Bipolar Transistor Structure Patents (Class 257/565)
  • Patent number: 7800428
    Abstract: Semiconductor devices and methods are disclosed wherein a switching element or a current path is coupled to a substrate, and wherein a further element is coupled to said substrate and a control input of said switching element or said current path. Accordingly, in at least one embodiment, a semiconductor device comprises a substrate and a switching element with a control input coupled to the substrate. The semiconductor device includes a compensation element having a control input and an output. The control input of the compensation element is coupled to the substrate and the output of the compensation element is coupled to the control input of the switching element.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: September 21, 2010
    Assignee: Infineon Technologies AG
    Inventors: Joachim Pichler, Maria Giovanna Lagioia
  • Patent number: 7800143
    Abstract: A memory cell and methods of making and operating the same are provided. In one aspect, a method of forming a memory cell is provided that includes forming a MOS transistor that has a gate, a source region and a drain region. A bipolar transistor is formed that has a collector, a base and an emitter. The emitter of the bipolar transistor is formed to serve as the source region for the MOS transistor and the base of the bipolar transistor is formed to serve as a capacitive charge storage region for the memory cell.
    Type: Grant
    Filed: December 24, 2006
    Date of Patent: September 21, 2010
    Assignee: GlobalFoundries Inc.
    Inventor: Hyun-Jin Cho
  • Patent number: 7795614
    Abstract: An electronic device including in any sequence: (a) a semiconductor layer; and (b) a phase-separated dielectric structure comprising a lower-k dielectric polymer and a higher-k dielectric polymer, wherein the lower-k dielectric polymer is in a higher concentration than the higher-k dielectric polymer in a region of the dielectric structure closest to the semiconductor layer.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: September 14, 2010
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Hadi K Mahabadi, Beng S Ong, Paul F Smith
  • Patent number: 7795703
    Abstract: According to one exemplary embodiment, a bipolar transistor includes an active area situated between first and second isolation regions in a substrate. The bipolar transistor further includes an epitaxial extension layer situated on the active area, where the epitaxial extension layer extends over the first and second isolation regions. The bipolar transistor further includes a base layer situated on the epitaxial extension layer, where the base layer includes an epitaxial base, and where the epitaxial base includes a usable emitter formation area. The active area has a first width and the usable emitter formation area has a second width, where the second width is at least as large as the first width.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: September 14, 2010
    Assignee: Newport Fab, LLC
    Inventor: Greg D. U'Ren
  • Patent number: 7791171
    Abstract: In a semiconductor device according to the present invention, two epitaxial layers are formed on a P type substrate. In the substrate and the epitaxial layers, isolation regions are formed to divide the substrate and the epitaxial layers into a plurality of islands. Each of the isolation regions is formed by connecting first and second P type buried layers with a P type diffusion layer. By disposing the second P type buried layer between the first P type buried layer and the P type diffusion layer, a lateral diffusion width of the first P type buried layer is reduced. By use of this structure, a formation region of the isolation region is reduced in size.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: September 7, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Yoshimasa Amatatsu
  • Patent number: 7777302
    Abstract: A method of modulating grain size in a polysilicon layer and devices fabricated with the method. The method includes forming the layer of polysilicon on a substrate; and performing an ion implantation of a polysilicon grain size modulating species into the polysilicon layer such that an average resultant grain size of the implanted polysilicon layer after performing a pre-determined anneal is higher or lower than an average resultant grain size than would be obtained after performing the same pre-determined anneal on the polysilicon layer without a polysilicon grain size modulating species ion implant.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Geiss, Joseph R. Greco, Richard S. Kontra, Emily Lanning
  • Patent number: 7776704
    Abstract: The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Qizhi Liu
  • Patent number: 7777255
    Abstract: A bipolar transistor has a base with an epitaxial base layer and a raised base connection region which in a lateral direction in parallel relationship with the substrate surface encloses the emitter which is surrounded by a spacer of insulating material. The epitaxial base layer is raised in a heightwise direction perpendicularly to the substrate surface. An emitter of a T-shaped cross-sectional profile is separated laterally from the outer base portion by a spacer of insulating material. Its vertical bar of the T-shape adjoins with its lower end the inner base portion.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: August 17, 2010
    Assignee: IHP GmbH—Innovations for High Performance Microelectronics / Leibniz-Instut für innovative Mikroelektronik
    Inventors: Holger Rücker, Bernd Heinemann
  • Patent number: 7768101
    Abstract: A p-type collector region of an IGBT and an n-type cathode region of a free wheel diode are alternately formed in a second main surface of a semiconductor substrate. A back electrode is formed on the second main surface so as to be in contact with both of the p-type collector region and the n-type cathode region, and has a titanium layer, a nickel layer and a gold layer that are successively stacked from the side of the second main surface. A semiconductor device capable of obtaining a satisfactory ON voltage in any of conduction of an insulated gate field effect transistor and conduction of the free wheel diode as well as a manufacturing method thereof can thus be obtained.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Hideki Takahashi, Yoshifumi Tomomatsu
  • Publication number: 20100181649
    Abstract: Memory cells having memory elements self-aligned with the emitters of bipolar junction transistor access devices are described herein, as well as methods for manufacturing such devices. A memory device as described herein comprises a plurality of memory cells. Memory cells in the plurality of memory cells include a bipolar junction transistor comprising an emitter comprising a pillar of doped polysilicon. The memory cells include an insulating element over the emitter and having an opening extending through the insulating layer, the opening centered over the emitter. The memory cells also include a memory element within the opening and electrically coupled to the emitter.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicants: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Erh-Kun Lai, Chung H. Lam, Bipin Rajendran
  • Publication number: 20100176362
    Abstract: Memory devices and methods for manufacturing are described herein. A memory device described herein includes a plurality of memory cells. Memory cells in the plurality of memory cells comprise respective bipolar junction transistors and memory elements. The bipolar junction transistors are arranged in a common collector configuration and include an emitter comprising doped polysilicon having a first conductivity type, the emitter contacting a corresponding word line in a plurality of word lines to define a pn junction. The bipolar junction transistors include a portion of the corresponding word line underlying the emitter acting as a base, and a collector comprising a portion of the single-crystalline substrate underlying the base.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicants: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Erh-Kun Lai, Bipin Rajendran, Chung H. Lam
  • Patent number: 7755168
    Abstract: A semiconductor device has a first conductivity-type first semiconductor region, a second conductivity-type second semiconductor region and a second conductivity-type third semiconductor region both located on or above the first semiconductor region, a second conductivity-type fourth semiconductor region between the second semiconductor region and the third semiconductor region, and a first conductivity-type fifth semiconductor region between the third semiconductor region and the fourth semiconductor region. The fourth semiconductor region and the fifth semiconductor region are electrically connected by a conductive member. A distance between the fourth semiconductor region and the third semiconductor region is larger than a width of the fourth semiconductor region.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 13, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomohide Terashima, Shiori Uota
  • Patent number: 7750371
    Abstract: Disclosed is an improved semiconductor structure (e.g., a silicon germanium (SiGe) hetero-junction bipolar transistor) having a narrow essentially interstitial-free SIC pedestal with minimal overlap of the extrinsic base. Also, disclosed is a method of forming the transistor which uses laser annealing, as opposed to rapid thermal annealing, of the SIC pedestal to produce both a narrow SIC pedestal and an essentially interstitial-free collector. Thus, the resulting SiGe HBT transistor can be produced with narrower base and collector space-charge regions than can be achieved with conventional technology.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Rajendran Krishnasamy, Kathryn T. Schonenberg
  • Publication number: 20100163872
    Abstract: A bipolar junction transistor and a method of manufacturing a bipolar junction transistor are disclosed. An exemplary bipolar junction transistor includes a second conductivity type base region in a first conductivity type substrate, step-shaped recesses in the base region, a polysilicon layer doped with a first conductivity type impurity in the step-shaped recesses, and a step-shaped emitter region between the polysilicon layer and the base region.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 1, 2010
    Inventor: Hyon Chol LIM
  • Publication number: 20100155894
    Abstract: A bipolar junction transistor may act as a select device for a semiconductor memory. The bipolar junction transistor may be formed of a stack of base and collector layers. Sets of parallel trenches are formed in a first direction down to the base and in a second direction down to the collector. The trenches may be used to form local enhancement implants into the exposed portion of the base and collector in each trench. As a result of the local enhancement implants, in some embodiments, leakage current may be reduced, active current capability may be higher, gain may be higher, base resistance may be reduced, breakdown voltage may be increased, and parasitic effects with adjacent junctions may be reduced.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: AGOSTINO PIROVANO, AUGUSTO BENVENUTI, FABIO PELLIZZER, GIORGIO SERVALLI
  • Patent number: 7741694
    Abstract: A semiconductor integrated circuit device according to the present invention includes an N-type embedded diffusion region between a substrate and an epitaxial layer in first and second island regions serving as small signal section. The N-type embedded diffusion region connects to N-type diffusion regions having supply potential. The substrate and the epitaxial layer are thus partitioned by the N-type embedded diffusion region having supply potential in the island regions serving as small signal section. This structure prevents the inflow of free carriers (electrons) generated from a power NPN transistor due to the back electromotive force of the motor into the small signal section, thus preventing the malfunction of the small signal section.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: June 22, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Ryo Kanda, Shigeaki Okawa, Kazuhiro Yoshitake
  • Publication number: 20100148308
    Abstract: A method of manufacturing a semiconductor device comprises growing or depositing an implantation oxide layer, implanting a dopant, activating the dopant, and removing the implantation oxide layer after the step of activating the dopant.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 17, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alfred HAEUSLER, Wolfgang SCHWARTZ
  • Patent number: 7737490
    Abstract: A vertical and trench type insulated gate MOS semiconductor device is provided in which the surfaces of p-type channel regions and the surfaces of portions of an n-type semiconductor substrate alternate in the longitudinal direction of the trench between the trenches arranged in parallel, and an n+-type emitter region selectively formed on the surface of the p-type channel region is wide by the side of the trench and becomes narrow toward the center point between the trenches. This enables the device to achieve low on-resistance and enhanced turn-off capability.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: June 15, 2010
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Koh Yoshikawa, Hiroki Wakimoto, Masahito Otsuki
  • Patent number: 7728408
    Abstract: A vertical BJT which has a maximal current gain for a photodiode area. According to embodiments, since the BJT can be formed together with the photodiode, and collector current flows up and down based on the double base structure, the magnitude of the current may be increased.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: June 1, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Su Lim
  • Patent number: 7723823
    Abstract: An improved lateral bipolar electrostatic discharge (ESD) protection device (40) comprises a semiconductor (SC) substrate (42), an overlying epitaxial SC layer (44), emitter-collector regions (48, 50) laterally spaced apart by a first distance (52) in the SC layer, a base region (54) adjacent the emitter region (48) extending laterally toward and separated from the collector region (50) by a base-collector spacing (56) that is selected to set the desired trigger voltage Vt1. By providing a buried layer region (49) under the emitter region (48) Ohmically coupled thereto, but not providing a comparable buried layer region (51) under the collector region (50), an asymmetrical structure is obtained in which the DC trigger voltage (Vt1DC) and transient trigger voltage (Vt1TR) are closely matched so that |Vt1TR?Vt1DC|˜0.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chai Ean Gill, Changsoo Hong, James D. Whitfield, Rouying Zhan
  • Patent number: 7723817
    Abstract: The shape of a tip of an insulating material of an insulating isolation region is provided as being a concave one recessed below the back surface of an n-semiconductor substrate. This reduces the electric field strength at the corner at which the bottom of the n-semiconductor substrate is in contact with the insulating isolation region to allow an excellent breakdown voltage to be obtained. Moreover, by forming a high impurity concentration region such as a field-stop layer on the back surface of the n-semiconductor substrate, a depletion layer extending from the top surface is prevented from reaching the back surface. This eliminates an influence of a surface state introduced in the interface between the insulator film formed on the back surface and the n-semiconductor substrate, by which an excellent breakdown voltage can be obtained.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: May 25, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Hiroshi Kanemaru, Naoki Kumagai, Yuichi Harada, Yoshihiro Ikura, Yoshiaki Minoya
  • Patent number: 7719031
    Abstract: A bipolar transistor 120 comprises a substrate 1, a intrinsic base region 11 and an extrinsic base region 12. The intrinsic base region 11 comprises a silicon buffer layer 109 comprised of silicon which is formed on the substrate 1, and a composition-ratio graded base layer 111 which is formed on the silicon buffer layer and comprises silicon and at least germanium and where a composition ratio of the germanium to the silicon varies in a thickness direction of the composition-ratio graded base layer 111. The extrinsic base region 12 comprises an extrinsic base formation layer 113 comprised of silicon which is formed on the substrate and adjacent to the silicon buffer layer. And the thickness of the extrinsic base formation layer 113 is not less than 40 nm.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Tohru Saitoh, Takahiro Kawashima, Ken Idota, Yoshihiko Kanzawa, Teruhito Ohnishi
  • Patent number: 7719087
    Abstract: A semiconductor device includes: a GaAs chip; and a resin sealing the GaAs chip. The GaAs chip includes: a p-type GaAs layer; an n-type GaAs layer on the p-type GaAs layer; a metal electrode located on the n-type GaAs layer along an edge of the GaAs chip and to which a positive voltage is applied; a device region located in a central portion of the GaAs chip; a semi-insulating region located between the metal electrode and the device region and extending in the p-type GaAs layer and the n-type GaAs layer; and a connecting portion disposed outside the semi-insulating region and electrically connecting the p-type GaAs layer to the metal electrode.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 18, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Satoshi Suzuki
  • Patent number: 7719081
    Abstract: In a semiconductor device of the present invention, an epitaxial layer is formed on a P type single crystal silicon substrate. Isolation regions are formed in the epitaxial layer, and are divided into a plurality of element formation regions. An NPN transistor is formed in one of the element formation regions. An N type diffusion layer is formed between a P type isolation region and a P type diffusion layer which is used as a base region of the NPN transistor. This structure makes the base region and the isolation region tend not to be short-circuited. Hence, the breakdown voltage characteristics of the NPN transistor can be improved.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: May 18, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi
  • Patent number: 7709930
    Abstract: Disclosed is a method of forming a semiconductor structure that includes a discontinuous non-planar sub-collector having a different polarity than the underlying substrate. In addition, this structure includes an active area (collector) above the sub-collector, a base above the active area, and an emitter above the base. The distance between the discontinuous portions of the discontinuous sub-collector tunes the performance characteristics of the semiconductor structure. The performance characteristics that are tunable include breakdown voltage, unity current gain cutoff frequency, unity power gain cutoff frequency, transit frequency, current density, capacitance range, noise injection, minority carrier injection and trigger and holding voltage.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Andreas Stricker, David Sheridan, Jae-Sung Rieh, Gregory Freeman, Steven Voldman, Stephen A. St. Onge
  • Patent number: 7705427
    Abstract: An integrated circuit includes a bipolar transistor comprising a substrate and a collector formed in the substrate. The collector includes a highly doped lateral zone, a very lightly doped central zone and a lightly doped intermediate zone located between the central zone and the lateral zone 4a of the collector. The substrate includes a lightly doped lateral zone and a highly doped central zone. The dopant species in the zone of the substrate are electrically inactive.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 27, 2010
    Assignee: STMicroelectronics SA
    Inventors: Damien Lenoble, Thierry Schwartzmann, Laurence Boissonnet
  • Patent number: 7701038
    Abstract: A lateral bipolar junction transistor having improved current gain and a method for forming the same are provided. The transistor includes a well region of a first conductivity type formed over a substrate, at least one emitter of a second conductivity type opposite the first conductivity type in the well region wherein each of the at least one emitters are interconnected, a plurality of collectors of the second conductivity type in the well region wherein the collectors are interconnected to each other, and a plurality of base contacts of the first conductivity type in the well region wherein the base contacts are interconnected to each other. Preferably, all sides of the at least one emitters are adjacent the collectors, and none of the base contacts are adjacent the sides of the emitters. The neighboring emitter, collectors and base contacts are separated by spacings in the well region.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Mao Chen, Chih-Ping Chao, Chih-Sheng Chang
  • Patent number: 7692268
    Abstract: An integrated circuit including a bipolar transistor is disclosed. One embodiment provides an insulation structure used to form a junction insulation, a collector structure formed inside a semiconductor zone having openings dividing the collector structure into collector zones. The collector zones are arranged in such a manner that a shortest lateral distance between an emitter zone and the insulation structure runs at least through one of the collector zones.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 6, 2010
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Prechtl, Marcel Kreuzberg
  • Publication number: 20100078673
    Abstract: A semiconductor component in which the active junctions extend perpendicularly to the surface of a semiconductor chip substantially across the entire thickness thereof. The contacts with the regions to be connected are provided by conductive fingers substantially crossing the entire region with which a contact is desired to be established.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 1, 2010
    Applicant: STMicroelectronics S.A.
    Inventor: Jean-Luc Morand
  • Publication number: 20100078724
    Abstract: A transistor-type protection device includes: a semiconductor substrate; a well including a first-conductivity-type semiconductor formed in the semiconductor substrate; a source region including a second-conductivity-type semiconductor formed in the well; a gate electrode formed above the well via a gate insulating film at one side of the source region; a drain region including the second-conductivity-type semiconductor formed within the well apart at one side of the gate electrode; and a resistive breakdown region including a second-conductivity-type semiconductor region in contact with the drain region at a predetermined distance apart from the well part immediately below the gate electrode, wherein a metallurgical junction form and a impurity concentration profile of the resistive breakdown region are determined so that a region not depleted at application of a drain bias when junction breakdown occurs in the drain region or the resistive breakdown region may remain in the resistive breakdown region.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: SONY CORPORATION
    Inventors: Tsutomu Imoto, Kouzou Mawatari
  • Patent number: 7687887
    Abstract: A method for forming a self-aligned bipolar transistor structure uses the selective growth of a doped silicon emitter in a sloped oxide emitter window to form the self-aligned structure. In an alternate process flow, the top emitter layer is SiGe with a high Ge content that is etched off selectively after deposition of the extrinsic base layer. In another alternate flow, a nitride plug formed on top of the emitter blocks the extrinsic base implant from the emitter region.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 30, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Monir El-Diwany, Alexei Sadovnikov, Jamal Ramdani
  • Patent number: 7687886
    Abstract: A heterojunction bipolar transistor (HBT) is provided with an improved on-state breakdown voltage VCE. The improvement of the on-state breakdown voltage for the HBT improves the output power characteristics of the HBT and the ability of the HBT to withstand large impedance mismatch (large VSWR). The improvement in the on-state breakdown voltage is related to the suppression of high electric fields adjacent a junction of a collector layer and a sub-collector layer forming a collector region of the HBT.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: March 30, 2010
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo
  • Patent number: 7675141
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is divided into a plurality of element formation regions by an isolation region. In one of the element formation regions, an NPN transistor is formed. Around the NPN transistor, a protection element having a PN junction region is formed. The PN junction region has a junction breakdown voltage lower than that of a PN junction region of the NPN transistor. By use of this structure, when negative ESD surge is applied to a pad for a base electrode, the PN junction region of the protection element breaks down. Accordingly, the NPN transistor can be protected.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: March 9, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Seiji Otake
  • Patent number: 7671447
    Abstract: The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region (1), a base region (2) and a collector region (3) of, respectively, a first conductivity type, a second conductivity type, opposite to the first conductivity type, and the first conductivity type, wherein, viewed in projection, the emitter region (1) is positioned above or below the base region (2), and the collector region (3) laterally borders the base region (2). According to the invention, the base region (2) comprises a highly doped subregion (2A) the doping concentration of which has a delta-shaped profile in the thickness direction, and said highly doped sub-region (2A) extends laterally as far as the collector region (3). Such a lateral bipolar transistor has excellent high-frequency properties and a relatively high breakdown voltage between the base and collector regions (2, 3), implying that the device is suitable for high power applications.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: March 2, 2010
    Assignee: NXP B.V.
    Inventors: Andreas Hubertus Montree, Jan Willem Slotboom, Prabhat Agarwal, Philippe Meunier-Beillard
  • Patent number: 7667295
    Abstract: In a semiconductor device including a bipolar transistor, a base region has a two layer structure including a first base region, and a second base region which is provided around the first base region and has a lower impurity density than that of the first base region and has a shallower depth than that of the first base region.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: February 23, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 7667294
    Abstract: A P+ base drawing diffusion region is formed on a substrate having an SOI structure. N+ emitter diffusion regions are formed on both sides of the P+ base drawing diffusion region through isolation insulating films interposed therebetween. A P type SOI layer, which serves as a base diffusion region, is formed so as to surround the N+ emitter diffusion regions, and conductive layers are formed thereon. Further, an N+ collector diffusion region is formed so as to surround the conductive layers.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Tatsuhiko Ikeda
  • Publication number: 20100032766
    Abstract: A process for forming a bipolar junction transistor (BJT) in a semiconductor substrate and a BJT formed according to the process. A buried isolation region is formed underlying BJT structures to isolate the BJT structures from the p-type semi-conductor substrate. To reduce capacitance between a BJT subcollector and the buried isolation region, prior to implanting the subcollector spaced-apart structures are formed on a surface of the substrate. The subcollector is formed by implanting ions through the spaced-apart structures and through a region intermediate the spaced-apart structures. The formed BJT subcollector therefore comprises a body portion and end portions extending therefrom, with the end portions disposed at a shallower depth than the body portion, since the ions implanting the end portions must pass through the spaced-apart structures. The shallower depth of the end portions reduces the capacitance.
    Type: Application
    Filed: June 2, 2006
    Publication date: February 11, 2010
    Applicant: Agere Systems Inc.
    Inventors: Alan Sangone Chen, Mark Victor Dyson, Edward Belden Harris, Daniel Charles Kerr, William John Nagy
  • Patent number: 7656002
    Abstract: The present invention relates to a microelectronic device having a bipolar epitaxial structure that provides at least one bipolar transistor element formed over at least one field effect transistor (FET) epitaxial structure that provides at least one FET element. The epitaxial structures are separated with at least one separation layer. Additional embodiments of the present invention may use different epitaxial layers, epitaxial sub-layers, metallization layers, isolation layers, layer materials, doping materials, isolation materials, implant materials, or any combination thereof.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 2, 2010
    Assignee: RF Micro Devices, Inc.
    Inventors: Curtis A. Barratt, Michael T. Fresina, Brian G. Moser, Dain C. Miller, Walter A. Wohlmuth
  • Publication number: 20100019350
    Abstract: The PN junctions of a transistor are biased for operation in the active mode but an initial flow of current reverses the bias of the base-emitter junction causing the transistor to conduct a resonant current with a voltage less than the forward junction voltage of said base-emitter.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Inventor: Larry A. Park
  • Publication number: 20100001290
    Abstract: A semiconductor crystal includes a recombination-inhibiting semiconductor layer (17) of a second conductive type that is disposed in the vicinity of the surface between a base contact region (16) and emitter regions (14) and that separates the semiconductor surface having a large number of surface states from the portion that primarily conducts the positive hole electric current and the electron current. Recombination is inhibited, and the current amplification factor is thereby improved and the ON voltage reduced.
    Type: Application
    Filed: June 9, 2006
    Publication date: January 7, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Ken-ichi Nonaka
  • Patent number: 7642154
    Abstract: A biCMOS device including a bipolar transistor and a Polysilicon/Insulator/Polysilicon (PIP) capacitor is disclosed. A biCMOS device may have a relatively low series resistance at a bipolar transistor. A bipolar transistor may have a desirable amplification rate.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7642621
    Abstract: In a protection circuit of an input/output terminal I/O, three types of PNP bipolar transistors are included. In a first PNP type bipolar transistor 10A, the emitter thereof is connected to the input/output terminal I/O, the base thereof is connected to a high-potential power supply terminal VDD, and the collector thereof is connected to a low-potential power supply terminal VSS. In a second PNP type bipolar transistor 10B, the emitter thereof is connected to the input/output terminal I/O, and the base and the collector thereof are connected to the high-potential power supply terminal VDD. In a third PNP type bipolar transistor 10C, the emitter thereof is connected to the low-potential power supply terminal VSS, and the base and the collector thereof are connected to the high-potential power supply terminal VDD.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: January 5, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yukio Takahashi
  • Patent number: 7642569
    Abstract: A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: January 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: David R. Greenberg, Shwu-Jen Jeng
  • Publication number: 20090315145
    Abstract: By providing a novel bipolar device design implementation, a standard CMOS process (105-109) can be used unchanged to fabricate useful bipolar transistors (80) and other bipolar devices having adjustable properties by partially blocking the P or N well doping (25) used for the transistor base (581). This provides a hump-shaped base (583, 584) region with an adjustable base width (79), thereby achieving, for example, higher gain than can be obtained with the unmodified CMOS process (101-104) alone. By further partially blocking the source/drain doping step (107) used to form the emitter (74) of the bipolar transistor (80), the emitter shape and effective base width (79) can be further varied to provide additional control over the bipolar device (80) properties. The embodiments thus include prescribed modifications to the masks (57, 62, 72, 46) associated with the bipolar device (80) that are configured to obtain desired device properties.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Bernhard H. Grote, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 7633122
    Abstract: A trench MOSFET includes mesa regions between the trenches. The mesa regions are connected to an emitter electrode to fix the mesa region potential so that the mesa regions do not form a floating structure. P-type base regions are distributed in the mesa regions, and the distributed p-type base regions (e.g., the limited regions in the mesa regions) are provided with an emitter structure. The trench MOSFET can lower the switching losses, reducing the total losses while suppressing the ON-state voltage drop of the trench IGBT as low as the ON-state voltage drop of the IEGT, and improving the turn-on characteristics thereof. The trench MOSFET also can reduce the capacitance between the gates and the emitter thereof, since the regions where the gate electrode faces the emitter structure are reduced. The trench MOSFET can have trench gate structures set at a narrow interval to relax the electric field localization to the bottom portions of the trenches and obtain a high breakdown voltage.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: December 15, 2009
    Inventor: Masahito Otsuki
  • Patent number: 7629665
    Abstract: A semiconductor component has a semiconductor body (100) having a basic doping and a first and second side, an inner region (103) arranged between the first and second sides, and an edge region (104) adjacent to the inner region in a lateral direction, at least one active component zone (12) which is arranged in the inner region (103) in the region of the first side (101) and is doped complementarily to the basic doping, and a channel stop zone (20), which is arranged in the edge region (104) in the region of the first side (101), is of the same conduction type as the basic doping and is doped more heavily than the basic doping, the doping concentration in the channel stop zone (20) decreasing continuously at least in sections in a lateral direction in the direction of the active component zone (12) at least over a distance (d1) of 10 ?m.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: December 8, 2009
    Assignee: Infineon Technologies AG
    Inventors: Reiner Barthelmess, Hans-Joachim Schulze
  • Patent number: 7622788
    Abstract: A gallium nitride heterojunction bipolar transistor with a p-type strained InGaN base layer is provided. The gallium nitride heterojunction bipolar transistor includes a substrate, a highly doped collector contact layer located over the substrate, a low doped collector layer located over the collector contact layer, a p-type base layer located over the collector layer, a highly doped strained InGaN base layer located over the p-type base layer, a emitter layer located over the p-type strained InGaN base layer, a highly doped emitter contact layer located over the emitter layer, and an emitter metal electrode, a base metal electrode, and a collector metal electrode respectively located on the emitter contact layer, the p-type strained InGaN base layer, and the collector contact layer.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 24, 2009
    Assignee: National Central University
    Inventors: Yue-Ming Hsin, Jinn-Kong Sheu, Kuang-Po Hsueh
  • Patent number: 7619299
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. In the substrate and the epitaxial layer, an N type buried diffusion layer is formed on a P type buried diffusion layer. With this structure, an upward expansion of the P type buried diffusion layer is checked and a thickness of the epitaxial layer can be made small while maintaining the breakdown voltage characteristics of a power semiconductor element. Accordingly, a device size of a control semiconductor element can be reduced.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: November 17, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Keiji Mita, Kentaro Ooka
  • Publication number: 20090261385
    Abstract: A bipolar transistor includes a base layer design and a method for fabricating such a bipolar transistor that employ a built-in accelerating field focused on a base region adjacent to a collector, where minority carrier transport is otherwise retarded. The accelerating field of the base layer includes on average, a relatively low p-doping level in a first region proximate to the collector and a relatively high p-doping level in a second region proximate to an emitter. Alternatively, the accelerating field can be derived from band gap grading, wherein the grade of band gap in the first region is greater than the grade of band gap in the second region, and the average band gap of the first region is lower than that of the second region.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 22, 2009
    Applicant: Kopin Corporation
    Inventors: Eric M. Rehder, Roger E. Welser, Charles R. Lutz
  • Patent number: 7605445
    Abstract: The present invention relates to an integrated circuit. The integrated circuit includes a substrate, at least one device region formed in the substrate, a patterned layer of oxide, a first and second layer of nitride and at least one metal contact region. The patterned layer of oxide is formed over a surface of the substrate, wherein the patterned layer provides at least one opening to the surface of the substrate adjacent the at least one device region. The first layer of nitride is formed over the patterned oxide layer. The second nitride layer is formed along sidewalls to the at least one opening. The patterned oxide layer is sealed with the first and second nitride layers. The at least one metal contact region is formed in the at least one opening.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: October 20, 2009
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom