Non-single Crystal, Or Recrystallized, Semiconductor Material Forms Part Of Active Junction (including Field-induced Active Junction) Patents (Class 257/49)
  • Publication number: 20100025684
    Abstract: The present invention is a method for producing a group III nitride semiconductor layer in which a single crystal group III nitride semiconductor layer (103) is formed on a substrate (101), the method including: a substrate processing step of forming, on the (0001) C-plane of the substrate (101), a plurality of convex parts (12) of surfaces (12c) not parallel to the C-plane, to thereby form, on the substrate, an upper surface (10) that is composed of the convex parts (12) and a flat surface (11) of the C-plane; and an epitaxial step of epitaxially growing the group III nitride semiconductor layer (103) on the upper surface (10), to thereby embed the convex parts (12) in the group III nitride semiconductor layer (103).
    Type: Application
    Filed: December 19, 2007
    Publication date: February 4, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Hironao Shinohara, Hiromitsu Sakai
  • Patent number: 7655938
    Abstract: A phase change memory may be made of a chalcogenide material having a U-shape. The U-shaped chalcogenide may transition between amorphous and crystalline phases in an upper part of a vertical portion thereof. As a result, in some embodiments, self-heating may be achieved without the need for a heater, and without the need for glue in some cases.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: February 2, 2010
    Inventors: Charles C. Kuo, Ilya V. Karpov
  • Publication number: 20100006840
    Abstract: The invention relates to a method for producing a MEMS/NEMS structure from a substrate made in a monocrystalline semiconductor material, the structure comprising a flexible mechanical element connected to the substrate by at least one anchoring zone, the method comprising the following steps: the formation of a protection layer on one face of the substrate, the protection layer being made in a monocrystalline material different from the material of the substrate, etching of the protection layer and the substrate in order to produce at least one cavity, the etching being done so as to leave an overhang made in the material of the protection layer on the edges of the cavity, filling in of the cavity with an electrically insulating material in order to obtain an insulating anchoring portion, epitaxy of a semiconductor material from the protection layer and the electrically insulating material in order to obtain a layer designed to produce the flexible mechanical element, liberation of the flexible mechanical
    Type: Application
    Filed: July 7, 2009
    Publication date: January 14, 2010
    Applicant: COMMISSARIAT A L' ENERGIE ATOMIQUE
    Inventor: Philippe ROBERT
  • Patent number: 7642178
    Abstract: A method for manufacturing a semiconductor device includes steps of: forming a first epitaxial film on a silicon substrate; forming a trench in the first epitaxial film; and forming a second epitaxial film on the first epitaxial film and in the trench. The step of forming the second epitaxial film includes a final step, in which a mixed gas of a silicon source gas and a halide gas is used. The silicon substrate has an arsenic concentration defined as ?. The second epitaxial film has an impurity concentration defined as ?. The arsenic concentration and the impurity concentration has a relationship of: ??3×1019×ln(?)?1×1021.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: January 5, 2010
    Assignees: DENSO CORPORATION, Sumco Corporation
    Inventors: Shoichi Yamauchi, Takumi Shibata, Tomonori Yamaoka, Syouji Nogami
  • Publication number: 20090321829
    Abstract: In preferred embodiments, the invention provides substrates that include a support, a first insulating layer arranged on the support, a non-mono-crystalline semi-conducting layer arranged on the first insulating layer, a second insulating layer arranged on the non-mono-crystalline semi-conducting layer; and top layer disposed on the second insulating layer. Additionally, a first gate electrode can be formed on the top layer and a second gate electrode can be formed in the non-mono-crystalline semi-conducting layer. The invention also provides methods for manufacture of such substrates.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 31, 2009
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Publication number: 20090321872
    Abstract: In one embodiment, the invention provides engineered substrates having a support with surface pits, an intermediate layer of amorphous material arranged on the surface of the support so as to at least partially fill the surface pits, and a top layer arranged on the intermediate layer. The invention also provides methods for manufacturing the engineered substrates which deposit an intermediate layer on a pitted surface of a support so as to at least partially fill the surface pits, then anneal the intermediate layer, then assemble a donor substrate with the annealed intermediate layer to form an intermediate structure, and finally reduce the thickness of the donor substrate portion of the intermediate structure in order to form the engineered substrate.
    Type: Application
    Filed: May 20, 2009
    Publication date: December 31, 2009
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Patent number: 7629260
    Abstract: Provided herein are hardmask compositions that include an organosilane polymer prepared by the reaction of one or more compounds of Formula (I) Si(OR1)(OR2)(OR3)R4 wherein R1, R2 and R3 may each independently be alkyl acetoxy or oxime; and R4 may be hydrogen, alkyl, aryl or arylalkyl; and wherein the organosilane polymer has a polydispersity in a range of about 1.1 to about 2.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: December 8, 2009
    Assignee: Cheil Industries, Inc.
    Inventors: Dong Seon Uh, Hui Chan Yun, Jin Kuk Lee, Chang Il Oh, Jong Seob Kim, Sang-Kyun Kim, Sang Hak Lim
  • Patent number: 7629617
    Abstract: The reliability of a light-emitting device constituted by a combination of a TFT and a light-emitting element is to be improved. A light-emitting element is formed between a first substrate and a second substrate. The light-emitting device is formed over a first insulating layer made of an organic compound and a second insulating layer made of an inorganic insulating material containing nitrogen formed on the surface of the first insulating layer. In an outer circumferential part of a display area formed by the light-emitting element, a shield pattern surrounding the display area is formed by metal wiring on the second insulating layer, and the first substrate and the second substrate are fixed to each other with an adhesive resin formed in contact with the shield pattern.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: December 8, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masayuki Sakakura, Toru Takayama
  • Patent number: 7622740
    Abstract: There is disclosed a method of fabricating TFTs having reduced interconnect resistance by having improved contacts to source/drain regions. A silicide layer is formed in intimate contact with the source/drain regions. The remaining metallization layer is selectively etched to form a contact pad or conductive interconnects.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisashi Ohtani, Etsuko Fujimoto
  • Publication number: 20090278125
    Abstract: The present invention describes an approach to grow highly crystalline semiconductor films, multilayers of semiconductor thin films on foreign substrate such as glass, quartz. Specifically, The film were grown by first forming crystalline seeds, and transferring the seeds onto the substrate, and growing continuous semiconductor film through epitaxial growth on the seeds.
    Type: Application
    Filed: April 17, 2009
    Publication date: November 12, 2009
    Inventors: Xiangfeng Duan, Xidong Duan
  • Patent number: 7615457
    Abstract: A method is provided for making a bipolar transistor which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The collector pedestal can be formed on a surface of a collector active region exposed within an opening extending through first and second overlying dielectric regions, where the opening defines vertically aligned edges of the first and second dielectric regions.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hiroyuki Akatsu, Rama Divakaruni, Gregory G. Freeman, David R. Greenberg, Marwan H. Khater, William R. Tonti
  • Patent number: 7612369
    Abstract: A memory device includes a semiconducting polymer film, which includes an organic dopant. The semiconducting polymer film has a first side and a second side. The memory device also includes a first plurality of electrical conductors substantially parallel to each other coupled to the first side of the semiconducting polymer layer, and a second plurality of electrical conductors substantially parallel to each other, coupled to the second side of the semiconducting polymer layer. The first and second pluralities of electrical conductors are substantially mutually orthogonal to each other. Further, an electrical charge is localized on the organic dopant.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: November 3, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: James Stasiak
  • Patent number: 7612372
    Abstract: Methods and systems for performing laser thermal processing (LTP) of semiconductor devices are disclosed. The method includes forming a dielectric cap atop a temperature-sensitive element, and then forming an absorber layer atop the dielectric layer. A switch layer may optionally be formed atop the absorber layer. The dielectric cap thermally isolates the temperature-sensitive element from the absorber layer. This allows less-temperature-sensitive regions such as unactivated source and drain regions to be heated sufficiently to activate these regions during LTP via melting and recrystallization of the regions, while simultaneously preventing melting of the temperature-sensitive element, such as a poly-gate.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: November 3, 2009
    Assignee: Ultratech, Inc.
    Inventors: Yun Wang, Shaoyin Chen
  • Publication number: 20090266396
    Abstract: Disclosed is a polycrystalline silicon substrate having a region wherein concentrations of impurities contained therein satisfy the following relations: [Oi]?2E17 [atoms/cm3] (under condition 1a and [C]?1E17 [atoms/cm3] (Condition 2)) where [Oi] is the interstitial oxygen concentration determined by Fourier transform infrared spectroscopy and [C] is the total carbon concentration determined by secondary ion mass spectrometry. This polycrystalline silicon substrate has high strength adequate for a thinner substrate, while having good quality and high photoelectric conversion efficiency. Such a polycrystalline silicon substrate enables to produce a resource-saving, highly efficient polycrystalline silicon solar cell at low cost.
    Type: Application
    Filed: March 27, 2006
    Publication date: October 29, 2009
    Applicant: KYOCERA CORPORATION
    Inventors: Koichiro Niira, Shigeru Gotoh
  • Patent number: 7608475
    Abstract: A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: October 27, 2009
    Assignee: Au Optronics Corp.
    Inventors: Long-Sheng Liao, Kun-Chih Lin, Chia-Tien Peng
  • Publication number: 20090261344
    Abstract: A method for making a crystalline wafer, in which an interface layer is associated with a support substrate. A first layer is associated with the interface layer in a strained state. The interface layer is melted sufficiently to substantially uncouple the first layer from the support substrate to relax the first layer from the strained to state to a relaxed state. The interface material is solidified with the first layer in the relaxed state to obtain a first wafer.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 22, 2009
    Inventor: George K. Celler
  • Publication number: 20090235983
    Abstract: An interlayer structure that, in one implementation, includes a combination of an amorphous or nano-crystalline seed-layer, and one or more metallic layers, deposited on the seed layer, with the fcc, hcp or bcc crystal structure is used to epitaxially orient a semiconductor layer on top of non-single-crystal substrates. In some implementations, this interlayer structure is used to establish epitaxial growth of multiple semiconductor layers, combinations of semiconductor and oxide layers, combinations of semiconductor and metal layers and combination of semiconductor, oxide and metal layers. This interlayer structure can also be used for epitaxial growth of p-type and n-type semiconductors in photovoltaic cells.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 24, 2009
    Applicant: Applied Quantum Technology, LLC
    Inventors: Erol Girt, Mariana Rodica Munteanu
  • Publication number: 20090230393
    Abstract: In a pn junction diode having a conductivity modulating element provided on a first principal surface of a semiconductor substrate, when an impurity concentration of a p type impurity region is lowered to shorten a reverse recovery time, hole injection is suppressed, thereby causing a problem that a forward voltage value is increased at a certain current point. Moreover, introduction of a life time killer to shorten the reverse recovery time leads to a problem of increased leak current. On an n? type semiconductor layer that is a single crystal silicon layer, a p type polycrystalline silicon layer (p type polysilicon layer) is provided. Since the polysilicon layer has more grain boundaries than the single crystal silicon layer, an amount of holes injected into the n? type semiconductor layer from the p type polysilicon layer in forward voltage application can be suppressed.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 17, 2009
    Applicants: SANYO Electric Co., Ltd.
    Inventors: Seiji MIYOSHI, Tetsuya OKADA
  • Publication number: 20090224244
    Abstract: Methods in accordance with the invention involve patterning and etching very small dimension pillars, such as in formation of a memory array in accordance with the invention. When dimensions of pillars become very small, the photoresist pillars used to pattern them may not have sufficient mechanical strength to survive the photoresist exposure and development process. Using methods according to the present invention, these photoresist pillars are printed and developed larger than their intended final dimension, such that they have increased mechanical strength, then are shrunk to the desired dimension during a preliminary etch performed before the etch of underlying material begins.
    Type: Application
    Filed: April 10, 2009
    Publication date: September 10, 2009
    Applicant: SANDISK 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Publication number: 20090224243
    Abstract: A method of forming nanostructures using catalyst-free epitaxial growth includes depositing a first layer of a non-single crystalline material on a support structure; heating the support structure and the first layer such that a combined layer is formed; and growing a nanostructure on the combined layer. A hetero-crystalline includes a support structure; a first layer of non-single crystalline material deposited on the support structure and combined with the support structure or a second layer to form a combined layer; and a nanostructure of a single crystalline material grown on the combined layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: September 10, 2009
    Inventors: Nobuhiko Kobayashi, Shih-Yuan Wang
  • Publication number: 20090218566
    Abstract: One aspect of the present subject matter relates to a method for forming strained semiconductor film. According to an embodiment of the method, a crystalline semiconductor bridge is formed over a substrate. The bridge has a first portion bonded to the substrate, a second portion bonded to the substrate, and a middle portion between the first and second portions separated from the substrate. The middle portion of the bridge is bonded to the substrate to provide a compressed crystalline semiconductor layer on the substrate. Other aspects are provided herein.
    Type: Application
    Filed: May 11, 2009
    Publication date: September 3, 2009
    Inventor: Leonard Forbes
  • Publication number: 20090212283
    Abstract: In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Inventors: Manuj Rathor, An Chen, Steven Avanzino, Suzette K. Pangrle
  • Publication number: 20090200550
    Abstract: A method for forming an electronic device provides a carrier formed from a composite material comprising a plastic binder and an embedded material. A substrate material is attached to the carrier. The substrate is processed to form the electronic device thereon. The substrate is then detached from the carrier to yield the resultant electronic device.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Inventors: Roger Stanley Kerr, Timothy John Tredwell
  • Patent number: 7566905
    Abstract: An electro-optical apparatus includes a base, a resin film on the base, the resin film having at least one of projections and depressions at an upper surface thereof, and a light reflecting film disposed on the at least one of projections and depressions. The resin film under the light reflecting film includes a first region and a second region. A mode of the at least one of projections and depressions in the first region is different from a mode of the at least one of projections and depressions in the second region. A diffuse reflectivity of the first region is larger than a diffuse reflectivity of the second region.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: July 28, 2009
    Assignee: Epson Imaging Devices Corporation
    Inventor: Reiko Wachi
  • Publication number: 20090184317
    Abstract: An embodiment of an array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type, housing a first cathode region, of the second conductivity type, and facing a surface of the body, an anode region, having the first conductivity type and a higher doping level than the body, extending inside the body, and facing the surface laterally to the first cathode region and at a distance therefrom, and an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the first cathode region and the anode region. The insulation region is formed by a mirror region of metal material, a channel-stopper region having the second conductivity type, surrounding the mirror region, and a coating region, of dielectric material, arranged between the mirror region and the channel-stopper region.
    Type: Application
    Filed: January 20, 2009
    Publication date: July 23, 2009
    Applicant: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato SANFILIPPO, Emilio Antonio SCIACCA, Piero Giorgio FALLICA, Salvatore Antonio LOMBARDO
  • Patent number: 7563321
    Abstract: The invention is an improvement in the method of producing a high quality bulk single crystal of silicon carbide in a seeded sublimation system. In a first embodiment, the improvement comprises reducing the number of macrosteps in a growing crystal by incorporating a high concentration of nitrogen atoms in the initial one (1) millimeter of crystal growth.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: July 21, 2009
    Assignee: Cree, Inc.
    Inventors: Adrian Powell, Valeri F. Tsvetkov, Mark Brady, Robert T. Leonard
  • Publication number: 20090179200
    Abstract: A self emission silicon emission display is provided at a low price, which contains silicon and oxygen which exist in abundance on the earth as the main component and which can be easily formed by conventional silicon process. A light emission element includes a first electrode for injecting electrons, a second electrode for injecting holes, and a light emission part electrically connected to the first electrode and the second electrode, where the light emission part includes amorphous or polycrystalline silicon consisting of a single layer or plural layers and where the dimension of the silicon in at least one direction is controlled to be several nanometers.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 16, 2009
    Inventors: Shinichi Saito, Hiroyuki Uchiyama, Toshiyuki Mine
  • Patent number: 7560731
    Abstract: An organic electronic device of the present invention includes a substrate, at least two electrodes formed on the substrate, a conductive organic thin film that is formed on the substrate and electrically connects the electrodes, and a coating film for coating at least a portion of the electrodes. The conductive organic thin film is a polymer of organic molecules containing a conjugated-bondable group, and one end of each of the organic molecules is chemically bonded to the surface of the substrate and the conjugated-bondable groups in the organic molecules are polymerized with other conjugated-bondable groups to form a conjugated bond chain. The coating film electrically connects the electrodes to the conductive organic thin film and achieves a smaller connection resistance than that in the case where the electrodes and the conductive organic thin film are connected directly.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 14, 2009
    Assignee: Panasonic Corporation
    Inventors: Shinichi Yamamoto, Norihisa Mino, Kazufumi Ogawa
  • Publication number: 20090173939
    Abstract: A hybrid wafer comprises a single-crystal SixGe1-x layer (15), where 0?x?1, a high thermal conductivity layer (10), and between the single-crystal SixGe1-x layer (15) and the high thermal conductivity layer (10), an intermediate layer (21) having a thickness of between 1 nanometer and 1 micrometer and comprising at least one amorphous or polycrystalline SixGe1-x layer (21a), where 0?x?1.
    Type: Application
    Filed: April 23, 2007
    Publication date: July 9, 2009
    Inventors: Sören Berg, Jörgen Olsson, Örjan Vallin, Ulf Smith
  • Publication number: 20090173948
    Abstract: Methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 9, 2009
    Inventors: JAMES S. IM, ROBERT S. SPOSILI, MARK A. CROWDER
  • Publication number: 20090166623
    Abstract: A first interconnection is formed along a groove of a substrate and on a bottom surface of the groove, and has a first thickness. A second interconnection is electrically connected to the first interconnection and has a second thickness larger than the first thickness. An acceleration sensing unit is electrically connected to the second interconnection. A sealing unit has a portion opposed to the substrate with the first interconnection therebetween, and surrounds the second interconnection and the acceleration sensing unit on the substrate. A cap is arranged on the sealing unit to form a cavity on a region of the substrate surrounded by the sealing unit. Thereby, airtightness of the cavity can be ensured and also an electric resistance of the interconnection connected to the acceleration sensing unit can be reduced.
    Type: Application
    Filed: June 30, 2008
    Publication date: July 2, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kimitoshi SATO, Mika OKUMURA, Yasuo YAMAGUCHI, Makio HORIKAWA
  • Publication number: 20090166624
    Abstract: A phase modulation element according to the present invention has a first area having a first phase value based on a phase modulation unit having a predetermined size and a second area having a second phase value based on the phase modulation unit having the predetermined size, and each phase distribution is defined by a change in area shares of the first area and the second area depending on each position.
    Type: Application
    Filed: February 5, 2009
    Publication date: July 2, 2009
    Inventors: Masakiyo MATSUMURA, Yukio Taniguchi
  • Publication number: 20090166622
    Abstract: When a flow rate of a diluent gas is larger than a flow rate of a reaction gas, a reaction gas introducing tube (113) is connected to a part of a diluent gas introducing tube (111) which connects a plasma processing reaction chamber (101) to a diluent gas feeding unit (112). Thus, the reaction gas can be fully mixed with the diluent gas in the diluent gas introducing tube (111), and a gas feed piping can be of a simpler configuration.
    Type: Application
    Filed: December 22, 2006
    Publication date: July 2, 2009
    Inventors: Katsushi Kishimoto, Yusuke Fukuoka
  • Publication number: 20090127554
    Abstract: A semiconductor structure includes a substrate, a first polysilicon (polysilicon) region, a second polysilicon region, an insulating layer and a third polysilicon region. The first and second polysilicon regions are formed on the substrate and spaced apart by a gap. The insulating layer formed on the substrate covers the first and second polysilicon regions. The third polysilicon region is formed on the insulating layer and disposed above the gap. When the semiconductor structure is applied to a display panel, a grain boundary of the third polysilicon region in a displaying region and a channel of an active layer intersect at an angle, and the grain boundary of the third polysilicon region in a circuit driving region is substantially parallel to the channel of the active layer.
    Type: Application
    Filed: December 9, 2008
    Publication date: May 21, 2009
    Inventors: Chih-Wei Chao, Mao-Yi Chang
  • Publication number: 20090121224
    Abstract: A dual gate of a semiconductor device includes a semiconductor substrate divided into a cell region with a recessed gate forming area and a peripheral region with PMOS and NMOS forming areas; first and second conductive type SiGe layers, the first conductive type SiGe layer being formed over the cell region and the PMOS forming area of the peripheral region, and the second conductive type SiGe layer being formed over the NMOS forming area of the peripheral region; first and second conductive type polysilicon layers, the first conductive type polysilicon layer being formed over the first conductive type SiGe layer and the second conductive type polysilicon layer being formed over the second conductive type SiGe layer; and a metallic layer and a hard mask layer stacked over the first and second conductive type polysilicon layers.
    Type: Application
    Filed: January 2, 2008
    Publication date: May 14, 2009
    Inventor: Young Hoon KIM
  • Patent number: 7528056
    Abstract: A cost-effective and simple method of fabricating strained semiconductor-on-insulator (SSOI) structures which avoids epitaxial growth and subsequent wafer bonding processing steps is provided. In accordance with the present invention, a strain-memorization technique is used to create strained semiconductor regions on a SOI substrate. The transistors formed on the strained semiconductor regions have higher carrier mobility because the Si regions have been strained. The inventive method includes (i) ion implantation to create a thin amorphization layer, (ii) deposition of a high stress film on the amorphization layer, (iii) a thermal anneal to recrystallize the amorphization layer, and (iv) removal of the stress film. Because the SOI substrate was under stress during the recrystallization process, the final semiconductor layer will be under stress as well. The amount of stress and the polaity (tensile or compressive) of the stress can be controlled by the type and thickness of the stress films.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Douglas C. La Tulipe, Jr., Leathen Shi, Anna W. Topol, James Vichiconti, Albert M. Young
  • Publication number: 20090101916
    Abstract: A thin film transistor with excellent electric characteristics and a display device having the thin film transistor are proposed. The thin film transistor includes a gate insulating film formed over a gate electrode; a microcrystalline semiconductor film including an impurity element which serves as a donor, formed over the gate insulating film; a buffer layer formed over the microcrystalline semiconductor film; a pair of semiconductor films to which an impurity element imparting one conductivity type is added, formed over the buffer layer; and wirings formed over the pair of semiconductor films. The concentration of the impurity element which serves as a donor in the microcrystalline semiconductor film is decreased from the gate insulating film side toward the buffer layer, and the buffer layer does not include the impurity element which serves as a donor at a higher concentration than the detection limit of SIMS.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 23, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yasuhiro JINBO
  • Publication number: 20090095956
    Abstract: A semiconductor device of the present invention is arranged in such a manner that a MOS non-single-crystal silicon thin-film transistor including a non-single-crystal silicon thin film made of polycrystalline silicon, a MOS single-crystal silicon thin-film transistor including a single-crystal silicon thin film, and a metal wiring are provided on an insulating substrate. With this arrangement, (i) a semiconductor device in which a non-single-crystal silicon thin film and a single-crystal silicon thin-film device are formed and high-performance systems are integrated, (ii) a method of manufacturing the semiconductor device, and (iii) a single-crystal silicon substrate for forming the single-crystal silicon thin-film device of the semiconductor device are obtained.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 16, 2009
    Inventors: Yutaka TAKAFUJI, Takashi Itoga
  • Publication number: 20090065776
    Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
    Type: Application
    Filed: May 2, 2008
    Publication date: March 12, 2009
    Inventors: Erik SCHER, Steven Molesa, Joerg Rockenberger, Arvind Kamath, Ikuo Mori
  • Patent number: 7482627
    Abstract: A crystalline semiconductor film in which the locations and sizes of crystal grains have been controlled, is prepared, and a TFT capable of high speed operation is realized by employing the crystalline semiconductor film as the channel forming region of the TFT. An organic resin film (2 in FIG. 1) having a predetermined shape is provided on a substrate (1), whereupon an inorganic insulating film (3) and an amorphous semiconductor film are formed. Subsequently, the amorphous semiconductor film is crystallized by laser annealing. The material and thickness of the organic resin film (2) in the predetermined shape or those of the inorganic insulating film (3) are properly regulated, whereby the cooling rate of the semiconductor film is lowered to form a first region (4a) in which crystal grain diameters are large.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: January 27, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Misako Nakazawa, Kenji Kasahara, Hisashi Ohtani
  • Publication number: 20090014719
    Abstract: A junction FET having a large gate noise margin is provided. The junction FET comprises an n? layer forming a drift region of the junction FET formed over a main surface of an n+ substrate made of silicon carbide, a p+ layer forming a gate region formed in contact with the n? layer forming the drift region and a gate electrode provided in an upper layer of the n+ substrate. The junction FET further incorporates pn diodes formed over the main surface of the n+ substrate and electrically connecting the p+ layer forming the gate region and the gate electrode.
    Type: Application
    Filed: May 25, 2008
    Publication date: January 15, 2009
    Inventors: Haruka Shimizu, Hidekatsu Onose
  • Patent number: 7476895
    Abstract: An n-type diamond epitaxial layer 20 is formed by processing a single-crystalline {100} diamond substrate 10 so as to form a {111} plane, and subsequently by causing diamond to epitaxially grow while n-doping the diamond {111} plane. Further, a combination of the n-type semiconductor diamond, p-type semiconductor diamond, and non-doped diamond, obtained in the above-described way, as well as the use of p-type single-crystalline {100} diamond substrate allow for a pn junction type, a pnp junction type, an npn junction type and a pin junction type semiconductor diamond to be obtained.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 13, 2009
    Assignee: Sumitomo Electric Industries., Ltd.
    Inventors: Akihiko Namba, Takahiro Imai, Yoshiki Nishibayashi
  • Patent number: 7470929
    Abstract: Techniques are provided for fuse/anti-fuse structures, including an inner conductor structure, an insulating layer spaced outwardly of the inner conductor structure, an outer conductor structure disposed outwardly of the insulating layer, and a cavity-defining structure that defines a cavity, with at least a portion of the cavity-defining structure being formed from at least one of the inner conductor structure, the insulating layer, and the outer conductor structure. Methods of making and programming the fuse/anti-fuse structures are also provided.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: December 30, 2008
    Assignee: International Business Machines Corporation
    Inventors: Louis C. Hsu, Rajiv V. Joshi, Jack Allan Mandelman, Chih-Chao Yang
  • Publication number: 20080315197
    Abstract: A semiconductor apparatus includes: a substrate of single crystal silicon; a first device formed in a first region of a surface of the substrate; a first interlayer insulating film formed on the substrate; a polycrystalline silicon layer formed in a second region on the first interlayer insulating film; a second device formed in the polycrystalline silicon layer; a second interlayer insulating film formed on the first interlayer insulating film, the second interlayer insulating film covering the polycrystalline silicon layer; and a pad formed in a third region on the second interlayer insulating film. The second region includes at least part of a directly overlying zone of the first region. The third region includes at least part of a region which is the directly overlying zone of the first region and a directly overlying zone of the second region.
    Type: Application
    Filed: February 4, 2008
    Publication date: December 25, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yoshito Suwa
  • Publication number: 20080290797
    Abstract: An organic-inorganic hybrid electroluminescent device having a semiconductor nanocrystal pattern prepared by producing a semiconductor nanocrystal film using semiconductor nanocrystals, where the nanocrystal is surface-coordinated with a compound containing a photosensitive functional group, exposing the film through a mask and developing the exposed film
    Type: Application
    Filed: July 17, 2008
    Publication date: November 27, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong Jin Park, Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee
  • Patent number: 7439544
    Abstract: The present invention provides a manufacturing method of an image TFT array, which includes providing a substrate including a thin film transistor region, a storage capacitor region, a pad region, and a common electrode region, forming a photoresist layer on the substrate, and performing a photolithographic and etching process by utilizing a half-tone mask to pattern the photoresist layer to define a position of a through hole on the storage capacitor region and form the photoresist layer of a first thickness on the thin film transistor region and the photoresist layer of a second thickness on the region between the thin film transistor region and the storage capacitor region, wherein the first thickness is greater than the second thickness.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: October 21, 2008
    Assignee: HannStar Display Corp.
    Inventors: Chin-Mao Lin, Kei-Hsiung Yang, Chian-Chih Hsiao
  • Patent number: 7436114
    Abstract: An electronic device can include a first workpiece, a second workpiece, and a conductive member. The first workpiece can include an electronic component that includes an electrode and an organic layer. The first workpiece can also include a substrate structure lying adjacent to the electronic component. The second workpiece can include a conductor. The conductive member can be substantially directly bonded to the electrode and the first conductor.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: October 14, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Jian Wang, Gang Yu
  • Publication number: 20080246368
    Abstract: A device including a layered heterostructure with an oxygen-containing material, with a carbon layer and an amorphous oxygen diffusion barrier protecting the carbon layer from etching by oxygen. One or more of a metal, a carbide or an oxide may be in contact with the amorphous oxygen diffusion barrier that has the lowest free energy of oxide formation in the device. Various devices are disclosed as are varieties of carbon allotropes. Methods of protecting carbon, such as diamond from the oxygen etching in processes such as device manufacture are also disclosed.
    Type: Application
    Filed: November 30, 2006
    Publication date: October 9, 2008
    Applicant: UChicago Argonne, LLC
    Inventors: Orlando Auciello, John Carlisle, Jennifer Gerbi, James Birrell
  • Publication number: 20080230779
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Application
    Filed: January 28, 2008
    Publication date: September 25, 2008
    Inventor: Amit Goyal
  • Patent number: 7422634
    Abstract: A high quality single crystal wafer of SiC is disclosed. The wafer has a diameter of at least about 3 inches, a warp of less than about 5 ?m, a bow less than about 5 ?m, and a total thickness variation of less than about 2.0 ?m.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 9, 2008
    Assignee: Cree, Inc.
    Inventors: Adrian Powell, William H. Brixius, Robert Tyler Leonard, Davis Andrew McClure, Michael Laughner