by annealing is removed from the underneath of the crystalline portion.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventors: Douglas Arthur Hutchings, Seth Daniel Shumate, Hameed Naseem
  • Patent number: 8575031
    Abstract: A method is provided for forming a fine pattern. In the method, a first fine pattern and a first metal pattern are formed by respectively patterning a first fine pattern layer on a base substrate and a first metal layer on the first fine pattern layer. A second fine pattern layer and a second metal layer are sequentially formed over the first fine pattern and the first metal pattern. The second metal layer is patterned, so that a second metal pattern between adjacent portions of the first fine pattern. The second fine pattern layer is patterned using the second metal pattern as a mask, so that a second fine pattern is formed between adjacent portions of the first fine pattern.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: November 5, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Se-Hwan Yu, Chong-Sup Chang, Sang-Ho Park, Ji-Seon Lee
  • Publication number: 20130285058
    Abstract: The present invention discloses a thin-film transistor (TFT) array substrate and a manufacturing method thereof. Depositing a transparent conductive layer and a first metal layer in turn on a substrate patterned by a first multi-tone mask (MTM) to form a gate, a common electrode and a reflecting layer; depositing a gate insulation layer and a semiconductor layer patterned by a second MTM to remain the semiconductor layer on the gate; and depositing a second metal layer patterned by a third MTM to form a source and a drain.
    Type: Application
    Filed: May 9, 2012
    Publication date: October 31, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO. LTD.
    Inventors: Hua Huang, Pei Jia
  • Publication number: 20130285059
    Abstract: A semiconductor element of the electric circuit includes a semiconductor layer over a gate electrode. The semiconductor layer of the semiconductor element is formed of a layer including polycrystalline silicon which is obtained by crystallizing amorphous silicon by heat treatment or laser irradiation, over a substrate. The obtained layer including polycrystalline silicon is also used for a structure layer such as a movable electrode of a structure body. Therefore, the structure body and the electric circuit for controlling the structure body can be formed over one substrate. As a result, a micromachine can be miniaturized. Further, assembly and packaging are unnecessary, so that manufacturing cost can be reduced.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 31, 2013
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Publication number: 20130277675
    Abstract: In order to obtain a SOI wafer having an excellent ability of gettering metal impurities, an efficient method of manufacturing a SOI wafer, and a highly reliable MEMS device using such a SOI wafer, provided is a SOI wafer including: a support wafer (1) and an active layer wafer (6) which are bonded together with an oxide film (3) therebetween, each of the support wafer (1) and the active layer wafer (6) being a silicon wafer; a cavity (1b) formed in a bonding surface of at least one of the silicon wafers; and a gettering material (2) formed on a surface on a side opposite to the bonding surface.
    Type: Application
    Filed: January 17, 2013
    Publication date: October 24, 2013
    Inventors: Eiji YOSHIKAWA, Jyunichi ICHIKAWA, Yukihisa YOSHIDA
  • Patent number: 8563981
    Abstract: The semiconductor device of the present invention includes a semiconductor region made of a material to which conductive impurities are added, an insulating film formed on a surface of the semiconductor region, and an electroconductive gate electrode formed on the insulating film. The gate electrode is made of a material whose Fermi level is closer to a Fermi level of the semiconductor region than a Fermi level of Si in at least a portion contiguous to the insulating film.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 22, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yuki Nakano, Ryota Nakamura, Katsuhisa Nagao
  • Patent number: 8558230
    Abstract: A thin film transistor (TFT) substrate and a method of fabricating the same are provided. The thin film transistor substrate may have low resistance characteristics and may have reduced mutual diffusion and contact resistance between an active layer pattern and data wiring. The thin film transistor substrate may include gate wiring formed on an insulating substrate. Oxide active layer patterns may be formed on the gate wiring and may include a first substance. Data wiring may be formed on the oxide active layer patterns to cross the gate wiring and may include a second substance. Barrier layer patterns may be disposed between the oxide active layer patterns and the data wiring and may include a third substance.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dong-Hoon Lee, Je-Hun Lee, Do-Hyun Kim, Hee-Tae Kim, Chang-Oh Jeong, Pil-Sang Yun, Ki-Won Kim