Having Insulated Gate Patents (Class 438/151)
  • Patent number: 8765534
    Abstract: A semiconductor apparatus includes a first substrate and a second substrate located over a first portion of the first substrate and separated from the first substrate by a buried layer. The semiconductor apparatus also includes an epitaxial layer located over a second portion of the first substrate and isolated from the second substrate. The semiconductor apparatus further includes a first transistor formed at least partially in the second substrate and a second transistor formed at least partially in or over the epitaxial layer. The second substrate and the epitaxial layer have bulk properties with different electron and hole mobilities. At least one of the transistors is configured to receive one or more signals of at least about 5V. The first substrate could have a first crystalline orientation, and the second substrate could have a second crystalline orientation.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 1, 2014
    Assignee: National Semiconductor Corporation
    Inventor: Alexander H. Owens
  • Patent number: 8765532
    Abstract: A method for forming a field effect device includes forming a gate portion on a silicon-on-insulator layer (SOI), forming first spacer members on the SOI layer adjacent to the gate portion, depositing a layer of spacer material on the SOI layer, the first spacer members, and the gate portion, removing portions of the layer of spacer material to form second spacer members on the SOI layer adjacent to the first spacer members, forming a source region and a drain region on the SOI layer by implanting ions in the SOI layer, and etching to remove the second spacer members.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Zhibin Ren, Xinhui Wang, Haizhou Yin
  • Patent number: 8766273
    Abstract: It is possible to manufacture a large-size, high-accuracy organic EL display using a plastic substrate and an organic EL display using a roll-shaped long plastic substrate. The organic EL display includes an organic EL device A having at least a lower electrode 300, an organic layer including at least a light emitting layer, and an upper electrode 305 and a thin film transistor B on a transparent plastic substrate 100, a source electrode or drain electrode of the thin film transistor B is connected to the lower electrode 300, the plastic substrate 100 has a gas barrier layer 101a, the thin film transistor B is formed on the gas barrier layer 101a, the thin film transistor B includes an active layer 203 containing a non-metallic element which a mixture of oxygen (O) and nitrogen (N) and has a ratio of N to O (N number density/O number density) from 0 to 2, and the organic EL device A is formed at least on the gas barrier layer 101a or one the thin film transistor B.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 1, 2014
    Assignees: Sumitomo Chemical Company, Limited, Sumitomo Bakelite Co., Ltd.
    Inventors: Shigeyoshi Otsuki, Toshimasa Eguchi, Shinya Yamaguchi, Mamoru Okamoto
  • Patent number: 8766367
    Abstract: A textured thin film transistor is comprised of an insulator sandwiched between a textured gate electrode and a semi-conductor. A source electrode and drain electrode are fabricated on a surface of the semi-conductor. The textured gate electrode is fabricated such that a surface is modified in its texture and/or geometry, such modifications affecting the transistor current.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 1, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street
  • Patent number: 8765533
    Abstract: A FinFET device and method for fabricating a FinFET device are disclosed. An exemplary method includes providing a substrate; forming a fin over the substrate; forming an isolation feature over substrate; forming a gate structure including a dummy gate over a portion of the fin, the gate structure traversing the fin, wherein the gate structure separates a source region and a drain region of the fin, a channel being defined in the portion of the fin between the source region and the drain region; and replacing the dummy gate of the gate structure with a metal gate, wherein during the replacing the dummy gate, a profile of the portion of the fin is modified. In an example, modifying the profile of the portion of the fin includes increasing a height of the portion of the fin and/or decreasing a width of the portion of the fin.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsing Hsieh, Zhiqiang Wu, Ching-Fang Huang, Jon-Hsu Ho
  • Patent number: 8766255
    Abstract: A semiconductor device in which improvement of a property of holding stored data can be achieved. Further, power consumption of a semiconductor device is reduced. A transistor in which a wide-gap semiconductor material capable of sufficiently reducing the off-state current of a transistor (e.g., an oxide semiconductor material) in a channel formation region is used and which has a trench structure, i.e., a trench for a gate electrode and a trench for element isolation, is provided. The use of a semiconductor material capable of sufficiently reducing the off-state current of a transistor enables data to be held for a long time. Further, since the transistor has the trench for a gate electrode, the occurrence of a short-channel effect can be suppressed by appropriately setting the depth of the trench even when the distance between the source electrode and the drain electrode is decreased.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Toshihiko Saito, Kiyoshi Kato
  • Publication number: 20140175442
    Abstract: An array substrate for an FFS mode LCD device includes a gate line and a gate pad electrode on a substrate; a common line parallel to the gate line; a data line extending along a second direction in a display area and a data pad electrode disposing in a non-display area; a thin film transistor electrically connected to the gate and data lines; a first passivation layer covering the thin film transistor and the data line; a second passivation layer on the first passivation layer and having a first thickness in the display area and a second thickness in the non-display area; a common electrode on the second passivation layer and connected to the common line; a third passivation layer on the common electrode; and a pixel electrode, a gate auxiliary pad electrode and a data auxiliary pad electrode on the third passivation layer.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 26, 2014
    Applicant: LG DISPLAY CO., LTD.
    Inventors: Hee-Young Kwack, Sang-Uk AHN, Jin-Hee Jang
  • Publication number: 20140175443
    Abstract: According to embodiments of the invention, there are provided a TFT array substrate, a manufacturing method thereof and a liquid crystal display. The manufacturing method comprises manufacturing a pattern including a gate electrode, a gate insulating layer pattern with a via hole, a pattern including an active layer, a pattern including source and drain electrodes and a pattern including a first electrode on a substrate. The formation of the gate insulating layer pattern with the via hole and the pattern including the active layer are completed through one patterning process, the pattern including the gate electrode at least includes the gate electrode and a gate leading wire, the via hole of the gate insulating layer is located over the gate leading wire, and the active layer is located over the gate electrode.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: ZHENYU XIE
  • Publication number: 20140175381
    Abstract: Devices and methods for forming a device are presented. The device includes a substrate and a fin type transistor disposed on the substrate. The transistor includes a fin structure which serves as a body of the transistor. The fin structure includes first and second end regions and an intermediate region in between the first and second end regions. A source region is disposed on the first end region, a drain region disposed in the second end region and a gate disposed on the intermediate region of the fin structure. The device includes a channel region disposed adjacent to the source region and a gate dielectric of the gate. A source tunneling junction is aligned to the gate with a controlled channel thickness TCH.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicants: GLOBALFOUNDRIES SINGAPORE PTE. LTD., NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Kian Hui GOH, Eng Huat TOH, Yee Chia YEO
  • Patent number: 8759165
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 24, 2014
    Assignee: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8759823
    Abstract: A fabricating method of an array substrate includes forming source and drain electrodes in each of pixel regions on a substrate; forming an organic semiconductor layer and a gate insulating layer on the source and drain electrodes, the organic semiconductor layer having an island shape and contacting facing ends of the source and drain electrodes, the gate insulating layer having a same plane shape as the organic semiconductor layer; forming a first passivation layer on the gate insulating layer; forming a gate electrode on the first passivation layer in the pixel region, the gate electrode corresponding to the gate insulating layer; forming a second passivation layer on the gate electrode, the second passivation layer having a drain contact hole exposing the drain electrode; and forming a pixel electrode on the second passivation layer, the pixel electrode contacting the drain electrode through the drain contact hole.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: June 24, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Jung-Eun Lee
  • Patent number: 8759167
    Abstract: An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: June 24, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Toshinari Sasaki
  • Patent number: 8759166
    Abstract: Disclosed is a method of manufacturing a thin film transistor device that includes the following steps: forming slanted portions 51 in edges of crystalline semiconductor films 13 (13a and 13b); forming a resist film 15 on the crystalline semiconductor film 13a so as to expose the slanted portions 51 and so as to cover the entire crystalline semiconductor film 13b; performing half exposure of the resist film 15 that is formed on the crystalline semiconductor film 13a; injecting a p-type impurity only into the slanted portions 51 of the crystalline semiconductor film 13a; removing the resist film 15 that is formed on the crystalline semiconductor film 13a by ashing; and injecting the p-type impurity into the entire crystalline semiconductor film 13a.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 24, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroki Mori, Masaki Saitoh, Takumi Tomita
  • Patent number: 8759832
    Abstract: A semiconductor device, disposed on a substrate, includes a first channel layer, a patterned doped layer, a gate insulating layer, a conducting gate electrode, a second channel layer, a first electrode and a second electrode, and a third electrode and a fourth electrode. The first channel layer is disposed on the substrate and in a first region. The patterned doped layer includes a doped gate electrode disposed in a second region, and two contact electrodes electrically connected to two sides of the first channel layer, respectively. The conducting gate electrode is disposed on the gate insulating layer in the first region. The second channel layer is disposed on the gate insulating layer in the second region. The first electrode and the second electrode are electrically connected to the contact electrodes, respectively. The third electrode and the fourth electrode are electrically connected to two sides of the second channel layer, respectively.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: June 24, 2014
    Assignee: AU Optronics Corp.
    Inventors: Chao-Shun Yang, Hsing-Hung Hsieh
  • Patent number: 8759168
    Abstract: A field effect transistor structure that uses thin semiconductor on insulator channel to control the electrostatic integrity of the device. Embedded stressors are epitaxially grown in the source/drain area from a template in the silicon substrate through an opening made in the buried oxide in the source/drain region. In addition, a dielectric layer is formed between the embedded stressor and the semiconductor region under the buried oxide layer, which is located directly beneath the channel to suppress junction capacitance and leakage.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 24, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kerber
  • Publication number: 20140170817
    Abstract: A method to provide a transistor or memory cell structure. The method comprises: providing a substrate including a lower Si substrate and an insulating layer on the substrate; providing a first projection extending above the insulating layer, the first projection including an Si material and a Sil-xGex material; and exposing the first projection to preferential oxidation to yield a second projection including a center region comprising Ge/Sil-yGey and a covering region comprising SiO2 and enclosing the center region.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Inventors: Been-Yih Jin, Brian S. Doyle, Jack T. Kavalieros, Robert S. Chau
  • Publication number: 20140167163
    Abstract: Embodiments include multi-fin finFET structures with epitaxially-grown merged source/drains and methods of forming the same. Embodiments may include an epitaxial insulator layer above a base substrate, a gate structure above the epitaxial insulator layer, a semiconductor fin below the gate structure, and an epitaxial source/drain region grown on the epitaxial insulator layer adjacent to an end of the semiconductor fin. The epitaxial insulator layer may be made of an epitaxial rare earth oxide material grown on a base semiconductor substrate. Embodiments may further include fin extension regions on the end of the semiconductor fin between the end of the end of the semiconductor fin and the epitaxial source/drain region. In some embodiments, the end of the semiconductor fin may be recessed below the gate structure.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Raghavasimhan Sreenivasan, Thomas N. Adam
  • Publication number: 20140167164
    Abstract: A FET structure including epitaxial source and drain regions includes large contact areas and exhibits both low resistivity and low parasitic gate to source/drain capacitance. The source and drain regions are laterally etched to provide recesses for accommodating low-k dielectric material without compromising the contact area between the source/drain regions and their associated contacts. A high-k dielectric layer is provided between the raised source/drain regions and a gate conductor as well as between the gate conductor and a substrate, such as an ETSOI or PDSOI substrate. The structure is usable in electronic devices such as MOSFET devices.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek
  • Publication number: 20140170818
    Abstract: A method for forming an electronic switching device on a substrate, wherein the method comprises depositing the active semiconducting layer of the electronic switching device onto the substrate from a liquid dispersion of ligand-modified colloidal nanorods, and subsequently immersing the substrate into a growth solution to increase the diameter and/or length of the nanorods on the substrate, and wherein the as-deposited nanorods are aligned such that their long-axis is aligned preferentially in the plane of current flow in the electronic switching device.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Henning Sirringhaus, Baoquan Sun
  • Publication number: 20140167161
    Abstract: Methods of forming a floating body cell (FBC) with faster programming and lower refresh rate and the resulting devices are disclosed. Embodiments include forming a silicon on insulator (SOI) layer on a substrate; forming a band-engineered layer surrounding and/or on the SOI layer; forming a source region and a drain region with at least one of the source region and the drain region being on the band-engineered layer; and forming a gate on the SOI layer, between the source and drain regions.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng Tan, Eng Huat Toh, Elgin Quek
  • Patent number: 8753920
    Abstract: Provided is a precursor composition for an oxide semiconductor. The precursor composition for the oxide semiconductor includes a metal complex compound formed by a metal ion and an organic ligand, wherein the precursor composition is represented by the following Formula 1. MAn ??(Formula 1) Herein, M is a metal ion, A is an organic ligand which includes ?-substituted carboxylate, and n is a natural number.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 17, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Bo Sung Kim, Doo-Hyoung Lee, Yeon-Taek Jeong, Ki-Beom Lee, Young-Min Kim, Tae-Young Choi, Seon-Pil Jang, Kang-Moon Jo
  • Patent number: 8753928
    Abstract: In a process of manufacturing a transistor including an oxide semiconductor layer, an amorphous oxide semiconductor layer which includes a region containing excess oxygen as compared to a stoichiometric composition ratio of an oxide semiconductor in a crystalline state is formed over a silicon oxide film, an aluminum oxide film is formed over the amorphous oxide semiconductor layer, and then heat treatment is performed so that at least part of the amorphous oxide semiconductor layer is crystallized and an oxide semiconductor layer which includes a crystal having a c-axis substantially perpendicular to a surface of the oxide semiconductor layer is formed.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 17, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yuhei Sato, Keiji Sato, Tetsunori Maruyama
  • Publication number: 20140162414
    Abstract: A method to selectively process a three dimensional device, comprising providing a substrate having a first surface that extends horizontally, the substrate comprising a structure containing a second surface that extends vertically from the first surface; providing a film on the substrate, the film comprising carbon species; and etching a selected portion of the film by exposing the selected portion of the film to an etchant containing hydrogen species, where the etchant excludes oxygen species and fluorine species.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nilay A. Pradhan, Benjamin Colombeau, Naushad K. Variam, Mandar B. Pandit, Christopher Dennis Bencher, Adam Brand
  • Patent number: 8748950
    Abstract: A reconfigurable device includes a first insulating layer, a second insulating layer, and a nanoscale quasi one- or zero-dimensional electron gas region disposed at an interface between the first and second insulating layers. The device is reconfigurable by applying an external electrical field to the electron gas, thereby changing the conductivity of the electron gas region. A method for forming and erasing nanoscale-conducting structures employs tools, such as the tip of a conducting atomic force microscope (AFM), to form local electric fields. The method allows both isolated and continuous conducting features to be formed with a length well below 5 nm.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: June 10, 2014
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Jeremy Levy, Cheng Cen, Patrick Irvin
  • Patent number: 8748241
    Abstract: A first conductive film overlapping with an oxide semiconductor film is formed over a gate insulating film, a gate electrode is formed by selectively etching the first conductive film using a resist subjected to electron beam exposure, a first insulating film is formed over the gate insulating film and the gate electrode, removing a part of the first insulating film while the gate electrode is not exposed, an anti-reflective film is formed over the first insulating film, the anti-reflective film, the first insulating film and the gate insulating film are selectively etched using a resist subjected to electron beam exposure, and a source electrode in contact with one end of the oxide semiconductor film and one end of the first insulating film and a drain electrode in contact with the other end of the oxide semiconductor film and the other end of the first insulating film are formed.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Yutaka Okazaki, Kazuya Hanaoka, Shinya Sasagawa, Motomu Kurata
  • Patent number: 8748215
    Abstract: One embodiment is a method for manufacturing a stacked oxide material, including the steps of forming an oxide component over a base component; forming a first oxide crystal component which grows from a surface toward an inside of the oxide component by heat treatment, and leaving an amorphous component just above a surface of the base component; and stacking a second oxide crystal component over the first oxide crystal component. In particular, the first oxide crystal component and the second oxide crystal component have common c-axes. Same-axis (axial) growth in the case of homo-crystal growth or hetero-crystal growth is caused.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8748870
    Abstract: A semiconductor structure including nanotubes forming an electrical connection between electrodes is disclosed. The semiconductor structure may include an open volume defined by a lower surface of an electrically insulative material and sidewalls of at least a portion of each of a dielectric material and opposing electrodes. The nanotubes may extend between the opposing electrodes, forming a physical and electrical connection therebetween. The nanotubes may be encapsulated within the open volume in the semiconductor structure. A semiconductor structure including nanotubes forming an electrical connection between source and drain regions is also disclosed. The semiconductor structure may include at least one semiconducting carbon nanotube electrically connected to a source and a drain, a dielectric material disposed over the at least one semiconducting carbon nanotube and a gate dielectric overlying a portion of the dielectric material. Methods of forming the semiconductor structures are also disclosed.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Gurtej S. Sandhu
  • Publication number: 20140151687
    Abstract: In a semiconductor device, a region where a channel is formed is protected. In a semiconductor device, a region protecting a region where a channel is formed is provided in a semiconductor layer. In a semiconductor device, a layer protecting a region where a channel is formed is provided. In a semiconductor device, a region and/or a layer protecting a region where a channel is formed have/has a low density of defect states. In a semiconductor device, a region where a channel is formed has a low density of defect states.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 5, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140154846
    Abstract: In a method of fabricating a semiconductor device, a silicon-on-insulator (SOI) substrate is provided. This SOI substrate comprises a buried oxide layer and an ETSOI layer between the buried oxide layer and a surface of the SOI substrate. A dummy gate is formed on the ETSOI. At least two raised source/drain regions are epitaxially formed adjacent to the dummy gate, and a protective cap is formed thereon. An etch process employing at least one acid is used to remove the dummy gate from the ETSOI. A gate dielectric layer is deposited on the protective cap and the ETSOI after removing the dummy gate. A replacement metal gate is then formed on the gate dielectric layer to replace the removed dummy gate, the gate dielectric layer is removed from the protective metal cap, and the protective cap is removed from the raised source/drain regions.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: International Business Machines Corporation
    Inventors: Kangguo CHENG, Junli Wang, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20140151802
    Abstract: A method comprises: forming a tensile SSOI layer on a buried oxide layer on a bulk substrate; forming a plurality of fins in the SSOI layer; removing a portion of the fins; annealing remaining portions of the fins to relax a tensile strain of the fins; and merging the remaining portions of the fins.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Ali Khakifirooz, Pranita Kerber, Alexander Reznicek
  • Publication number: 20140145179
    Abstract: A method of manufacturing a thin film transistor (TFT), including forming an oxide semiconductor pattern including a first region, a second region and a third region on a substrate, directly plasma processing the first region and the second region of the oxide semiconductor pattern, forming an insulating layer on the substrate to cover the oxide semiconductor pattern, forming a gate electrode on the insulating layer to overlap the third region, and forming a source electrode and a drain electrode that are insulated from the gate electrode and that contact the first region, the second region being disposed between the first region and the third region.
    Type: Application
    Filed: August 6, 2013
    Publication date: May 29, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Joo-Sun Yoon, Ki-Wan Ahn, Joung-Keun Park
  • Publication number: 20140147968
    Abstract: Provided is a method for manufacturing a semiconductor device so as not expose a semiconductor layer to moisture and the number of masks is reduced. For example, a first conductive film, a first insulating film, a semiconductor film, a second conductive film, and a mask film are formed. The first mask film is processed to form a first mask layer. Dry etching is performed on the first insulating film, the semiconductor film, and the second conductive film with the use of the first mask layer to form a thin film stack body, so that a surface of the first conductive film is at least exposed. Sidewall insulating layers covering side surfaces of the thin film stack body are formed. The first conductive film is side-etched to form a first electrode. A second electrode layer is formed with the second mask layer.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takafumi MIZOGUCHI, Kojiro SHIRAISHI
  • Publication number: 20140145264
    Abstract: Methods of wiring to a transistor and a related transistor are disclosed. In one embodiment, the method includes a method of forming wiring to a transistor, the method comprising: forming a transistor on a semiconductor-on-insulator (SOI) substrate using masks that are mirror images of an intended layout, the forming including forming a gate and a source/drain region for each and a channel, the SOI substrate including a semiconductor-on-insulator (SOI) layer, a buried insulator layer and a silicon substrate; forming a dielectric layer over the transistor; bonding the dielectric layer to another substrate; removing the silicon substrate from the SOI substrate to the buried insulator layer; forming a contact to each of the source/drain region and the gate from a channel side of the gate; and forming at least one wiring to the contacts on the channel side of the gate.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: International Business Machines Corporation
    Inventors: David J. Frank, Douglas C. LaTulipe, JR., Steven E. Steen, Anna W. Topol
  • Publication number: 20140145188
    Abstract: A thin film transistor (TFT) and a method of manufacturing the same such that an ohmic contact can be formed between a semiconductor layer and a source electrode or between the semiconductor layer and a drain electrode, wherein the TFT can be applied to a plastic substrate. The TFT includes: a substrate; an active layer formed of ZnO, InZnO, ZnSnO, and/or ZnInGaO on the substrate and including a channel region, a source region, and a drain region; a gate electrode insulated from the active layer; and source and drain electrodes insulated from the gate electrode and electrically connected to the source region and the drain region, respectively, wherein the source region and the drain region of the active layer include hydrogen.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jae-Kyeong Jeong, Hyun-Soo Shin, Yeon-Gon Mo
  • Patent number: 8735976
    Abstract: A Thin Film Transistor-Liquid Crystal Display (TFT-LCD) array substrate is presented which includes a gate line, a data line, and a pixel electrode. The pixel electrode is disposed in a pixel region defined by the intersection between the gate line and the data line. In the pixel region, a partition groove for forming a pixel electrode pattern is provided at the periphery of the pixel electrode.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: May 27, 2014
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Hongxi Xiao, Jae Yun Jung, Zuhong Liu, Taek Ho Hong, Jeong Hun Rhee
  • Patent number: 8735740
    Abstract: A method and apparatus for filling a via with transparent material is presented, including the steps of providing a panel having a via, occluding the via with transparent material in a workable state so that a portion of the occluding material is internal to the via and a portion of the material is external to said via. The external and internal portions are separated so the transparent filler material, when set, forms a smooth and featureless surface. This causes the filled via to have a substantially even and uniform appearance over a wide range of viewing angles when lit.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: May 27, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Glenn Francis Simenson, William Antoni, Steve Cohen, Jeffrey Howerton
  • Patent number: 8735993
    Abstract: A semiconductor device may include body contacts on a finFET device for ESD protection. The semiconductor device comprises a semiconductor fin, a source/drain region and a body contact. The source/drain region and the body contact are in the semiconductor fin. A portion of the fin is laterally between the source/drain region and the body contact. The semiconductor fin is on a substrate.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hsiung Lo, Jam-Wem Lee, Wun-Jie Lin, Jen-Chou Tseng
  • Patent number: 8735984
    Abstract: FinFET devices are formed with body contact structures enabling the fabrication of such devices having different gate threshold voltages (Vt). A body contact layer is formed to contact the gate electrode (contact) enabling a forward body bias and a reduction in Vt. Two example methods of fabrication (and resulting structures) are provided. In one method, the gate electrode (silicon-based) and body contact layer (silicon) are connected by growing epitaxy which merges the two structures forming electrical contact. In another method, a via is formed that intersects with the gate electrode (suitable conductive material) and body contact layer and is filled with conductive material to electrically connect the two structures. As a result, various FinFETs with different Vt can be fabricated for different applications.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: May 27, 2014
    Assignee: Globalfoundries Singapore PTE, Ltd.
    Inventors: Chunshan Yin, Kian Ming Tan, Jae Gon Lee
  • Publication number: 20140141573
    Abstract: The present invention discloses a method for preparing switch transistor comprising: sequentially forming a control electrode, an insulation layer, an active layer, and a source/drain metal layer of the switch transistor on a glass substrate; patterning the source/drain metal layer to expose the active layer; and proceeding an etching process to the exposed active layer in a way of gradually reducing etching rate to form a channel of the switch transistor. The present invention further discloses an equipment for etching the switch transistor. In the way mentioned above, the present invention can minimize the damages to the switch transistor and improve the reliability of the switch transistor.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 22, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Xiangdeng Que
  • Publication number: 20140138770
    Abstract: A device includes a wafer substrate having at least two isolation features, a buffer layer embedded between the two isolation features and a fin disposed over the buffer layer. The buffer layer includes a first lattice constant. The fin includes at least one pair of alternating layers having a compressive strained layer and a tensile strained layer such that the pair of alternating layer has a second lattice constant matching to the first lattice constant and remains strained at edge of the fin. The device further includes a gate disposed over the fin. The buffer layer, the compressive strained layer, and the tensile strained layer include element in Group III-V, or combination thereof. A thickness of the compressive strained layer or a thickness of the tensile strained layer is a function of the first lattice constant.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mark van Dal, Gerben Doombos
  • Publication number: 20140138772
    Abstract: A thin film transistor display panel according to an exemplary embodiment of the present invention includes a substrate, a first insulating layer formed on the substrate, a semiconductor layer formed on the first insulating layer, a second insulating layer formed on the semiconductor layer, and a gate electrode formed on the second insulating layer, in which the first insulating layer includes a light blocking material, and a thickness of the first insulating layer is greater than or equal to a thickness of the second insulating layer.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 22, 2014
    Applicant: Samsung Display Co., Ltd
    Inventors: Hyun Jae NA, Yoon Ho KHANG, Sang Ho PARK, Dong Hwan SHIM, Se Hwan YU, Yong Su LEE, Myoung Geun CHA
  • Publication number: 20140139796
    Abstract: An array substrate of a liquid crystal display, comprising: a substrate; a first electrode disposed on the substrate; a second electrode located above and electrically insulated from the first electrode; and an orientation film disposed on the second electrode, wherein the array substrate further comprising: at least one shunt electrode connected to at least one of first electrodes to divert residual charges left over a surface of a liquid crystal molecule, and the shunt electrode is located at a side of the orientation film not contacting the liquid crystal molecule.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicants: Hefei Boe Optoelectronics Technology Co., Ltd., Boe Technology Group Co., Ltd.
    Inventors: Binbin CAO, Baek Myoung KEE, Yinhu HUANG, Xiangyang XU
  • Patent number: 8728862
    Abstract: A thin film transistor, a method of manufacturing the thin film transistor, and a flat panel display device including the thin film transistor. The thin film transistor includes: a gate electrode formed on a substrate; a gate insulating film formed on the gate electrode; an activation layer formed on the gate insulating film; a passivation layer including a compound semiconductor oxide, formed on the activation layer; and source and drain electrodes that contact the activation layer.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Heung Ha, Young-Woo Song, Jong-Hyuk Lee, Jong-Han Jeong, Min-Kyu Kim, Yeon-Gon Mo, Jae-Kyeong Jeong, Hyun-Joong Chung, Kwang-Suk Kim, Hui-Won Yang, Chaun-Gi Choi
  • Patent number: 8728880
    Abstract: A graphene electronic device includes a graphene channel layer on a substrate, a source electrode on an end portion of the graphene channel layer and a drain electrode on another end portion of the graphene channel layer, a gate oxide on the graphene channel layer and between the source electrode and the drain electrode, and a gate electrode on the gate oxide. The gate oxide has substantially the same shape as the graphene channel layer between the source electrode and the drain electrode.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-jong Chung, Jin-seong Heo, Hee-jun Yang, Sun-ae Seo, Sung-hoon Lee
  • Patent number: 8728844
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Publication number: 20140132905
    Abstract: The present invention relates to an array substrate and a manufacture method of the same, a liquid crystal display panel, and a display device, which are relative to a liquid crystal display field. Further, source electrodes and drain electrodes of the array substrate are arranged on different layers. In the manufacture method of the array substrate, the source electrodes and the drain electrodes are formed on different layers by two patterning processes. According to the technical scheme of the present invention, a length of a channel between the source electrodes and the drain electrodes can be decreased as much as possible, thereby increasing a start current Ion of a TFT.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 15, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Chunfang ZHANG, Hee cheol KIM, Yan WEI, Chao XU
  • Publication number: 20140131712
    Abstract: The present invention relates to the field of liquid crystal display, and provides a method for manufacturing a TFT and the TFT thereof. The TFT comprises: a substrate; a gate electrode with a three-dimensional structure formed on the substrate; a gate insulating layer for covering the gate electrode; a semiconductor layer formed on the gate insulating layer; a buffer layer formed on the semiconductor layer; and source and drain electrodes formed on the buffer layer, wherein the semiconductor layer of the TFT is of a three-dimensional structure. According to the present invention, it is able to reduce the driving voltage, the power consumption of the driving circuit and the area occupied by the TFT, and to increase the light transmission rate.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 15, 2014
    Applicants: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Zongze HE
  • Publication number: 20140131782
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20140131735
    Abstract: A method comprises providing a semiconductor structure comprising a substrate, an electrically insulating layer on the substrate and a semiconductor feature on the electrically insulating layer. A gate structure is formed on the semiconductor feature. An in situ doped semiconductor material is deposited on portions of the semiconductor feature adjacent the gate structure. Dopant is diffused from the in situ doped semiconductor material into the portions of the semiconductor feature adjacent the gate structure, the diffusion of the dopant into the portions of the semiconductor feature adjacent the gate structure forming doped source and drain regions in the semiconductor feature.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jan Hoentschel, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8723237
    Abstract: A method for designing a semiconductor device includes arranging at least a pattern of a first active region in which a first transistor is formed and a pattern of a second active region in which a second transistor is formed; arranging at least a pattern of a gate wire which intersects the first active region and the second active region; extracting at least a first region in which the first active region and the gate wire are overlapped with each other; arranging at least one pattern of a compressive stress film on a region including the first active region; and obtaining by a computer a layout pattern of the semiconductor device, when the at least one pattern of the compressive stress film is arranged, end portions of the at least one pattern thereof are positioned based on positions of end portions of the first region.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: May 13, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yasunobu Torii