Including Passive Device (e.g., Resistor, Capacitor, Etc.) Patents (Class 438/238)
  • Patent number: 8101515
    Abstract: Methods of manufacturing semiconductor devices are provided in which a first contact plug is formed on a first active region in a substrate and a second contact plug is formed on a second active region in the substrate. A height of an upper surface of the second contact plug from the substrate is greater than a height of an upper surface of the first contact plug from the substrate. A third contact plug is formed on the second contact plug. A first spacer is formed on a side surface of the third contact plug. A third interlayer insulation layer is formed that covers the third contact plug. The third interlayer insulation layer is patterned to form a third opening that exposes the first contact plug. A fourth contact plug is formed in the third opening that is electrically connected to the first contact plug.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: January 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-ho Sung, Ju-yong Lee, Mi-kyung Park, Tae-young Chung
  • Patent number: 8101481
    Abstract: A spacer lithography process for creating negative features such as, for example, cut-lines, or trenches, and holes is provided. The negative spacer lithography process may be utilized along with positive spacer lithography to fabricate electronic devices or the like. In one embodiment, a process is provided for fabricating a 6-transistor Static Random-Access Memory (SRAM) cell or arrays of 6-transistor SRAM cells using only, or at least primarily, positive and negative spacer lithography.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: January 24, 2012
    Assignee: The Regents of the University of California
    Inventor: Andrew E. Carlson
  • Patent number: 8101492
    Abstract: One or more embodiments relate to a method of forming a semiconductor device, including: providing a substrate; forming a gate stack over the substrate, the gate stack including a control gate over a charge storage layer; forming a conductive layer over the gate stack; etching the conductive layer to remove a portion of the conductive layer; and forming a select gate, the forming the select gate comprising etching a remaining portion of the conductive layer.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies AG
    Inventors: John Power, Danny Pak-Chum Shum
  • Patent number: 8101992
    Abstract: A memory array with staggered local data/bit lines extending generally in a first direction formed in an upper surface of a substrate and memory cell access transistors extending generally upward and aligned generally atop a corresponding local data/bit line. Selected columns of the memory cell access transistors are sacrificed to define local data/bit access transistors which are interconnected with overlying low resistance global data/bit lines. The global data/bit lines provide selectable low resistance paths between memory cells and sense amplifiers. The sacrificed memory cell access transistors and staggered local data/bit lines provide increased footprints for sense amplifiers to facilitate increased circuit integration.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 24, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20120012943
    Abstract: The present invention provides an anti-fuse of a semiconductor device and a method of manufacturing the same, which has a stable current level and a stable operation. According to the present invention, in order for the anti-fuse to be stably operated, a region in which a gate and an active region partially overlap with each other is formed, and the overlapped region is destroyed when voltage is supplied. Accordingly, a current level can be stabilized, and stable operation is possible.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Yong Sun JUNG
  • Patent number: 8097498
    Abstract: A method of making a device includes providing a first device level containing first semiconductor rails separated by first insulating features, forming a sacrificial layer over the first device level, patterning the sacrificial layer and the first semiconductor rails in the first device level to form a plurality of second rails extending in a second direction, wherein the plurality of second rails extend at least partially into the first device level and are separated from each other by rail shaped openings which extend at least partially into the first device level, forming second insulating features between the plurality of second rails, removing the sacrificial layer, and forming second semiconductor rails between the second insulating features in a second device level over the first device level. The first semiconductor rails extend in a first direction. The second semiconductor rails extend in the second direction different from the first direction.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: January 17, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Vinod Robert Purayath, George Matamis, James Kai, Takashi Orimoto
  • Patent number: 8093681
    Abstract: A SRAM of complete CMOS type having its memory cell composed of six MISFETs, in which a pair of local wiring lines for connecting the input/output terminals of CMOS inverters are formed of a refractory metal silicide layer formed over a first conducting layer constituting the individual gate electrodes of the drive MISFETs, the transfer MISFETs and the load MISFETs of the memory cell and in which a reference voltage line formed over the local wiring lines is arranged to be superposed over the local wiring lines to form a capacity element. Moreover, the capacity element is formed between the local wiring lines and the first conducting layer by superposing the local wiring lines over the first conducting layer. Moreover, the local wiring lines are formed by using resistance lowering means such as silicification. In addition, there are made common the means for lowering the resistance of the gate electrode of the transfer MISFETs and the means for forming the local wiring lines.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 10, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Shuji Ikeda, Toshiaki Yamanaka, Kenichi Kikushima, Shinichiro Mitani, Kazushige Sato, Akira Fukami, Masaya Iida, Akihiro Shimizu
  • Patent number: 8093118
    Abstract: A semiconductor structure and a method of forming the same are provided. The semiconductor structure includes a substrate, a resistor and a metal gate structure. The substrate has a first area and a second area. The resistor is disposed in the first area, wherein the resistor does not include any metal layer. The metal gate structure is disposed in the second area.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 10, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Szu Tseng, Che-Hua Hsu, Cheng-Wen Fan, Chih-Yu Tseng, Victor Chiang Liang
  • Patent number: 8088661
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention comprises a memory cell transistor and a resistance element arranged on a semiconductor substrate. The memory cell transistor includes a floating gate electrode constituted of a first conductive material arranged on a gate insulating film on a surface of the semiconductor substrate, an inter-gate insulating film arranged on the floating gate electrode, a control gate electrode arranged on the inter-gate insulating film, and a source/drain diffusion layer provided in the semiconductor substrate. The resistance element includes an element isolation insulating layer arranged in the semiconductor substrate and including a depression, and a resistor constituted of a second conductive material filling up the depression. An impurity concentration of the second conductive material is lower than that of the first conductive material.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Atsuhiro Sato
  • Patent number: 8084321
    Abstract: A dynamic random access memory (DRAM) cell and the method of manufacturing the same are provided. The DRAM cell includes a cell transistor and a cell capacitor. The cell capacitor includes a first, second and third dielectric layer, and a first, second and third capacitor electrode. The first dielectric layer is located on a first capacitor electrode. The second capacitor electrode is located on top of the first dielectric layer. The second dielectric layer is located on the second capacitor electrode. The third capacitor electrode is located on the second dielectric layer and is electrically connected with the drain. The third dielectric layer is located between the third capacitor electrode and the gate for isolating the gate from the third capacitor electrode.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: December 27, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jai-Hoon Sim
  • Patent number: 8084314
    Abstract: A first insulation film is provided on a semiconductor substrate. A high resistance element formed from polysilicon is provided on the first insulation film. A second insulation film is provided on the high resistance element. A hydrogen diffusion preventing film having a hydrogen diffusion coefficient smaller than that of the second insulation film is provided on the second insulation film. The hydrogen diffusion preventing film covers a part of the high resistance element.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: December 27, 2011
    Assignee: Panasonic Corporation
    Inventors: Hidenori Iwadate, Takeshi Kobiki
  • Patent number: 8080439
    Abstract: A method of making a phase change random access memory (PCM) device comprises forming a PCM stack that includes a heater layer, phase change material layer, and a top electrode layer. A top protection layer is formed overlying the PCM stack. The top protection layer and a first portion of the PCM stack are then patterned, wherein the first portion of the PCM stack excludes the heater layer. A sidewall protection feature is formed along a sidewall of the patterned top protection layer and first portion of the PCM stack. The heater layer is etched using (i) the sidewall protection feature and (ii) the patterned top protection layer and first portion of the PCM stack collectively as a mask to form a self-aligned heater layer bottom electrode of the PCRAM stack, thereby completing a memory bit of the PCRAM device.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 20, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Arturo M. Martinez, Jr., Rajesh A. Rao
  • Patent number: 8071437
    Abstract: A method of fabricating an efuse, a resistor and a transistor includes the following steps: A substrate is provided. Then, a gate, a resistor and an efuse are formed on the substrate, wherein the gate, the resistor and the efuse together include a first dielectric layer, a polysilicon layer and a hard mask. Later, a source/drain doping region is formed in the substrate besides the gate. After that, the hard mask in the resistor and the efuse is removed. Subsequently, a salicide process is performed to form a silicide layer on the source/drain doping region, the resistor, and the efuse. Then, a planarized second dielectric layer is formed on the substrate and the polysilicon in the gate is exposed. Later, the polysilicon in the gate is removed to form a recess. Finally a metal layer is formed to fill up the recess.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 6, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Kuei-Sheng Wu, Chang-Chien Wong, Ching-Hsiang Tseng
  • Publication number: 20110287594
    Abstract: A polysilicon film to be a resistor element is formed on a resistor element formation region of a semiconductor substrate while a polysilicon gate and high concentration impurity regions are formed on a transistor formation region. Thereafter, an insulating film is formed on the entire surface of the semiconductor substrate. Then, a photoresist film is formed to cover the transistor formation region, and a conductive impurity is ion-implanted into the polysilicon film. Next, the photoresist film is removed by asking.
    Type: Application
    Filed: March 28, 2011
    Publication date: November 24, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Akira Eguchi
  • Patent number: 8062942
    Abstract: A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 22, 2011
    Inventors: Darrell Rinerson, Wayne Kinney, Edmond Ward, Steve Kuo-Ren Hsia, Steven W. Longcor, Christophe J. Chevallier, John E. Sanchez, Jr., Philip Swab
  • Patent number: 8062921
    Abstract: A phase change memory may be made with improved speed and stable characteristics over extended cycling. The alloy may be selected by looking at alloys that become stuck in either the set or the reset state and finding a median or intermediate composition that achieves better cycling performance. Such alloys may also experience faster programming and may have set and reset programming speeds that are substantially similar.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventors: Guy C. Wicker, Carl Schell, Sergey A. Kostylev, Stephen J. Hudgens
  • Patent number: 8062941
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: April 2, 2011
    Date of Patent: November 22, 2011
    Assignee: IXYS CH GmbH
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 8058095
    Abstract: Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8058125
    Abstract: The present disclosure provides a poly resistor on a semiconductor device and a method of fabricating the same. In an embodiment, a poly silicon resistor device is formed by providing a substrate having a first region and a second region. A dummy gate stack is formed on the substrate in the first region, wherein the dummy gate stack has a dummy gate stack thickness extending above the substrate. A poly silicon resister is formed on the substrate in the second region, wherein the poly silicon resistor has a poly silicon resistor thickness extending above the substrate a distance which is less than the dummy gate stack thickness. A dopant is implanted into the substrate in the first region thereby forming a source region and a drain region in the first region of the substrate. The dopant is also implanted into the poly silicon resistor. An inter-level dielectric (ILD) layer is formed on the substrate over the dummy gate stack and also over the poly silicon resistor.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: November 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hsien Lin, Inez Fu, Yimin Huang
  • Publication number: 20110272754
    Abstract: Memories and their formation are disclosed. One such memory has a first array of first memory cells extending in a first direction from a first surface of a semiconductor. A second array of second memory cells extends in a second direction, opposite to the first direction, from a second surface of the semiconductor. Both arrays may be non-volatile memory arrays. For example, one of the memory arrays may be a NAND flash memory array, while the other may be a one-time-programmable memory array.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 10, 2011
    Inventors: Sanh D. Tang, John Zahurak, Siddartha Kondoju, Haitao Liu, Nishant Sinha
  • Patent number: 8053307
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 8053313
    Abstract: In a method of fabricating a semiconductor device on a substrate having a pillar pattern, a gate electrode is formed on the pillar pattern without etching the latter. A conductive pattern is filled between adjacent pillar patterns, a spacer is formed above the conductive pattern and surrounding sidewalls of each pillar pattern, and the gate electrode is formed by etching the conductive pattern using the spacer as an etch barrier.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yun-Seok Cho, Sang-Hoon Park, Young-Kyun Jung, Chun-Hee Lee
  • Publication number: 20110266613
    Abstract: A semiconductor component that includes gate electrodes and shield electrodes and a method of manufacturing the semiconductor component. A semiconductor material has a device region, a gate contact region, a termination region, and a drain contact region. One or more device trenches is formed in the device region and one or more termination trenches is formed in the edge termination region. Shield electrodes are formed in portions of the device trenches that are adjacent their floors. A gate dielectric material is formed on the sidewalls of the trenches in the device region and gate electrodes are formed over and electrically isolated from the shield electrodes. A gate electrode in at least one of the trenches is connected to at least one shield electrode in the trenches.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Inventors: Prasad Venkatraman, Zia Hossain, Kirk K. Huang
  • Publication number: 20110266637
    Abstract: A method includes forming a polysilicon layer on a substrate; and patterning the polysilicon layer to form a polysilicon resistor and a polysilicon gate. A first ion implantation is performed on the polysilicon resistor to adjust electric resistance of the polysilicon resistor. A second ion implantation is performed on a top portion of the polysilicon resistor such that the top portion of the polysilicon resistor has an enhanced etch resistance. An etch process is then used to remove the polysilicon gate while the polysilicon resistor is protected by the top portion.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Da-Yuan Lee, Matt Yeh
  • Publication number: 20110266605
    Abstract: A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
    Type: Application
    Filed: January 30, 2009
    Publication date: November 3, 2011
    Inventors: Dmitri B. Strukov, Philip J. Kuekes, Duncan Stewart, Zhiyong Li
  • Patent number: 8048735
    Abstract: The present invention provides an MIM capacitor using a high-k dielectric film preventing degradation of breakdown field strength of the MIM capacitor and suppressing the increase of the leakage current. The MIM capacitor comprises a first metal interconnect, a fabricated capacitance film, a fabricated upper electrode, and a third metal interconnect. The MIM capacitor is realized by forming an interlayer dielectric film comprising silicon oxide so as to cover the first metal interconnect, then forming a first opening in the interlayer dielectric film to a region corresponding to a via hole layer in the interlayer dielectric film just above the first metal interconnect so as not to expose the upper surface of the first metal interconnect, then forming a second opening to the inside of the first opening so as to expose the surface of the first metal interconnect and then forming a capacitance film and a third metal interconnect.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 1, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Takeda, Tsuyoshi Fujiwara, Toshinori Imai
  • Patent number: 8043912
    Abstract: A semiconductor device is provided with a semiconductor substrate comprising element isolation regions and an element region surrounded by the element isolation regions, a first polysilicon layer formed in the element region of the semiconductor substrate, an element-isolating insulation film formed in the element isolation region of the semiconductor substrate, a second polysilicon layer formed on the element-isolating insulation film, a first silicide layer formed on the first polysilicon layer. And the device further comprising a second silicide layer formed on the second polysilicon layer and being thicker than the first silicide layer.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Matsuda
  • Publication number: 20110256677
    Abstract: Methods for fabricating a semiconductor device are disclosed. In an example, a method includes forming an isolation region on a substrate, wherein the isolation region extends a depth into the substrate from a substrate surface; forming a recess in the isolation region, wherein the recess is defined by a concave surface of the isolation region; and forming a first gate structure over the substrate surface and a second gate structure over the concave surface of the isolation region.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry Chuang, Kong-Beng Thei
  • Patent number: 8039353
    Abstract: The present invention provides a thin and bendable semiconductor device utilizing an advantage of a flexible substrate used in the semiconductor device, and a method of manufacturing the semiconductor device. The semiconductor device has at least one surface covered by an insulating layer which serves as a substrate for protection. In the semiconductor device, the insulating layer is formed over a conductive layer serving as an antenna such that the value in the thickness ratio of the insulating layer in a portion not covering the conductive layer to the conductive layer is at least 1.2, and the value in the thickness ratio of the insulating layer formed over the conductive layer to the conductive layer is at least 0.2. Further, not the conductive layer but the insulating layer is exposed in the side face of the semiconductor device, and the insulating layer covers a TFT and the conductive layer.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: October 18, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshitaka Dozen, Tomoyuki Aoki, Hidekazu Takahashi, Daiki Yamada, Eiji Sugiyama, Kaori Ogita, Naoto Kusumoto
  • Patent number: 8034681
    Abstract: A method of forming a non-volatile memory device includes the following steps. First and second cell gates are formed in a cell region. First and second peripheral gates are formed in a peripheral-region. A first insulating layer is formed over the first and second cell gates and the first and second peripheral gates. A second conductive layer is formed over the first insulating layer. A third insulating layer is formed over the second conductive layer. Selected portions of the third insulating layer, the second conductive layer, and the first insulating layer are removed to form an inter-gate plug provided between the first and second cell gates. The inter-gate plug completely fills a space defined between the first and second cell gates.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 11, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Bong Lee
  • Patent number: 8034683
    Abstract: A method of forming a phase change material layer includes preparing a substrate having an insulator and a conductor, loading the substrate into a process housing, injecting a deposition gas into the process housing to selectively form a phase change material layer on an exposed surface of the conductor, and unloading the substrate from the process housing, wherein a lifetime of the deposition gas in the process housing is shorter than a time the deposition gas takes to react by thermal energy.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Lae Cho, Choong-Man Lee, Jin-Il Lee, Sang-Wook Lim, Hye-Young Park, Young-Lim Park
  • Patent number: 8034684
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Soo Park
  • Patent number: 8030707
    Abstract: A method of forming a silicon-on-insulator (SOI) semiconductor structure in a substrate having a bulk semiconductor layer, a buried oxide (BOX) layer and an SOI layer. During the formation of a trench in the structure, the BOX layer is undercut. The method includes forming a dielectric material on the upper wall of the trench adjacent to the undercutting of the BOX layer and then etching the dielectric material to form a spacer. The spacer fixes the BOX layer undercut and protects it during subsequent steps of forming a bottle-shaped portion of the trench, forming a buried plate in the deep trench; and then forming a trench capacitor. There is also a semiconductor structure, preferably an SOI eDRAM structure, having a spacer which fixes the undercutting in the BOX layer.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Naftali Eliahu Lustig, Daewon Yang
  • Patent number: 8026558
    Abstract: A semiconductor power device includes a plurality of groups of stripe-shaped trenches extending in a silicon region over a substrate, and a contiguous sinker trench completely surrounding each group of the plurality of stripe-shaped trenches so as to isolate the plurality of groups of stripe-shaped trenches from one another. The contiguous sinker trench extends from a top surface of the silicon region through the silicon region and terminates within the substrate. The contiguous sinker trench is lined with an insulator only along the sinker trench sidewalls so that a conductive material filling the contiguous sinker trench makes electrical contact with the substrate along the bottom of the contiguous sinker trench and makes electrical contact with an interconnect layer along the top of the contiguous sinker trench.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 27, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Gary M. Dolny
  • Publication number: 20110227167
    Abstract: The present disclosure provides reduced substrate coupling for inductors in semiconductor devices. A method of fabricating a semiconductor device having reduced substrate coupling includes providing a substrate having a first region and a second region. The method also includes forming a first gate structure over the first region and a second gate structure over the second region, wherein the first and second gate structures each include a dummy gate. The method next includes forming an inter layer dielectric (ILD) over the substrate and forming a photoresist (PR) layer over the second gate structure. Then, the method includes removing the dummy gate from the first gate structure, thereby forming a trench and forming a metal gate in the trench so that a transistor may be formed in the first region, which includes a metal gate, and an inductor component may be formed over the second region, which does not include a metal gate.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Harry Hak-Lay Chuang, Ming Zhu, Lee-Wee Teo
  • Patent number: 8022455
    Abstract: In a method of fabricating a semiconductor device capable of reducing parasitic capacitance between bit lines and a semiconductor device fabricated by the method, the semiconductor device includes a semiconductor substrate having buried contact landing pads and direct contact landing pads. A lower interlayer insulating layer is disposed on the semiconductor substrate. A plurality of parallel bit line patterns are disposed on the lower interlayer insulating layer to fill the direct contact holes. A passivation layer that conformally covers the lower interlayer insulating layer and the bit line patterns is formed. An upper interlayer insulating layer for covering the semiconductor substrate having the passivation layer is formed. Buried contact plugs are disposed in the upper interlayer insulating layer between the bit line patterns and extended to contact the respective buried contact landing pads through the passivation layer and the lower interlayer insulating layer.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min-Wook Hwang
  • Patent number: 8017474
    Abstract: A process of forming an electronic device can include forming a capacitor dielectric layer over a base region, wherein the base region includes a base semiconductor material, forming a gate dielectric layer over a substrate, forming a capacitor electrode over the capacitor dielectric layer, forming a gate electrode over the gate dielectric layer, and forming an input terminal and an output terminal to the capacitor electrode. The input terminal and the output terminal can be spaced apart from each other and are connected to different components within the electronic device. A filter can include the base region, the capacitor dielectric layer, and the capacitor electrode. A transistor structure can include the gate dielectric layer and the gate electrode. An electronic device can include a low-pass filter and a transistor structure, such as an n-channel transistor or a p-channel transistor.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: September 13, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Fabio Duarte de Martin, Fabio de Lacerda, Alfredo Olmos
  • Patent number: 8017457
    Abstract: A method of manufacturing a semiconductor memory device of the present invention consists of a step of forming a selection transistor and a separate selection transistor and a step of forming a variable resistance element and a capacitance element, characterized by forming the variable resistance element by sequentially laminating a first electrode that is connected to the selection transistor, a variable resistance layer, and a second electrode; forming the capacitance element by sequentially laminating a third electrode that is connected to the separate selection transistor, a dielectric layer, and a fourth electrode; forming the dielectric layer and the variable resistance layer with a mutually identical material; forming either one of the first electrode or the second electrode with the same material as the third electrode and the fourth electrode; and forming the other one of the first electrode or the second electrode with a different material than the third electrode and the fourth electrode.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: September 13, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Kazuhiko Kajigaya
  • Publication number: 20110217817
    Abstract: Provided are a semiconductor memory device and a method of manufacturing the semiconductor memory device. The semiconductor memory device includes a semiconductor substrate including a first active region and a second active region, a gate electrode including a silicide layer formed on the first active region and a resistor pattern formed on the second active region. A distance from a top surface of the semiconductor substrate to a top surface of the resistor pattern is smaller than a distance from a top surface of the semiconductor substrate to a top surface of the gate electrode.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Inventor: JONGWON KIM
  • Publication number: 20110215321
    Abstract: A method is provided for making a resistive polycrystalline semiconductor device, e.g., a poly resistor of a microelectronic element such as a semiconductor integrated circuit. The method can include: (a) forming a layered stack including a dielectric layer contacting a surface of a monocrystalline semiconductor region of a substrate, a metal gate layer overlying the dielectric layer, a first polycrystalline semiconductor region adjacent the metal gate layer having a predominant dopant type of either n or p, and a second polycrystalline semiconductor region spaced from the metal gate layer by the first polycrystalline semiconductor region and adjoining the first polycrystalline semiconductor region; and (b) forming first and second contacts in conductive communication with the second polycrystalline semiconductor region, the first and second contacts being spaced apart so as to achieve a desired resistance.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Rainer Loesing, Chengwen Pei, Xiaojun Yu
  • Publication number: 20110217818
    Abstract: A device includes a substrate having a first region and a second region. The first region comprises a first field effect transistor having a horizontal channel region within the substrate, a gate overlying the horizontal channel region, and a first dielectric covering the gate of the first field effect transistor. The second region of the substrate includes a second field effect transistor comprising a first terminal extending through the first dielectric to contact the substrate, a second terminal overlying the first terminal and having a top surface, and a vertical channel region separating the first and second terminals. The second field effect transistor also includes a gate on the first dielectric and adjacent the vertical channel region, the gate having a top surface that is co-planar with the top surface of the second terminal.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 8, 2011
    Applicants: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Chung H. Lam
  • Patent number: 8012821
    Abstract: Generating an embedded resistor in a semiconductor device includes forming a shallow trench isolation (STI) region in a substrate; forming a pad oxide on the STI region and substrate; depositing a silicon layer on the pad oxide; forming a photo-resist mask on a portion of the silicon layer disposed above the STI region; etching the silicon layer to yield a polyconductor above the STI region; oxidizing the polyconductor; depositing an oxide material or a metal gate material on the oxidized surface; depositing a silicon layer on the oxide material or metal gate material; depositing additional silicon on a portion of the silicon layer above the STI region; patterning a transistor gate with a photo-resist mask on another portion of the silicon layer away from the STI region; and etching the silicon layer to yield a transistor structure away from the STI region and a resistor structure above the STI region.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choongryul Ryou, Seunghwan Lee, Jun Yuan, Victor Chan, Manfred Eller, Nam Sung Kim, Narasimhulu Kanike, Srikanth Balaji Samavedam
  • Patent number: 8012836
    Abstract: Semiconductor devices and methods for fabricating the same are provided. An exemplary embodiment of a semiconductor device comprises a substrate with a plurality of isolation structures formed therein, defining first and second areas over the substrate. A transistor is formed on a portion of the substrate in the first and second areas, respectively, wherein the transistor in the second area is formed with merely a pocket doping region in the substrate adjacent to a drain region thereof. A first dielectric layer is formed over the substrate, covering the transistor formed in the first and second areas. A plurality of first contact plugs is formed through the first dielectric layer, electrically connecting a source region and a drain region of the transistor in the second area, respectively. A second dielectric layer is formed over the first dielectric layer with a capacitor formed therein, wherein the capacitor electrically connects one of the first contact plugs.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 6, 2011
    Assignee: Taiwan Semiconductor Manufacuturing Co., Ltd.
    Inventors: Kuo-Chyuan Tzeng, Jian-Yu Shen, Kuo-Chi Tu, Kuo-Ching Huang, Chin-Yang Chang
  • Patent number: 8008698
    Abstract: A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-hyung Lee, Sun-ghil Lee, Si-young Choi, Byeong-chan Lee, Seung-hun Lee
  • Publication number: 20110198705
    Abstract: According to one disclosed embodiment, a method for fabricating an integrated resistor in a semiconductor die includes forming a high-k dielectric over a substrate and a metal layer over the high-k dielectric, where the metal layer forms a resistive element of the integrated resistor. The method further includes forming an un-doped polysilicon layer over the metal layer, where a portion of the un-doped polysilicon layer can be selectively doped and used to form a conductive path to the resistive element of the integrated resistor. In one embodiment, the metal layer comprises a gate metal. In one embodiment, the integrated resistor is formed substantially concurrently with one or more transistors without requiring additional fabrication process steps. One disclosed embodiment is an integrated resistor formed according to the disclosed method.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 18, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Xiangdong Chen, Wei Xia
  • Publication number: 20110195551
    Abstract: A semiconductor device has a bit line interconnection with a greater width and a reduced level on a bit line contact is provided, as are methods of fabricating such devices. These method includes forming a buried gate electrode to intersect an active region of a substrate. Source and drain regions are formed in the active region. A first conductive pattern is formed on the substrate. The first conductive pattern has a first conductive layer hole configured to expose the drain region. A second conductive pattern is formed in the first conductive layer hole to contact the drain region. A top surface of the second conductive pattern is at a lower level than a top surface of the first conductive pattern. A third conductive layer and a bit line capping layer are formed on the first conductive pattern and the second conductive pattern and patterned to form a third conductive pattern and a bit line capping pattern.
    Type: Application
    Filed: December 8, 2010
    Publication date: August 11, 2011
    Inventor: Dae-Ik Kim
  • Patent number: 7993962
    Abstract: A memory device includes two electrodes, vertically separated and having mutually opposed contact surfaces, between which lies a phase change cell. The phase change cell includes an upper phase change member, having a contact surface in electrical contact with the first electrode; a lower phase change member, having a contact surface in electrical contact with the second electrode; and a kernel member disposed between and in electrical contact with the upper and lower phase change members. The phase change cell is formed of material having at least two solid phases, and the lateral extent of the upper and lower phase change members is substantially greater than that of the kernel member. An intermediate insulating layer is disposed between the upper and lower phase change members adjacent to the kernel member.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 9, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Hsiang-Lan Lung
  • Publication number: 20110189827
    Abstract: A method of fabricating an efuse structure, a resistor structure and a transistor structure. First, a work function metal layer, a polysilicon layer and a first hard mask layer are formed to cover a transistor region, a resistor region and an e-fuse region on a substrate. Then, the work function metal layer on the resistor region and the efuse region is removed by using a first photomask. Later, a gate, a resistor, an efuse are formed in the transistor region, the resistor region and the efuse region respectively. After that, a dielectric layer aligning with the top surface of the gate is formed. Later, the polysilicon layer in the gate is removed by taking a second hard mask as a mask to form a recess. Finally, a metal layer fills up the recess.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventors: Che-Hua Hsu, Zhi-Cheng Lee, Cheng-Guo Chen, Shao-Hua Hsu
  • Patent number: 7989284
    Abstract: A method for forming a memory device. The method provides a protective layer overlying a surface region of a substrate before threshold voltage implant. The method then includes depositing a photo resist layer and patterning the photo resist by selectively removing a portion of the photo resist to expose the protective layer overlying a first region while maintaining the photo resist overlying a second region. The method includes implanting impurities for threshold voltage adjustment into the first region while the second region is substantially free of the impurities for threshold voltage adjustment. The method also includes forming a source region and a drain region. The method further includes providing a conductive structure over the source region. A junction between the conductive structure and the source region is substantially within the second region. The method then provides a storage capacitor in electrical contact with the source region via the conductive structure.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: JoBong Choi
  • Patent number: 7989252
    Abstract: The present invention provides a method for fabricating a pixel cell of CMOS image sensor, comprising: preparing a semiconductor substrate divided into region I and region II; forming an insulation layer on the surface of the semiconductor substrate in the region I and a gate dielectric layer on the surface of the semiconductor substrate in the region II; forming a poly-silicon gate on the surface of the semiconductor substrate in the region II; forming a deep doped well in the region I through an ion implantation with high energy; performing an ion implantation with low energy in the region I and an ion implantation for lightly doped source/drain in the region II simultaneously; and forming source/drain regions in the semiconductor substrate in the region II.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Jianping Yang, Jieguang Huo