Bonding Of Semiconductor Wafer To Insulating Substrate Or To Semic Onducting Substrate Using An Intermediate Insulating Layer (epo) Patents (Class 257/E21.122)
  • Patent number: 8062956
    Abstract: Methods and apparatus for producing a semiconductor on glass (SOG) structure include: bringing a first surface of a glass substrate into direct or indirect contact with a semiconductor wafer; heating at least one of the glass substrate and the semiconductor wafer such that a second surface of the glass substrate, opposite to the first surface thereof, is at a lower temperature than the first surface; applying a voltage potential across the glass substrate and the semiconductor wafer; and maintaining the contact, heating and voltage to induce an anodic bond between the semiconductor wafer and the glass substrate via electrolysis.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventor: James Gregory Couillard
  • Patent number: 8062957
    Abstract: The invention relates to a method for preparing a surface of a semiconductor substrate by oxidizing the surface of the semiconductor substrate to thereby transform the natural oxide into an artificial oxide and then removing the artificial oxide, in particular to obtain an oxide-free substrate surface.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 22, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Radouane Khalid
  • Patent number: 8058143
    Abstract: A method that in one embodiment is useful in bonding a first substrate to a second substrate includes forming a layer including metal over the first substrate. The layer including metal in one embodiment surrounds a semiconductor device, which can be a micro electromechanical system (MEMS) device. On the second substrate is formed a first layer comprising silicon. A second layer comprising germanium and silicon is formed on the first layer. A third layer comprising germanium is formed on the second layer. The third layer is brought into contact with the layer including metal. Heat (and pressure in some embodiments) is applied to the third layer and the layer including metal to form a mechanical bond material between the first substrate and the second substrate in which the mechanical bond material is electrically conductive. In the case of the mechanical bond surrounding a semiconductor device such as a MEMS, the mechanical bond can be particularly advantageous as a hermetic seal for protecting the MEMS.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 15, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B. Montez, Alex P. Pamatat
  • Patent number: 8058737
    Abstract: An electronic element wafer module is provided, in which a transparent support substrate is disposed facing a plurality of electronic elements formed on a wafer and a plurality of wafer-shaped optical elements are disposed on the transparent support substrate, where a groove is formed along a dicing line between the adjacent electronic elements, penetrating from the optical elements through the transparent support substrate, with a depth reaching a surface of the wafer or with a depth short of the surface of the wafer; and a light shielding material is applied on side surfaces and a bottom surface of the groove or is filled in the groove, and the light shielding material is applied or formed on a peripheral portion of a surface of the optical element, except for on a light opening in a center of the surface.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: November 15, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masahiro Hasegawa, Aiji Suetake
  • Patent number: 8048768
    Abstract: A method of fabricating a joined wafer has an exposure process which comprises a device formed-area exposure process of exposing by a stepper such that parts of the photosensitive adhesive layer formed over a surface of the transparent wafer or the device formed wafer are removed, the parts corresponding to the device formed areas when the transparent wafer and the device formed wafer are stuck together; and a wafer periphery exposure process of exposing such that a portion of the photosensitive adhesive layer over the periphery of the transparent wafer is left.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 1, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Shigeru Yamada
  • Patent number: 8043935
    Abstract: An object is to manufacture a semiconductor substrate having a single crystal semiconductor layer with favorable characteristics, without requiring CMP treatment and/or heat treatment at high temperature. In addition, another object is to improve productivity of semiconductor substrates. Vapor-phase epitaxial growth is performed by using a first single crystal semiconductor layer provided over a first substrate as a seed layer, whereby a second single crystal semiconductor layer is formed over the first single crystal semiconductor layer, and separation is performed at an interface of the both layers. Thus, the second single crystal semiconductor layer is transferred to the second substrate to provide a semiconductor substrate, and the semiconductor substrate is reused by performing laser light treatment on the seed layer.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Fumito Isaka, Sho Kato, Yu Arita, Akihisa Shimomura
  • Patent number: 8039361
    Abstract: The invention relates to a process for manufacturing a multilayered semiconductor wafer comprising a handle wafer (5) and a layer (40) comprising silicon carbide bonded to the handle wafer (5), the process comprising the steps of: a) providing a handle wafer (5), b) providing a donor wafer (1) comprising a donor layer (2) and a remainder (3) of the donor wafer, the donor layer (2) comprising monocrystalline silicon, e) bonding the donor layer (2) of the donor wafer (1) to the handle wafer (5), and f) removing the remainder (3) of the donor wafer in order to expose the donor layer (2) which remains bonded to the handle wafer (5), the process being characterized by further steps of c) implanting carbon ions into the donor layer (2) in order to produce a layer (4) comprising implanted carbon, and d) heat-treating the donor layer (2) comprising the layer (4) comprising implanted carbon in order to form a silicon carbide donor layer (44) in at least part of the donor layer (2).
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: October 18, 2011
    Assignee: Siltronic AG
    Inventors: Brian Murphy, Reinhold Wahlich
  • Patent number: 8017497
    Abstract: A method for manufacturing a high quality semiconductor device having a through via structure. A substrate is manufactured with an oxide layer including a window region in a region in which a through via is formed. The substrate is bonded with another substrate to form an SOI substrate. The SOI substrate is ground to reduce its thickness. An island region is formed in a region at which a TSV (Through Silicon Via) structure is formed. A device and a TSV are coupled by a wire. The silicon substrate at a bottom side of the SOI substrate is removed to expose the island region from the bottom. A back contact for the TSV is formed in the window region, which is formed in a buried oxide layer.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 13, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Hideo Oi
  • Patent number: 8012851
    Abstract: A photovoltaic cell device, e.g., solar cell, solar panel, and method of manufacture. The device has an optically transparent substrate comprises a first surface and a second surface. A first thickness of material (e.g., semiconductor material, single crystal material) having a first surface region and a second surface region is included. In a preferred embodiment, the surface region is overlying the first surface of the optically transparent substrate. The device has an optical coupling material provided between the first surface region of the thickness of material and the first surface of the optically transparent material. A second thickness of semiconductor material is overlying the second surface region to form a resulting thickness of semiconductor material.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: September 6, 2011
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Philip James Ong
  • Patent number: 8008107
    Abstract: Techniques are here disclosed for a solar cell pre-processing method and system for annealing and gettering a solar cell semiconductor wafer having an undesirably high dispersion of transition metals, impurities and other defects. The process forms a surface contaminant layer on the solar cell semiconductor (e.g., silicon) wafer. A surface of the semiconductor wafer receives and holds impurities, as does the surface contaminant layer. The lower-quality semiconductor wafer includes dispersed defects that in an annealing process getter from the semiconductor bulk to form impurity cluster toward the surface contaminant layer. The impurity clusters form within the surface contaminant layer while increasing the purity level in wafer regions from which the dispersed defects gettered. Cooling follows annealing for retaining the impurity clusters and, thereby, maintaining the increased purity level of the semiconductor wafer in regions from which the impurities gettered.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: August 30, 2011
    Assignee: Calisolar, Inc.
    Inventors: Fritz Kirscht, Kamel Ounadjela, Jean Patrice Rakotoniana, Dieter Linke
  • Patent number: 8003207
    Abstract: An adhesive bonding sheet having an optically transmitting supporting substrate and an adhesive bonding layer, and being used in both a dicing step and a semiconductor element adhesion step, wherein the adhesive bonding layer comprises: a polymer component (A) having a weight average molecular weight of 100,000 or more including functional groups; an epoxy resin (B); a phenolic epoxy resin curing agent (C); a photoreactive monomer (D), wherein the Tg of the cured material obtained by ultraviolet light irradiation is 250° C. or more; and a photoinitiator (E) which generates a base and a radical by irradiation with ultraviolet light of wavelength 200-450 nm.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 23, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Keisuke Ookubo, Teiichi Inada
  • Patent number: 8003483
    Abstract: Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor la
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Akihisa Shimomura, Junpei Momo, Motomu Kurata, Taiga Muraoka, Kosei Nei
  • Patent number: 7994506
    Abstract: A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 9, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yuugo Goto
  • Patent number: 7989962
    Abstract: A bonding pad includes multiple metal layers, insulation layers disposed between the multiple metal layers, and a fixing pin coupled between the uppermost metal layer and an underlying metal layer of the multiple metal layers, where a bonding is performed on the uppermost metal layers.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: August 2, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jeong-Soo Kim
  • Patent number: 7989811
    Abstract: A manufacturing method of a highly reliable semiconductor with a waterproof property. The method includes the steps of: sequentially forming a peeling layer, an inorganic insulating layer, and an element formation layer including an organic compound layer, over a substrate; separating the peeling layer and the inorganic insulating layer from each other, or separating the substrate and the inorganic insulating layer from each other; removing a part of the inorganic insulating layer or a part of the inorganic insulating layer and the element formation layer, thereby isolating at least the inorganic insulating layer into a plurality of sections so that at least two layers among the organic compound layer, a flexible substrate, and an adhesive agent are stacked at outer edges of the isolated inorganic insulating layers; and cutting a region where at least two layers among the organic compound layer, the flexible substrate, and the adhesive agent are stacked.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daiki Yamada
  • Patent number: 7985658
    Abstract: A method of fabricating a semiconductor substrate structure comprises forming an oxide region in contact with a first semiconductor, e.g. silicon, substrate, implanting P-type dopants into the first semiconductor substrate to form a P-doped region, bonding the oxide region to a second semiconductor, e.g. silicon, substrate, and removing a portion of the first semiconductor substrate before or after implanting.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 26, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Xinya Lei, Xiaofeng Fan, Richard A. Mauritzson
  • Patent number: 7985657
    Abstract: Systems and methods are disclosed for bonding of semiconductor, metal, metal-ceramic or combinations of these substrates using microwave energy. In some embodiments, metal-ceramic substrates carrying semiconductor substrates can be bonded simultaneously through a thin interlayer metal to a metal substrate by using microwave energy. In some embodiments, other substrate combinations can be bonded by using microwave energy. High intensity microwave energy is applied to the substrate assembly positioned within a microwave cavity. A process of selective heating can occur in the thin interlayer metal enhanced by the presence of third microwave absorbing substrate, resulting in melting of the thin interlayer metal to facilitate bonding of the two substrates. Some of the advantages associated with such bonding process are disclosed.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: July 26, 2011
    Assignee: Microwave Bonding Instruments, Inc.
    Inventors: Nasser K. Budraa, Boon Ng
  • Patent number: 7972939
    Abstract: A method for minimizing or avoiding contamination of a receiving handle wafer during transfer of a thin layer from a donor wafer. This method includes providing a donor wafer and a receiving handle wafer, each having a first surface prepared for bonding and a second surface, with the donor wafer providing a layer of material to be transferred to the receiving handle wafer. Next, at least one of the first surfaces is treated to provide increased bonding energy when the first surfaces are bonded together; the surfaces are then bonded together to form an intermediate multilayer structure; and a portion of the donor wafer is removed to transfer the thin layer to the receiving handle wafer and form the semiconductor structure. This method avoids or minimizes contamination of the second surface of the receiving handle wafer by treating only the first surface of the donor wafer prior to bonding by exposure to a plasma, and by conducting any thermal treatments after plasma activation at a temperature of 300° C.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Sébastien Kerdiles, Christophe Maleville, Fabrice Letertre, Olivier Rayssac
  • Patent number: 7968909
    Abstract: Reconditioned donor substrates that include a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and an additional layer deposited upon the opposite surface of the remainder substrate to increase its thickness and to form the reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers and is typically made from gallium nitride donor substrates.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: June 28, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Frederic Dupont
  • Patent number: 7960248
    Abstract: A method for transferring a thin layer from an initial substrate includes forming an assembly of the initial substrate with one face of a silicone type polymer layer, this face having been treated under an ultraviolet radiation, and processing the initial substrate to form the thin layer on the silicone type polymer layer.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 14, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Léa Di Cioccio
  • Patent number: 7960249
    Abstract: A wafer for backside illumination type solid imaging device having a plurality of pixels inclusive of a photoelectric conversion device and a charge transfer transistor at its front surface side and a light receiving surface at its back surface side is produced by a method comprising a step of forming a BOX oxide layer on at least one of a wafer for support substrate and a wafer for active layer, a step of bonding the wafer for support substrate and the wafer for active layer and a step of thinning the wafer for active layer, which further comprises a step of forming a plurality of concave portions on a bonding face of the BOX oxide layer to the other wafer and filling a polysilicon plug into each of the concave portions to form a composite layer before the step of bonding the wafer for support substrate and the wafer for active layer.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: June 14, 2011
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 7947572
    Abstract: A semiconductor structure and a method of manufacturing a silicon on insulator (SOI) structure having a silicon germanium (SiGe) layer interposed between the silicon and the insulator. According to one manufacturing method, a first SiGe layer, a silicon layer, and a second SiGe layer are epitaxially grown in sequence over a first substrate, and then an insulating layer is formed on the second SiGe layer. Then, impurity ions are implanted into a predetermined location of the first substrate underlying the first SiGe layer to form an impurity implantation region. A second substrate is bonded to the insulating layer on the first substrate. After the first substrate is separated along the impurity implantation region and removed, the first SiGe layer remaining on the surface of the separated region is removed so that the surface of the silicon layer may be exposed.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 24, 2011
    Assignees: Sumitomo Mitsubishi Silicon Corp., Jeagun Park
    Inventors: Jeagun Park, Kenji Tomizawa, Gonsub Lee, Eiji Kamiyama
  • Patent number: 7947564
    Abstract: A method of fabricating a mixed microtechnology structure includes providing a provisional substrate including a sacrificial layer on which is formed a mixed layer including at least first patterns of a first material and second patterns of a second material different from the first material, where the first and second patterns reside adjacent the sacrificial layer. The sacrificial layer is removed exposing a mixed surface of the mixed layer, the mixed surface including portions of the first patterns and portions of the second patterns. A continuous is formed covering layer of a third material on the mixed surface by direct bonding.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: May 24, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Marek Kostrzewa, Hubert Moriceau, Marc Zussy
  • Patent number: 7943428
    Abstract: A bonded substrate comprising two semiconductor substrates is provided. Each semiconductor substrate includes semiconductor devices. At least one through substrate via is provided between the two semiconductor substrates to provide a signal path therebetween. The bottom sides of the two semiconductor substrate are bonded by at least one bonding material layer that contains a cooling mechanism. In one embodiment, the cooling mechanism is a cooling channel through which a cooling fluid flows to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate. In another embodiment, the cooling mechanism is a conductive cooling fin with two end portions and a contiguous path therebetween. The cooling fin is connected to heat sinks to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Anthony K. Stamper
  • Patent number: 7943491
    Abstract: The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of ‘soft adhesion’ to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 17, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 7939387
    Abstract: A process for treating a structure to prepare it for electronics or optoelectronics applications. The structure includes a bulk substrate, an oxide layer, and a semiconductor layer, and the process includes providing a masking to define on the semiconductor layer a desired pattern, and applying a thermal treatment for removing a controlled thickness of oxide in the regions of the oxide layer corresponding to the desired pattern to assist in preparing the structure.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: May 10, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Oleg Kononchuk
  • Patent number: 7935611
    Abstract: A silicon layer having a conductivity type opposite to that of a bulk is provided on the surface of a silicon substrate and hydrogen ions are implanted to a predetermined depth into the surface region of the silicon substrate through the silicon layer to form a hydrogen ion-implanted layer. Then, an n-type germanium-based crystal layer whose conductivity type is opposite to that of the silicon layer and a p-type germanium-based crystal layer whose conductivity type is opposite to that of the germanium-based crystal layer are successively vapor-phase grown to provide a germanium-based crystal. The surface of the germanium-based crystal layer and the surface of the supporting substrate are bonded together. In this state, impact is applied externally to separate a silicon crystal from the silicon substrate along the hydrogen ion-implanted layer, thereby transferring a laminated structure composed of the germanium-based crystal and the silicon crystal onto the supporting substrate.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: May 3, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Atsuo Ito, Makoto Kawai, Yuuji Tobisaka, Koichi Tanaka
  • Patent number: 7936051
    Abstract: A silicon wafer which achieves a gettering effect without occurrence of slip dislocations is provided, and the silicon wafer is subject to heat treatment after slicing from a silicon monocrystal ingot so that a layer which has zero light scattering defects according to the 90° light scattering method is formed in a region at a depth from the wafer surface of 25 ?m or more but less than 100 ?m, and a layer which has a light scattering defect density of 1×108/cm3 or more according to the 90° light scattering method is formed in a region at a depth of 100 ?m from the wafer surface.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 3, 2011
    Assignee: Sumco Corporation
    Inventors: Toshiaki Ono, Masataka Hourai
  • Patent number: 7932161
    Abstract: Materials, and methods that use such materials, that are useful for forming chip stacks, chip and wafer bonding and wafer thinning are disclosed. Such methods and materials provide strong bonds while also being readily removed with little or no residues.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: April 26, 2011
    Assignee: Promerus LLC
    Inventors: Chris Apanius, Robert A. Shick, Hendra Ng, Andrew Bell, Wei Zhang, Phil Neal
  • Patent number: 7928436
    Abstract: A semiconductor structure that includes a monocrystalline germanium-containing layer, preferably substantially pure germanium, a substrate, and a buried insulator layer separating the germanium-containing layer from the substrate. A porous layer, which may be porous silicon, is formed on a substrate and a germanium-containing layer is formed on the porous silicon layer. The porous layer may be converted to a layer of oxide, which provides the buried insulator layer. Alternatively, the germanium-containing layer may be transferred from the porous layer to an insulating layer on another substrate. After the transfer, the insulating layer is buried between the latter substrate and the germanium-containing layer.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Brian Joseph Greene, Jack Allan Mandelman
  • Patent number: 7923353
    Abstract: It is shown in the invention a method for manufacturing a semiconductor wafer structure with an active layer for impurity removal, which method comprises phases of depositing a first layer on a first wafer surface for providing an active layer, an optional phase of preparation for said first layer for next phase, growing thermal oxide layer on a second wafer, bonding said first and second wafers into a stack, annealing the stack for a crystalline formation in said thermal oxide layer as a second layer, and thinning said first wafer to a pre-determined thickness. The invention concerns also a wafer manufactured according to the method, chip that utilizes such a wafer structure and an electronic device utilizing such a chip.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Okmetic Oyj
    Inventor: Jari Mäkinen
  • Publication number: 20110076837
    Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 31, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hidekazu MIYAIRI, Akihisa SHIMOMURA, Tatsuya MIZOI, Eiji HIGA, Yoji NAGANO
  • Publication number: 20110068483
    Abstract: A method of manufacturing a semiconductor device of the present invention includes a coating process in which a pasty thermosetting resin composition having a flux activity is coated on at least either one of a substrate and a semiconductor chip; a bonding process in which the substrate and the semiconductor chip are electrically bonded while placing the pasty thermosetting resin composition in between; a curing process in which the pasty thermosetting resin composition is cured under heating; and a cooling process, succeeding to the curing process, in which cooling is performed at a cooling rate between 10[° C./hour] or above and 50[° C./hour] or below.
    Type: Application
    Filed: June 2, 2009
    Publication date: March 24, 2011
    Applicant: Sumitomo Bakelite Co. Ltd
    Inventor: Satoru Katsurayama
  • Patent number: 7910457
    Abstract: It is an object to provide a method for manufacturing a semiconductor substrate in which contamination of a semiconductor layer due to an impurity is prevented and the bonding strength between a support substrate and the semiconductor layer can be increased. An oxide film containing first halogen is formed on a surface of a semiconductor substrate, and the semiconductor substrate is irradiated with ions of second halogen, whereby a separation layer is formed and the second halogen is contained in a semiconductor substrate. Then, heat treatment is performed in a state in which the semiconductor substrate and the support substrate are superposed with an insulating surface containing hydrogen interposed therebetween, whereby part of the semiconductor substrate is separated along the separation layer, so that a semiconductor layer containing the second halogen is provided over the support substrate.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 22, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 7902045
    Abstract: A process for fabricating a composite structure for epitaxy, including at least one crystalline growth seed layer of semiconductor material on a support substrate, with the support substrate and the crystalline growth seed layer each having, on the periphery of their bonding face, a chamfer or an edge rounding zone. The process includes at least one step of wafer bonding the crystalline growth seed layer directly onto the support substrate and at least one step of thinning the crystalline growth seed layer. After thinning, the crystalline growth seed layer has a diameter identical to its initial diameter.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 8, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Chantal Arena, Fabrice Letertre
  • Patent number: 7902675
    Abstract: A plurality of wafers are aligned and stacked on a thermally variable rotary table, the table and stack are rotated, and an underfill material is disposed and cured between wafers in the stack, bonding the wafers. Corresponding wafer portions of the plurality of wafers in the stack may be singulated from the stack, and may comprise semiconductor device packages either individually or when coupled with a substrate.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: March 8, 2011
    Assignee: Intel Corporation
    Inventor: Preston T. Myers
  • Patent number: 7902043
    Abstract: A method of producing a bonded wafer, comprising: performing bonding of a first semiconductor wafer and a second semiconductor wafer without interposing an insulation film in between; and performing thinning of the second semiconductor wafer, wherein surface portions at least including bonded surfaces of the first semiconductor wafer and the second semiconductor wafer have an oxygen concentration of 1.0×1018 atoms/cm3 (Old ASTM) or less.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: March 8, 2011
    Assignee: Sumco Corporation
    Inventors: Nobuyuki Morimoto, Akihiko Endo
  • Patent number: 7897423
    Abstract: A method for micropatterning a radiation-emitting surface of a semiconductor layer sequence for a thin-film light-emitting diode chip. The semiconductor layer sequence is grown on a substrate. A mirror layer is formed or applied on the semiconductor layer sequence, which reflects back into the semiconductor layer sequence at least part of a radiation that is generated in the semiconductor layer sequence during the operation thereof and is directed toward the mirror layer. The semiconductor layer sequence is separated from the substrate by means of a lift-off method, in which a separation zone in the semiconductor layer sequence is at least partly decomposed in such a way that anisotropic residues of a constituent of the separation zone, in particular a metallic constituent of the separation layer, remain at the separation surface of the semiconductor layer sequence, from which the substrate is separated.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: March 1, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Berthold Hahn, Stephan Kaiser, Volker Härle
  • Patent number: 7883988
    Abstract: One surface of a single crystal semiconductor substrate is irradiated with ions to form a damaged region in the single crystal semiconductor substrate. An insulating layer is formed over the one surface of the single crystal semiconductor substrate. A surface of a substrate having an insulating surface and a surface of the insulating layer are disposed in contact with each other to bond the substrate having the insulating surface and the single crystal semiconductor substrate to each other. Heat treatment is performed to divide the single crystal semiconductor substrate along the damaged region and to form a semiconductor layer over the substrate having the insulating surface. One surface of the semiconductor layer is irradiated with light from a flash lamp under conditions where the semiconductor layer is not melted, to repair a defect.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: February 8, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 7879687
    Abstract: A manufacturing method of a highly reliable semiconductor with a waterproof property. The method includes the steps of: sequentially forming a peeling layer, an inorganic insulating layer, and an element formation layer including an organic compound layer, over a substrate; separating the peeling layer and the inorganic insulating layer from each other, or separating the substrate and the inorganic insulating layer from each other; removing a part of the inorganic insulating layer or a part of the inorganic insulating layer and the element formation layer, thereby isolating at least the inorganic insulating layer into a plurality of sections so that at least two layers among the organic compound layer, a flexible substrate, and an adhesive agent are stacked at outer edges of the isolated inorganic insulating layers; and cutting a region where at least two layers among the organic compound layer, the flexible substrate, and the adhesive agent are stacked.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: February 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daiki Yamada
  • Patent number: 7879690
    Abstract: A microstructure of the semiconductor on insulator type with different patterns is produced by forming a stacked uniform structure including a plate forming a substrate, a continuous insulative layer and a semiconductor layer. The continuous insulative layer is a stack of at least three elementary layers, including a bottom elementary layer, at least one intermediate elementary layer, and a top elementary layer overlying the semiconductor layer, where at least one of the bottom elementary layer and the top elementary layer being of an insulative material. In the stacked uniform structure, at least two patterns are differentiated by modifying at least one of the elementary layers in one of the patterns so that the elementary layer has a significantly different physical or chemical property between the two patterns, where at least one of the bottom and top elementary layer is an insulative material that remains unchanged.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 1, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Emmanuel Augendre, Thomas Ernst, Marek Kostrzewa, Hubert Moriceau
  • Patent number: 7875532
    Abstract: A substrate with which a semiconductor device with excellent electric characteristics and high reliability can be manufactured is provided. An aspect of the invention is a method for manufacturing a substrate for manufacturing a semiconductor device: a first silicon oxide film, a silicon nitride film, and a second silicon oxide film are stacked in this order over a surface of a semiconductor substrate by a thermal CVD method, and then a weakened layer is formed at a given depth of the semiconductor substrate; the semiconductor substrate and a substrate having an insulating surface are arranged to face each other, and the second silicon oxide film provided for the semiconductor substrate and a supporting substrate are bonded to each other; and the semiconductor substrate is separated at the weakened layer by heat treatment, whereby a semiconductor film separated from the semiconductor substrate is left over the substrate having the insulating surface.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Kazutaka Kuriki
  • Patent number: 7871834
    Abstract: A semiconductor apparatus includes two thin semiconductor films bonded to a substrate, and a thin-film interconnecting line electrically connecting a semiconductor device such as a light-emitting device in the first thin semiconductor film to an integrated circuit in the second thin semiconductor film. Typically, the integrated circuit drives the semiconductor device. The two thin semiconductor films are formed separately from the substrate. The first thin semiconductor film may include an array of semiconductor devices. The first and second thin semiconductor films may be replicated as arrays bonded to the same substrate. Compared with conventional semiconductor apparatus comprising an array chip and a separate driver chip, the invented apparatus is smaller and has a reduced material cost.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 18, 2011
    Assignee: Oki Data Corporation
    Inventors: Mitsuhiko Ogihara, Hiroyuki Fujiwara, Ichimatsu Abiko, Masaaki Sakuta
  • Patent number: 7868362
    Abstract: A hypersensitive semiconductor die structure is disclosed, in which flip-chip packaging is used in conjunction with a modified SOI die in which a thick silicon support substrate has been removed to increase sensitivity of the sensing device. Rather than being located beneath layers of interconnects and dielectric, the disclosed structure places the sensing devices close to the surface, more closely exposed to the environment in which sensing is to occur. The structure also allows for the placement of sensing films on nearer to the sensing devices and/or an oxide layer overlying the sensing devices.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Todd Andrew Randazzo, Ronald James Jensen, Thomas Keyser
  • Patent number: 7867820
    Abstract: Economical methods for forming a co-planar multi-chip wafer-level packages are proposed. Partial wafer bonding and partial wafer dicing techniques are used to create chips as well as pockets. The finished chips are then mounted in the corresponding pockets of a carrier substrate, and global interconnects among the chips are formed on the top planar surface of the finished chips. The proposed methods facilitate the integration of chips fabricated with different process steps and materials. There is no need to use a planarization process such as chemical-mechanical polish to planarize the top surfaces of the chips. Since the chips are precisely aligned to each other and all the chips are mounted facing up, the module is ready for global wiring, which eliminates the need to flip the chips from an upside-down position.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lloyd G. Burrell, Howard Hao Chen, Louis L. Hsu, Wolfgang Sauter
  • Patent number: 7858430
    Abstract: In aspects of the present invention, a method is disclosed to form a lamina having opposing first and second surfaces. Heavily doped contact regions extend from the first surface to the second surface. Generally the lamina is formed by affixing a semiconductor donor body to a receiver element, then cleaving the lamina from the semiconductor donor body wherein the lamina remains affixed to the receiver element. In the present invention, the heavily doped contact regions are formed by doping the semiconductor donor body before cleaving of the lamina. A photovoltaic cell comprising the lamina is then fabricated. By forming the heavily doped contact regions before bonding to the receiver element and cleaving, post-bonding high-temperature steps can be avoided, which may be advantageous.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 28, 2010
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Mohamed M. Hilali, Christopher J. Petti, S. Brad Herner
  • Patent number: 7851359
    Abstract: A silicon interposer producing method comprising the steps of forming through holes 12 in a silicon wafer 11, forming an oxide coating 13 on the silicon wafer 11, providing a power feeding layer 14 for plating on one of the surfaces of the through holes 12, supplying a low thermal expansion filler 15 having a thermal expansion coefficient lower than the thermal expansion coefficient of the conductive material 16 of through-hole electrodes 17 to the through holes 12, filling the conductive material 16 into the through holes 12 by plating to form the through-hole electrodes 17, and removing the power feeding layer 14 for plating.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: December 14, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Masahiro Sunohara
  • Patent number: 7851330
    Abstract: Methods are disclosed for preparing a reconditioned donor substrate by providing a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and depositing an additional layer onto the opposite surface of the remainder substrate to increase its thickness and to form a reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 14, 2010
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Frederic Dupont
  • Patent number: 7851337
    Abstract: There is provided a method for suppressing the occurrence of defects such as voids or blisters even in the laminated wafer having no oxide film wherein hydrogen ions are implanted into a wafer for active layer having no oxide film on its surface to form a hydrogen ion implanted layer, and ions other than hydrogen are implanted up to a position that a depth from the surface side the hydrogen ion implantation is shallower than the hydrogen ion implanted layer, and the wafer for active layer is laminated onto a wafer for support substrate, and then the wafer for active layer is exfoliated at the hydrogen ion implanted layer.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: December 14, 2010
    Assignee: Sumco Corporation
    Inventors: Satoshi Murakami, Nobuyuki Morimoto, Hideki Nishihata, Akihiko Endo
  • Patent number: 7847326
    Abstract: A backside illuminated image sensor includes a photodiode, formed below the top surface of a semiconductor substrate, for receiving light illuminated from the backside of the semiconductor substrate to generate photoelectric charges, a reflecting gate, formed on the photodiode over the front upper surface of the semiconductor substrate, for reflecting light illuminated from the backside of the substrate and receiving a bias to control a depletion region of the photodiode, and a transfer gate for transferring photoelectric charges from the photodiode to a sensing node of a pixel.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 7, 2010
    Inventors: Sung-Hyung Park, Ju-Il Lee