Thin Active Physical Layer Which Is (1) An Active Potential Well Layer Thin Enough To Establish Discrete Quantum Energy Levels Or (2) An Active Barrier Layer Thin Enough To Permit Quantum Mechanical Tunneling Or (3) An Active Layer Thin Enough To Permit Carrier Transmission With Substantially No Scattering (e.g., Superlattice Quantum Well, Or Ballistic Transport Device) Patents (Class 257/9)
  • Publication number: 20140264254
    Abstract: There is provided a light emitting device including a plurality of nanoscale light emitting structures spaced apart from one another on a first conductivity-type semiconductor base layer, the plurality of nanoscale light emitting structures each including a first conductivity-type semiconductor core, an active layer and a second conductivity-type semiconductor layer, and an electrode connected to the second conductivity-type semiconductor layer. The electrode is disposed between a first nanoscale light emitting structure and a second nanoscale light emitting structure among the plurality of nanoscale light emitting structures, and the electrode has a height lower than a height of the plurality of nanoscale light emitting structures.
    Type: Application
    Filed: February 4, 2014
    Publication date: September 18, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae Woong KIM, Kyung Wook HWANG
  • Publication number: 20140264255
    Abstract: A graphene layer is generated on a substrate. A plastic material is deposited on the graphene layer to at least partially cover the graphene layer. The substrate is separated into at least two substrate pieces.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Klaus Elian, Guenther Ruhl, Horst Theuss, Irmgard Escher-Poeppel
  • Patent number: 8835899
    Abstract: A graphene electronic device and a method of fabricating the graphene electronic device are provided. The graphene electronic device may include a graphene channel layer formed on a hydrophobic polymer layer, and a passivation layer formed on the graphene channel layer. The hydrophobic polymer layer may prevent or reduce adsorption of impurities to transferred graphene, and a passivation layer may also prevent or reduce adsorption of impurities to a heat-treated graphene channel layer.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-jun Yang, Sun-ae Seo, Sung-hoon Lee, Hyun-jong Chung, Jin-seong Heo
  • Patent number: 8835286
    Abstract: The invention provides a manufacturing method of a graphene-on-insulator substrate which is mass productive, of high quality, and yet is directly usable for manufacture of semiconductor devices at a low manufacturing cost. According to the manufacturing method of a graphene substrate of the invention, a metal layer and a carbide layer are heated with the metal layer in contact with the carbide layer so that carbon in the carbide layer is dissolved into the metal layer, and then the metal layer and the carbide layer are cooled so that the carbon in the metal layer is segregated as graphene on the surface of the carbide layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: September 16, 2014
    Assignee: NEC Corporation
    Inventors: Hidefumi Hiura, Kazuhito Tsukagoshi
  • Publication number: 20140252305
    Abstract: Semiconducting quantum dots are applied to a fluid. The quantum dots are configured to absorb visible or near infrared light and re-radiate infrared energy that excites a fundamental vibration frequency of the fluid.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: THE BOEING COMPANY
    Inventor: Minas H. Tanielian
  • Publication number: 20140252307
    Abstract: A transistor and a fabrication method thereof. A transistor includes a channel region including linkers, formed on a substrate, and a metallic nanoparticle grown from metal ions bonded to the linkers, a source region disposed at one end of the channel region, a drain region disposed at the other end of the channel region opposite of the source region, and a gate coupled to the channel region and serving to control migration of at least one charges in the channel region.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Jun-Hyung KIM, Young-Keun LEE, Hong YOU, Sung-Jae AN, Tae-Hee KIM
  • Publication number: 20140252306
    Abstract: A three-dimensional integrated circuit comprising top tier nanowire transistors formed on a bottom tier of CMOS transistors, with inter-tier vias, intra-tier vias, and metal layers to connect together the various CMOS transistors and nanowire transistors. The top tier first begins as lightly doped regions on a first wafer, with an oxide layer formed over the regions. Hydrogen ion implantation forms a cleavage interface. The first wafer is flipped and oxide bonded to a second wafer having CMOS devices, and the cleavage interface is thermally activated so that a portion of the lightly doped regions remains bonded to the bottom tier. Nanowire transistors are formed in the top tier layer. The sources and drains for the top tier nanowire transistors are formed by in-situ doping during epitaxial growth. After oxide bonding, the remaining process steps are performed at low temperatures so as not to damage the metal interconnects.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventor: Yang Du
  • Patent number: 8829485
    Abstract: Another aspect of the present disclosure relates to a device including a substrate, having a top surface and a bottom surface; an array of nanowires having a base and a top surface, the base contacting the top surface of the substrate; a contacting structure including the same material as the substrate having a non-nanostructured surface of a dimension suitable for forming an electrical contact, located on the same side of the substrate as the array of silicon nanowires; wherein the contacting structure is doped with a greater impurity concentration than the nanowire array, thereby forming a selective emitter.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 9, 2014
    Assignee: Bandgap Engineering, Inc.
    Inventors: Faris Modawar, Marcie R. Black, Brian Murphy, Jeff Miller, Mike Jura
  • Publication number: 20140246647
    Abstract: A nanostructure semiconductor light emitting device includes a base layer, an insulating layer, and a plurality of light emitting nanostructures. The base layer includes a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. The light emitting nanostructures are respectively disposed on the exposed regions of the base layer and include a plurality of nanocores having a first conductivity type semiconductor and having side surfaces provided as the same crystal planes. The light emitting nanostructures include an active layer and a second conductivity type semiconductor layer sequentially disposed on surfaces of the nanocores. Upper surfaces of the nanocores are provided as portions of upper surfaces of the light emitting nanostructures, and the upper surfaces of the light emitting nanostructures are substantially planar with each other.
    Type: Application
    Filed: January 27, 2014
    Publication date: September 4, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Nam Goo CHA, Dong Ho KIM, Geon Wook YOO
  • Publication number: 20140239249
    Abstract: The process disclosed herein produces macroscopic quantities of semiconducting arsenic sulfide nanofibers within one to three days. The process is biotically influenced by the bacteria Shewanella sp. Strain ANA-3. The fibers are semiconductors with bandgaps between 2.2 and 2.5 eV. Newly measured semiconducting and bandgap properties can lead to applications in the semiconductor, transistor, and solar energy fields. A faster and more robust biological component makes the overall process more commercially feasible than it would have been otherwise. The faster rate allows for larger yields of nanofibers in a predetermined period of time.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Applicant: University of Southern California
    Inventors: Ian R. McFarlane, Mohamed Y. El-Naggar
  • Patent number: 8816320
    Abstract: A GaN-containing semiconductor light emitting device includes: an n-type semiconductor layer formed of GaN-containing semiconductor, an active layer formed on the n-type semiconductor layer, formed of GaN-containing semiconductor, and having a multiple quantum well structure including a plurality of barrier layers and well layers stacked alternately, and a p-type semiconductor layer formed on the active layer and formed of GaN-containing semiconductor, wherein: the barrier layers comprise: a first barrier layer disposed nearest to the n-type semiconductor layer among the barrier layers and formed of a GaN/AlGaN layer, and second barrier layers disposed nearer to the p-type semiconductor layer than the first barrier layer and including an InGaN/GaN layer which has a layered structure of a InGaN sublayer and a GaN sublayer; and the well layers are each formed of an InGaN layer having a narrower band gap than that in the InGaN sublayer.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: August 26, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Sho Iwayama, Masahiko Moteki
  • Patent number: 8816319
    Abstract: An optical device has a gallium and nitrogen containing substrate including a surface region and a strain control region, the strain control region being configured to maintain a quantum well region within a predetermined strain state. The device also has a plurality of quantum well regions overlying the strain control region.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 26, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Christiane Poblenz
  • Publication number: 20140225058
    Abstract: To provide a rectifying device equipped with a carrier transporter excellent in high frequency responsiveness and heat resistance, an electronic circuit using the same, and a method of manufacturing the rectifying device. The rectifying device includes a pair of electrodes, and a carrier transporter arranged between the pair of electrodes and composed of one or multiple carbon nanotubes. In order that a first interface between one electrode of the pair of electrodes and the carrier transporter and a second interface between the other electrode of the pair of electrodes and the carrier transporter may have different barrier levels, connection configuration of them are made different.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shinsuke OKADA, Masaki HIRAKATA, Chikara MANABE, Kazunori ANAZAWA, Taishi SHIGEMATSU, Miho WATANABE, Kentaro KISHI, Takashi ISOZAKI, Shigeki OOMA, Hiroyuki WATANABE
  • Publication number: 20140224296
    Abstract: The present disclosure provides improved solid-state thermoelectric devices. A thermoelectric architecture referred to as a nanowire composite includes a plurality of intersecting semiconductor nanowires grown on metallic templates that are formed on a non-single crystal substrate. A plurality of nanowire composites form modules used in thermoelectric devices to generate electric power. The thermoelectric devices using these modules may be fabricated more cost effectively and perform better than conventional thermoelectric devices.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 14, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nobuhiko Kobayashi, Andrew John Lohn
  • Patent number: 8796664
    Abstract: A graphene-based composite structure is disclosed. The graphene-based composite structure includes a graphene layer, a transition metal layer, and a substrate. The graphene layer, transition metal layer, and substrate are stacked together in series to form a sandwich structure. The graphene layer and the transition metal layer are coupled by d-p orbitals hybridization. The transition metal layer and the substrate are also coupled by d-p orbitals hybridization. A method for making graphene-based composite structure is also disclosed.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: August 5, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Hui Duan, Yuan-Chang Li, Peng-Cheng Chen, Jian Wu, Bing-Lin Gu
  • Patent number: 8796705
    Abstract: A light emitting device is provided. The light emitting device includes a first conductive type semiconductor layer, an active layer including a plurality of well layers and a plurality of barrier layers on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. An upper surface of at least first barrier layer among the barrier layers includes an uneven surface. The first barrier layer is disposed more closely to the second conductive type semiconductor layer than to the first conductive type semiconductor layer.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 5, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Oh Min Kwon, Jong Pil Jeong
  • Publication number: 20140209855
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 31, 2014
    Inventors: Stephen M. Cea, Cory E. Weber, Patrick H. Keys, Seiyon Kim, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20140209854
    Abstract: A method of fabricating an electronic device includes the following steps. At least one first set and at least one second set of nanowires and pads are etched in an SOI layer of an SOI wafer. A first gate stack is formed that surrounds at least a portion of each of the first set of nanowires that serves as a channel region of a capacitor device. A second gate stack is formed that surrounds at least a portion of each of the second set of nanowires that serves as a channel region of a FET device. Source and drain regions of the FET device are selectively doped. A first silicide is formed on the source and drain regions of the capacitor device that extends at least to an edge of the first gate stack. A second silicide is formed on the source and drain regions of the FET device.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 8791452
    Abstract: A method of preparing an organic light-emitting device having excellent sealing characteristics against external environment and flexibility.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jin-Woo Park
  • Patent number: 8791449
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Bandgap Engineering, Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Publication number: 20140203238
    Abstract: In one aspect, a method of fabricating a nanowire FET device includes the following steps. A layer of III-V semiconductor material is formed on an SOI layer of an SOI wafer. Fins are etched into the III-V material and SOI layer. One or more dummy gates are formed over a portion of the fins that serves as a channel region of the device. A gap filler material is deposited onto the wafer. The dummy gates are removed selective to the gap filler material, forming trenches in the gap filler material. The SOI layer is removed from portions of the fins within the trenches thereby forming suspended nanowire channels in the channel regions of the device. The trenches are filled with at least one gate material to form one or more replacement gates surrounding the nanowire channels in a gate-all-around configuration.
    Type: Application
    Filed: January 19, 2013
    Publication date: July 24, 2014
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight, Amlan Majumdar
  • Publication number: 20140197370
    Abstract: A device and method for fabricating a nanowire include patterning a first set of structures on a substrate. A dummy structure is formed over portions of the substrate and the first set of structures. Exposed portions of the substrate are etched to provide an unetched raised portion. First spacers are formed about a periphery of the dummy structure and the unetched raised portion. The substrate is etched to form controlled undercut etched portions around a portion of the substrate below the dummy structure. Second spacers are formed in the controlled undercut etched portions. Source/drain regions are formed with interlayer dielectric regions formed thereon. The dummy structure is removed. The substrate is etched to release the first set of structures. Gate structures are formed including a top gate formed above the first set of structures and a bottom gate formed below the first set of structures to provide a nanowire.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: EFFENDI LEOBANDUNG
  • Publication number: 20140197046
    Abstract: A carbon nanotube-based micron scale chemical sensor or sensor array is provided that enables the remote detection of hydrogen sulfide and other chemicals in a gas stream. The sensor is suitable for use in harsh environments of high temperature and pressure such as those encountered during petrochemical exploration and recovery. Multiplex sensor devices detect two or more chemical agents simultaneously, or they can detect conditions such as pressure, salinity, humidity, pH, or scale-forming ions. Incorporation of read out electronics and an RF signal generator into the sensor device enables it to communicate to a relay station or receiver for 3D mapping or other analysis. Methods are also provided for fabricating the chemical sensor device and using the device for detection.
    Type: Application
    Filed: August 20, 2012
    Publication date: July 17, 2014
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Ahmed Busnaina, Yung Joon Jung, Sivasubramanian Somu, Aniket Datar, Young Lae Kim
  • Publication number: 20140197371
    Abstract: A device and method for fabricating a nanowire include patterning a first set of structures on a substrate. A dummy structure is formed over portions of the substrate and the first set of structures. Exposed portions of the substrate are etched to provide an unetched raised portion. First spacers are formed about a periphery of the dummy structure and the unetched raised portion. The substrate is etched to form controlled undercut etched portions around a portion of the substrate below the dummy structure. Second spacers are formed in the controlled undercut etched portions. Source/drain regions are formed with interlayer dielectic regions formed thereon. The dummy structure is removed. The substrate is etched to release the first set of structures. Gate structures are formed including a top gate formed above the first set of structures and a bottom gate formed below the first set of structures to provide a nanowire.
    Type: Application
    Filed: August 20, 2013
    Publication date: July 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Effendi Leobandung
  • Patent number: 8778563
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 15, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Patent number: 8778782
    Abstract: A method for fabricating an electronic component, comprising providing a substrate; and depositing a graphene layer; wherein the substrate is either provided with a van-der-Waals functional layer or a van-der-Waals functional layer is deposited on the substrate before depositing the graphene layer; a surface step contour is formed; and growth of the graphene layer is seeded at the step contour.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 15, 2014
    Assignee: IHP GmbH—Innovations for High Performance Microelectronics
    Inventors: Gunther Lippert, Jaroslaw Dabrowski, Grzegorz Lupina, Olaf Seifarth
  • Publication number: 20140191186
    Abstract: The present invention provides a regenerative nanosensor device for the detection of one or more analytes of interest. In certain embodiments, the device comprises a nanostructure having a reversible functionalized coating comprising a supramolecular assembly. Controllable and selective disruption of the assembly promotes desorption of at least part of the reversible functionalized coating thereby allowing for reuse of the regenerative device.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Applicant: YALE UNIVERSITY
    Inventors: Mark A. Reed, Xuexin Duan, Nitin Rajan
  • Publication number: 20140191185
    Abstract: A method of fabricating a nano resonator, includes forming a line pattern in a first substrate, and transferring the line pattern to a second substrate including a gate electrode. The method further includes forming a source electrode and a drain electrode on the transferred line pattern.
    Type: Application
    Filed: December 2, 2013
    Publication date: July 10, 2014
    Applicants: Korea University Industrial & Academic Collaboration Foundation, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Duck Hwan KIM, In Sang SONG, Jea Shik SHIN, Ho Soo PARK, Jae-Sung RIEH, Byeong Kwon JU
  • Patent number: 8772755
    Abstract: A nanowire field effect transistor (FET) device, includes a source region comprising a first semiconductor layer disposed on a second semiconductor layer, the source region having a surface parallel to {110} crystalline planes and opposing sidewall surfaces parallel to the {110} crystalline planes, a drain region comprising the first semiconductor layer disposed on the second semiconductor layer, the source region having a face parallel to the {110} crystalline planes and opposing sidewall surfaces parallel to the {110} crystalline planes, and a nanowire channel member suspended by the source region and the drain region, wherein nanowire channel includes the first semiconductor layer, and opposing sidewall surfaces parallel to {100} crystalline planes and opposing faces parallel to the {110} crystalline planes.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 8772756
    Abstract: A method of forming a nanowire structure is disclosed. The method comprises applying on a surface of carrier liquid a layer of a liquid composition which comprises a surfactant and a plurality of nanostructures each having a core and a shell, and heating at least one of the carrier liquid and the liquid composition to a temperature selected such that the nanostructures are segregated from the surfactant and assemble into a nanowire structure on the surface.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: July 8, 2014
    Assignee: Ben-Gurion University of the Negev Research and Development Authority
    Inventors: Roman Volinsky, Raz Jelinek
  • Publication number: 20140183441
    Abstract: Provided is a terahertz wave generating/detecting apparatus and a method for manufacturing the same. The terahertz wave generating/detecting apparatus includes; a substrate having an active region and a transmitting region; a lower metal layer extending in a first direction on the active region and the transmitting region of the substrate; a graphene layer disposed on the lower metal layer on the active region; and upper metal layers extending in the first direction on the graphene layer of the active region and the substrate in the transmission region, wherein a terahertz wave is generated or amplified by a surface plasmon polariton that is induced on a boundary surface between the graphene layer and the lower metal layer by beated laser light applied to the graphene layer and the metal layer.
    Type: Application
    Filed: October 25, 2013
    Publication date: July 3, 2014
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kyung Hyun PARK, Sang-Pil HAN, Jeong Woo PARK, Han-Cheol RYU, Kiwon MOON, Namje KIM, Hyunsung KO
  • Publication number: 20140184196
    Abstract: The present invention generally relates to nanotechnology, including field effect transistors and other devices used as sensors (for example, for electrophysiological studies), nanotube structures, and applications. Certain aspects of the present invention are generally directed to transistors such as field effect transistors, and other similar devices. In one set of embodiments, a field effect transistor is used where a nanoscale wire, for example, a silicon nanowire, acts as a transistor channel connecting a source electrode to a drain electrode. In some cases, a portion of the transistor channel is exposed to an environment that is to be determined, for example, the interior or cytosol of a cell. A nanotube or other suitable fluidic channel may be extended from the transistor channel into a suitable environment, such as a contained environment within a cell, so that the environment is in electrical communication with the transistor channel via the fluidic channel.
    Type: Application
    Filed: June 7, 2012
    Publication date: July 3, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiaojie Duan, Ruixuan Gao, Ping Xie, Xiaocheng Jiang
  • Patent number: 8766384
    Abstract: A method of forming a magnetic tunnel junction device is disclosed that includes forming a trench in a substrate, the trench including a plurality of sidewalls and a bottom wall. The method includes depositing a first conductive material within the trench proximate to one of the sidewalls and depositing a second conductive material within the trench. The method further includes depositing a material to form a magnetic tunnel junction (MTJ) structure within the trench. The MTJ structure includes a fixed magnetic layer having a magnetic field with a fixed magnetic orientation, a tunnel junction layer, and a free magnetic layer having a magnetic field with a configurable magnetic orientation. The method further includes selectively removing a portion of the MTJ structure to create an opening in the MTJ structure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 1, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Publication number: 20140175375
    Abstract: A semiconductor hybrid structure on an SOI substrate. A first portion of the SOI substrate contains a nanowire mesh device and a second portion of the SOI substrate contains a partially depleted semiconductor on insulator (PDSOI) device. The nanowire mesh device includes stacked and spaced apart semiconductor nanowires located on the SOI substrate with each semiconductor nanowire having two end segments in which one of the end segments is connected to a source region and the other end segment is connected to a drain region. The nanowire mesh device further includes a gate region over at least a portion of the stacked and spaced apart semiconductor nanowires. The PDSOI device includes a partially depleted semiconductor layer on the substrate, and a gate region over at least a portion of the partially depleted semiconductor layer.
    Type: Application
    Filed: March 2, 2014
    Publication date: June 26, 2014
    Applicant: Intemational Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20140175373
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES, TSINGHUA UNIVERSITY
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140175374
    Abstract: A semiconductor hybrid structure on an SOI substrate. A first portion of the SOI substrate containing a nanowire mesh device and a second portion of the SOI substrate containing a FINFET device. The nanowire mesh device including stacked and spaced apart semiconductor nanowires located on the substrate, each semiconductor nanowire having two end segments in which one of the end segments is connected to a source region and the other end segment is connected to a drain region; and a gate region over at least a portion of the stacked and spaced apart semiconductor nanowires, wherein each source region and each drain region is self-aligned with the gate region. The FINFET device including spaced apart fins on a top semiconductor layer on the second portion of the substrate; and a gate region over at least a portion of the fins.
    Type: Application
    Filed: March 2, 2014
    Publication date: June 26, 2014
    Applicant: Intemational Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20140175372
    Abstract: A semiconductor nanowire device includes at least one semiconductor nanowire having a bottom surface and a top surface, an insulating material which surrounds the semiconductor nanowire, and an electrode ohmically contacting the top surface of the semiconductor nanowire. A contact of the electrode to the semiconductor material of the semiconductor nanowire is dominated by the contact to the top surface of the semiconductor nanowire.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: SOL VOLTAICS AB
    Inventors: Ingvar Ã…berg, Martin Magnusson, Damir Asoli, Lars Ivar Samuelson, Jonas Ohlsson
  • Patent number: 8759811
    Abstract: The disclosed system, device and method for molecular-scale electronic switching generally includes a carbon nanotube, an anode, a cathode and two conductive particles encapsulated within the carbon nanotube, wherein the particles are configured to move between high resistance and low resistance states. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to realize improved switching function.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: June 24, 2014
    Assignee: Raytheon Company
    Inventors: Hao Xin, Jon Leonard, Qing Jiang, Javier Garay, Cengiz Ozkan
  • Patent number: 8754396
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: June 17, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Patent number: 8753942
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 17, 2014
    Assignee: Intel Corporation
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Patent number: 8754397
    Abstract: The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 17, 2014
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20140162247
    Abstract: Fluidic nanotube devices and methods for their use are provided wherein the flow of charged molecules through a channel is controlled by the voltage potential of a gate electrode. In at least some embodiments, a molecular transistor is provided that includes a channel having a diameter such that only one target molecule at a time may traverse the channel. The channel may be a carbon nanotube that is electrically isolated from, and in communication with, a gate electrode. Methods are provided for controlling the flow of an individual molecule through the channel and for detecting a single chemical reaction.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 12, 2014
    Inventors: Stuart Lindsay, Pei Pang, Jin He
  • Patent number: 8748932
    Abstract: Provided are a light emitting device, a method of fabricating the light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises a first conductive type semiconductor layer, a light emitting layer over the first conductive type semiconductor layer, an electron blocking layer over the light emitting layer, and a second conductive type semiconductor layer over the electron blocking layer. The electron blocking layer comprises a pattern having a height difference.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: June 10, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jong Pil Jeong, Jung Hyun Hwang, Chong Cook Kim, Sung Jin Son
  • Publication number: 20140151642
    Abstract: Three-dimensional integrated circuits include an active layer having one or more active components formed with carbon-based channel material; a passive layer monolithically formed with the active layer, having one or more sub-layers and each sub-layer having one or more passive components, where the passive components have monolithically formed vertical interconnects to components on other layers; and a surface layer monolithically formed with the passive layer, including one or more surface components connected to one or more of the passive components through monolithically formed vias.
    Type: Application
    Filed: August 15, 2013
    Publication date: June 5, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: SHU-JEN HAN, ALBERTO VALDES GARCIA
  • Publication number: 20140151631
    Abstract: The invention provides a Bottom Contacted 2D-layer Device (BCD) for the determination of graphene doping and chemical sensing. The device can be made by transfer of high quality CVD grown graphene films onto n- or p-doped silicon substrates yielding Schottky barrier diodes. Exposure to liquids and gases change the charge carrier density in the graphene and as a result the electrical transport of the device is modulated. The changes can be easily detected and interpreted in the doping power of the adsorbent. This principle allows one to create a new type of chemical sensor platform exploiting the monolayer nature of graphene or other carbon material. The device benefits from facile fabrication and the result is a robust device which can investigate surface chemistry on monolayer materials.
    Type: Application
    Filed: November 20, 2013
    Publication date: June 5, 2014
    Applicant: The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of
    Inventors: Georg Duesberg, Hye-Young Kim
  • Publication number: 20140151630
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non-(or low) thermally conductive and/or non-(or low) electrically conductive carrier substrate that has been removed.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Inventors: Feng-Hsu Fan, Trung Tri Doan, Chuong Anh Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Jui-Kang Yen
  • Publication number: 20140145143
    Abstract: A voltage converter circuit includes one or more single-walled carbon nanotube transistors, capable of handling relatively high amounts of current. The transistors are formed using a porous structure which has a number of single-walled carbon nanotubes. The porous structure may be anodized aluminum oxide or another porous material. The circuit will be especially suited for power applications, including use in portable electronic devices such as notebook computers, MP3 players, mobile phones, digital cameras, personal digital assistants, and other battery-operated devices.
    Type: Application
    Filed: August 22, 2006
    Publication date: May 29, 2014
    Applicant: ATOMATE CORPORATION
    Inventors: Thomas W. Tombler, JR., Brian Y. Lim
  • Publication number: 20140138612
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Application
    Filed: September 9, 2013
    Publication date: May 22, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. LeMieux, Zhenan Bao
  • Publication number: 20140138611
    Abstract: There is provided an In nanowire including a substrate, an indium thin film formed on the substrate, an insulating film formed on the indium thin film and having at least one through hole through formation of a pattern, and an In nanowire vertically protruded from the indium thin film through the at least one through hole.
    Type: Application
    Filed: March 1, 2013
    Publication date: May 22, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hee Suk CHUNG, Gyu Seok KIM, Han Wool KANG, Kyung Ho LEE, Mi Yang KIM, Suk Jin HAM
  • Publication number: 20140138610
    Abstract: A memory device includes a first nanowire, a second nanowire and a magnetic tunnel junction device coupling the first and second nanowires.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: International Business Machines Corporation
    Inventors: Michael C. Gaidis, Alexander J. Gaidis