Glow Discharge Sputter Deposition (e.g., Cathode Sputtering, Etc.) Patents (Class 204/192.12)
  • Patent number: 8545621
    Abstract: Using a helium cryostat, the temperature for a substrate wafer(s) is reduced to 2.2 Kelvin over a period of twenty-four hours. Next, a soak segment will hold the temperature of the substrate wafer at 2.2 Kelvins for a period of ninety-six hours. At these low temperatures, alloys such as GaAs, InP, and GaP will form dipole molecular moments, which will re-align along lines of internal magnetic force as molecular bonds condense. Next the substrate wafer's temperature is ramped up to room temperature over a period of twenty-four hours. Next, the temperature of the substrate wafer is ramped up to assure that the temperature gradients made to occur within the wafer are kept low. Typically, a temper ramp up temperature will range between 300° F. to 1100° F. and depends upon the single crystal material used to construct the substrate wafer. Next, the substrate wafer undergoes a temper hold segment, which assures that the entire substrate wafer has had the benefit of the tempering temperature.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: October 1, 2013
    Assignee: OPC Laser Systems LLC
    Inventor: Joseph Reid Henrichs
  • Publication number: 20130251087
    Abstract: Provided in one embodiment is a method comprising: disposing atoms of at least one non-metal element over a surface of a cladding material of a nuclear fuel element; and forming at least one product comprising the at least one non-metal element in, over, or both, a surface layer of the cladding material; wherein the at least one non-metal element has an electronegativity that is smaller than or equal to that of oxygen. Also provided is a nuclear fuel element comprising a modified surface layer adapted to mitigate formation of Chalk River Unidentified Deposits (CRUD) on the cladding material.
    Type: Application
    Filed: February 15, 2013
    Publication date: September 26, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Patent number: 8540850
    Abstract: So as to provide a target arrangement with improved mounting and dismounting ability, the target arrangement comprises a plate along a plane (E) which has a border (7) defined by a first wedge surface (5u) angled to the addressed general plane (E) and a second wedge surface (5l) which is substantially planar as well and angled with respect to the generic plane (E). The two wedge surfaces mutually convert in a direction along the addressed plane (E) and from a more central area of the plate outwardly.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: September 24, 2013
    Assignee: OC Oerlikon Balzers AG
    Inventors: Marcel Neusch, Peter Schlegel, Hartmut Rohrmann, Oliver Rattunde
  • Patent number: 8535490
    Abstract: A new and useful rotatable sputter magnetron assembly is provided, that addresses the issue of uneven wear of the target electrode tube. According to the principles of the present invention, a rotatable sputter magnetron assembly for use in magnetron sputtering target material onto a substrate comprises a. a longitudinally extending tubular shaped target electrode tube having a longitudinal central axis, b. the target electrode tube extending about a magnet bar that is configured to generate a plasma confining magnetic field adjacent the target electrode tube, c. the magnet bar being held substantially stationary within the target electrode tube, and d. the target electrode tube supported for rotation about its longitudinal central axis and for axial movement along its longitudinal central axis, so that wear of the target electrode tube can be controlled by moving the target electrode tube axially during magnetron sputtering of the target material.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: September 17, 2013
    Assignee: General Plasma, Inc.
    Inventors: John Madocks, Patrick Lawrence Morse
  • Publication number: 20130233701
    Abstract: A plasma source includes a hexagonal hollow cathode, the cathode including six targets and six magnets to generate and maintain a high density plasma; and an anode located beneath the cathode. A second hexagonal hollow cathode can be positioned concentric to the hexagonal hollow cahode.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: 4D-S, LTD
    Inventor: Makoto Nagashima
  • Patent number: 8529735
    Abstract: The present invention relates to a coating for workpieces with at least one layer, the at least one layer comprising metal components represented by AlxCr1?x wherein x is an atomic ratio meeting 0?x?0.84 and comprising non metallic components represented by O1?yZy where Z is at least one Element selected from the group N, B, C and 0?y?0.65, preferably y?0.5 characterized in that the coating comprises at least partially a cubic non gamma Cr and oxide comprising phase in such a way that the x-ray diffraction pattern shows formation of cubic phase which is not the cubic phase of CrN.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 10, 2013
    Assignee: Oerlikon Trading AG, Trubbach
    Inventor: Denis Kurapov
  • Publication number: 20130228452
    Abstract: A sputtering method and apparatus having at least one set of dual rotatable cylindrical sputtering targets mounted in a vacuum chamber. Magnet assemblies in hollow target cylinders provide erosion zones running long the parallel sides of a racetrack that act as target flux sources towards a substrate. These parallel erosion zones have a highly concentrated plasma density for rapid sputtering of the target and any reactive material. Features include the angular distance between normals to adjacent parallel erosion zones, the angle greater than 45° subtended at the center of the cylindrical target, placement of the substrate with respect to the targets, and pointing angles (orientation or tilt) of the racetracks toward the substrate and/or each other. These parameters form a relatively wide and efficient constant flux deposition region at the substrate, and allows for high deposition rates at constant reactive gas partial pressures with substantially uniform film stoichiometry and thickness.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 5, 2013
    Applicant: Soleras Advanced Coatings bvba
    Inventor: Wilmert De Bosscher
  • Publication number: 20130228451
    Abstract: The invention relates to a target for coating a substrate with an alloy by means of cathode sputtering, said alloy having at least one first material and one second material as alloy components. The surface of the target has at least one first section made of the first material and one second section made of the second material. The two sections adjoin each other and form a common boundary line. The invention further relates to a device and a method for coating a substrate with an alloy by means of cathode sputtering using the target according to the invention.
    Type: Application
    Filed: September 28, 2011
    Publication date: September 5, 2013
    Inventors: Wolfram Maass, Berthold Ocker, Jûrgen Langer
  • Patent number: 8524049
    Abstract: A method for forming a metallic nitride film includes the steps of a) providing a target made of titanium or zirconium and a substrate in a vacuum chamber, and b) forming a metallic film, which is a TiN film or a ZrN film, on a surface of the substrate by sputtering deposition under the conditions of maintaining a working pressure of the vacuum chamber in a range of 5×10?4 Torr to 5×10?2 Torr; introducing a gas mixture of air and argon into the vacuum chamber at a flow rate ratio of the air to the argon ranging from 5:100 to 15:100, and applying a direct current power ranging from 100 Watts to 5000 Watts by a power supply. Because air can be conveniently collected and the requirement of the base pressure is lower than that of a prior art method, the method of the present invention has the advantages of simple equipment requirement, time-effective manufacturing processes and low cost.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: September 3, 2013
    Inventors: Fu-Hsing Lu, Jiun-Huei Yang, Po-Lun Wu, Mu-Hsuan Chan
  • Publication number: 20130220797
    Abstract: A method for operating a moving magnet magnetron is provided enhanced target utilization. A magnet pack is moved in a first 2-D motion profile with a variable velocity. The magnet pack is then translated in a second 2-D motion profile that varies relative to the first profile. This process moving and translating is repeated to provide enhanced target utilization. These varied movement and translation profiles preclude the formation of a diamond-shaped erosion area common to the prior art. Representative to such profiles are intersecting sigmoidal curves. The resultant target is characterized by a metal from that has better target utilization as the wear pattern precludes the diamond shaped erosion area common to the prior art and instead has a multiple erosion peaks.
    Type: Application
    Filed: May 19, 2011
    Publication date: August 29, 2013
    Applicant: GENERAL PLASMA, INC.
    Inventor: Phong Ngo
  • Publication number: 20130220795
    Abstract: A sputtering chamber includes at least two sputtering targets, one of the at least two targets disposed on a first side a substrate conveyor extending within the chamber, and another of the at least two targets disposed on a second side of the conveyor. The at least two targets may be independently operable, and at least one of the targets, if inactivated, may be protected by a shielding apparatus. Both of the at least two targets may be mounted to a first wall of a plurality of walls enclosing the sputtering chamber.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 29, 2013
    Applicant: CARDINAL CG COMPANY
    Inventor: Cardinal CG Company
  • Publication number: 20130224422
    Abstract: The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target white the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably includes a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.1 to 45 atomic percent titanium; and 0.1 to 40 atomic percent of a third metal element that is tantalum or chromium.
    Type: Application
    Filed: April 5, 2013
    Publication date: August 29, 2013
    Inventor: H.C. STARCK, INC.
  • Publication number: 20130224274
    Abstract: The present invention relates to a medical product, comprising an antibacterial hard material coating, which is applied to a main body and which comprises biocide. Said hard material coating includes at least one inner layer and one outer layer, wherein the biocide concentration in the outer layer is substantially constant and greater than the biocide concentration in the inner layer and the biocide concentration in the inner layer is greater than or equal to 0.2 at %.
    Type: Application
    Filed: May 16, 2011
    Publication date: August 29, 2013
    Applicant: OERLIKON TRADING AG, TRUBBACH
    Inventors: Carmen Leonor Colmenares Mora, Arnd Mueller, Albert Peter Gerhard Janssen
  • Publication number: 20130220796
    Abstract: A composite target and method for manufacturing the same are described, which manufactures the composite target according an etching condition of a waste target. The waste target is generated after an original target at least haying a substrate layer and a metal layer is processed through a sputtering process by a sputtering apparatus with a first magnetic field line distribution. By determining the etching condition caused by the first magnetic field line distribution, a magnetic layer with a second magnetic field line distribution is decided to dispose on the original target. The metal layer is formed on the substrate layer and/or the magnetic layer. The substrate layer, the magnetic layer and the metal layer are combined by a connection layer to form the composite target. The composite target can provide the second magnetic field line distribution to adjust the first magnetic field line distribution.
    Type: Application
    Filed: February 23, 2013
    Publication date: August 29, 2013
    Applicant: SUMIKA TECHNOLOGY CO., LTD.
    Inventor: SUMIKA TECHNOLOGY CO., LTD.
  • Publication number: 20130220745
    Abstract: A brake disk formed of a light weight ceramic and ceramic composite materials, the brake disk having a coating overlying at least a portion of the brake disk. The brake disk includes parallel surfaces wherein at least a portion of the parallel surfaces are coated with a coating material to increase wear and decrease corrosion. The coating over the brake disk includes multiple layers of the coating material, wherein the coating material includes coating material particles configured to construct a pattern of repetition that is consistent with a lattice structure when applied over the parallel surfaces of the brake disk.
    Type: Application
    Filed: April 9, 2013
    Publication date: August 29, 2013
    Applicant: Tech M3, Inc.
    Inventor: Nathan K. Meckel
  • Patent number: 8518220
    Abstract: When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: August 27, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Daniel C. Lubben
  • Publication number: 20130213797
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system comprising a magnetron configured to provide a symmetric magnetic track through a combination of vibrational and rotational motion. The disclosed magnetron comprises a magnetic element configured to generate a magnetic field. The magnetic element is attached to an elastic element connected between the magnetic element and a rotational shaft configured to rotate magnetic element about a center of the sputtering target. The elastic element is configured to vary its length during rotation of the magnetic element to change the radial distance between the rotational shaft and the magnetic element. The resulting magnetic track enables concurrent motion of the magnetic element in both an angular direction and a radial direction. Such motion enables a symmetric magnetic track that provides good wafer uniformity and a short deposition time.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, You-Hua Chou, Chung-En Kao
  • Publication number: 20130213798
    Abstract: A magnetron sputtering device is provided with: a target part positioned in such a manner as to face a substrate held by a substrate holding part; a power source that supplies power to the target part; a magnet part that moves back and forth along the rear of the target part; a chamber having side walls that are electrically grounded; and a power source control part that controls the power source in such a manner that, while the magnet part is away from approach points, which are points respectively closest to the side walls, a prescribed voltage is applied to the target part by the power source, but the prescribed voltage is reduced when the magnet part reaches one of the approach points.
    Type: Application
    Filed: October 17, 2011
    Publication date: August 22, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Tokuo Yoshida
  • Patent number: 8512526
    Abstract: A plasma-enhanced physical vapor deposition method in which VHF power is applied to the sputter target in addition to a D.C. voltage that is also applied to the target, the VHF power level being 3.5 kW or greater, so that the D.C. target power may be reduced to less than 500 W while still attaining a very high ion fraction (in excess of 50%), permitting a very small workpiece-to-target spacing not exceeding a fraction (7/30) of the workpiece diameter to enhance the ionization fraction throughout the process region.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Patent number: 8512527
    Abstract: A sputtering apparatus for uniformly eroding a sputtering target is disclosed.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Youn-Goo Lee
  • Publication number: 20130209834
    Abstract: The present invention concerns a method for depositing mixed crystal layers with at least two different metals on a substrate by means of PVD methods. To provide a method of depositing mixed crystal layers with at least two different metals on a substrate by means of PVD methods, which gives mixed crystal layers which are as free as possible of macroparticles (droplets) and which have a proportion as high as possible of a desired crystalline phase and which are highly crystalline, it is proposed according to the invention that deposition of the mixed crystal layer is effected with simultaneous application of i) the cathode sputtering method of dual magnetron sputtering or high power impulse magnetron sputtering and ii) arc vapour deposition.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 15, 2013
    Applicant: WALTER AG
    Inventors: Wolfgang Engelhart, Veit Schier
  • Patent number: 8506767
    Abstract: A thin film device, such as an intravascular stent, is disclosed. The device is formed of a seamless expanse of thin-film (i) formed of a sputtered nitinol shape memory alloy, defining, in an austenitic state, an open, interior volume, having a thickness between 0 5-50 microns, having an austenite finish temperature Af below 37° C.; and demonstrating a stress/strain recovery greater than 3% at 37° C. The expanse can be deformed into a substantially compacted configuration in a martensitic state, and assumes, in its austenitic state, a shape defining such open, interior volume. Also disclosed is a sputtering method for forming the device.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 13, 2013
    Assignees: Stryker Corporation, Stryker NV Operations Limited
    Inventors: A. David Johnson, Valery V. Martynov, Vikas Gupta, Arani Bose
  • Patent number: 8507110
    Abstract: The present invention relates to a cutting tool for metal machining with improved wear properties, comprising a cutting tool substrate of cemented carbide, cermet, ceramics or a super hard material, and a wear resistant coating, wherein the wear resistant coating comprises a PVD Ti—Si—C—N layer with a compositional gradient, and a method of making thereof.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: August 13, 2013
    Assignee: Sandvik Intellectual Property AB
    Inventor: Mats Ahlgren
  • Publication number: 20130199925
    Abstract: Methods for depositing a layer on a substrate are provided herein. In some embodiments, a method of depositing a metal-containing layer on a substrate in a physical vapor deposition (PVD) chamber may include applying RF power at a VHF frequency to a target comprising a metal disposed in the PVD chamber above the substrate to form a plasma from a plasma-forming gas; optionally applying DC power to the target; sputtering metal atoms from the target using the plasma while maintaining a first pressure in the PVD chamber sufficient to ionize a predominant portion of the sputtered metal atoms; and controlling the potential on the substrate to be the same polarity as the ionized metal atoms to deposit a metal-containing layer on the substrate.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 8, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130199924
    Abstract: A sputtering head comprises a receiving area for a sputtering target (target receptacle). The sputtering head comprises one or more magnetic field sources so as to generate a stray magnetic field. The magnetic north and the magnetic south of at least one magnetic field source, between which the stray field forms, are located 10 mm or less, preferably 5 mm or less, and particularly preferably approximately 1 mm apart. It was found that, notably when sputtering at a high sputtering gas pressure of 0.5 mbar or more, the degree of ionization of the sputtering plasma, and consequently also the ablation rate of the sputtering target, can be locally adjusted by such a locally effective magnetic field. This allows the thicknesses of the layers that are obtained to be more homogeneous over the surface of the substrate.
    Type: Application
    Filed: September 17, 2011
    Publication date: August 8, 2013
    Applicant: FORSCHUNGSZENTRUM JÜLICH GMBH
    Inventors: Mikhail Faley, Ulrich Poppe
  • Patent number: 8500963
    Abstract: A plasma sputtering method for metal chalcogenides, such as germanium antimony telluride (GST), useful in forming phase-change memories. The substrate is held at a selected temperature at which the material deposits in either an amorphous or crystalline form. GST has a low-temperature amorphous range and a high-temperature crystalline range separated by a transition band of 105-120° C. Bipolar pulsed sputtering with less than 50% positive pulses of less than 10:s pulse width cleans the target while maintain the sputtering plasma. The temperature of chamber shields is maintained at a temperature favoring crystalline deposition or they may be coated with arc-spray aluminum or with crystallographically aligned copper or aluminum.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Mengqi Ye, Keith A. Miller, Peijun Ding, Goichi Yoshidome, Rong Tao
  • Patent number: 8500962
    Abstract: A method for substrate processing includes producing a magnetic field by a magnetron across the full width of a sputtering surface of a target in a first direction. The magnetron can produce two erosion grooves separated by a distance S on the sputtering surface. The method includes moving the magnetron continuously at a first speed by the distance S in a first segment along a linear travel path. The linear travel path is along a second direction perpendicular to the first direction. The method includes continuously sputtering a material off the sputtering surface and depositing the material on the substrate during the first segment, and moving the magnetron by the distance S in a second segment along the linear travel path at a second speed higher than the first speed without sputtering the material off the sputtering surface or sputtering materials off at significant lower rate.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 6, 2013
    Assignee: Ascentool Inc
    Inventors: George X. Guo, Kai-an Wang
  • Patent number: 8500965
    Abstract: The present invention is a method of coating a substrate in a single zone of a MSVD coater wherein the zone includes at least two bays, comprising running a first bay of a zone including a first target in metal mode and running the second bay including a second target in transition or oxide mode, wherein the ?G of formation of the target oxide being run in transition mode or oxide mode is equal to or less than ?160 kcal/mole O2 or the difference in ?G between the target being run in transition mode or oxide mode and the target being run in metal mode is at least 60 kcal/mole O2.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: August 6, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventor: James P. Thiel
  • Patent number: 8500964
    Abstract: A manufacturing method of a bubble-type micro-pump is provided. At least a bubble-generating unit is provided on the bubble-generating section. Because of the varied surface energies on the top of the bubble-generating section, the varied backfilling velocities of the fluid of the front end and the rear end cause fluid moving when a bubble vanishes. The top surface of the bubble-generating section is subjected to a particular surface treatment to form a surface energy gradient. Examples of surface treatment include sputtering a thin film with varied densities or thickness, radiating one or multi-layer thin films by a laser beam, etc.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 6, 2013
    Assignee: Benq Materials Corp.
    Inventor: Chen Peng
  • Patent number: 8500966
    Abstract: A nanolayered coated cutting tool that includes a substrate that has a surface with a coating on the surface thereof. The coating comprises a plurality of coating sets of alternating nanolayers of titanium nitride and titanium aluminum nitride wherein each coating set has a thickness up to about 100 nanometers. The coating includes a bonding region and an outer region. The bonding region comprises a plurality of the coating sets wherein the thickness of each coating set increases as the set moves away from the surface of the substrate. The outer region comprises a plurality of the coating sets wherein the thickness of each coating set is about equal.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: August 6, 2013
    Assignee: Kennametal Inc.
    Inventors: Ronald M. Penich, Parag L. Hegde, Aharon Inspektor
  • Publication number: 20130192981
    Abstract: A rotary deposition target bonded to a backing tube such that the bonding material is applied only at the ends of the rotary sputtering target to form a gap between the rotary sputtering target and the backing tube to enable a target cooling fluid used during the deposition process to contact the target directly and to provide a hermetic seal to contain the cooling fluid within the gap and prevent the fluid from being exposed to the environment within the deposition chamber.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 1, 2013
    Applicant: Materion Advanced Materials Technologies and Services Inc.
    Inventor: Materion Advanced Materials Technologies and Services Inc.
  • Publication number: 20130192980
    Abstract: Methods and apparatus for depositing a metal-containing layer on a substrate are provided herein. In some embodiments, a method of processing a substrate in a physical vapor deposition (PVD) chamber includes applying RF power at a VHF frequency to a target comprising a metal disposed in the PVD chamber above the substrate to form a plasma from a plasma-forming gas; optionally applying a DC power to the target to direct the plasma towards the target; sputtering metal atoms from the target using the plasma while maintaining a first pressure in the PVD chamber sufficient to ionize a predominant portion of the sputtered metal atoms; and controlling the plasma sheath voltage between the plasma and the substrate to form a metal-containing layer having a desired crystal structure and or desired morphology on feature structures.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130186743
    Abstract: A target is provided opposite to a wafer mounted on in a vacuum chamber, and a magnet array body is disposed above the target. In the magnet array body, ring-shaped magnet arrays are arranged to generate annular magnetic fields in the circumferential direction of the wafer, and a sputtering film formation is performed by switching between the magnetic fields.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: TOKYO ELECTRON LIMITED
  • Publication number: 20130186744
    Abstract: In a method of switching magnet flux distribution, a magnet is arranged on a rear side of a backing plate with respect to a target holding side thereof in a magnetron sputtering cathode, and placing an article that exhibits ferromagnetism at room temperature on the target holding side of the backing plate or removing the article therefrom so that the magnet flux distribution is switched between a balanced distribution of the magnetic flux and unbalanced distribution of the magnetic flux.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Inventors: Masayuki KAMEI, Takamasa ISHIGAKI
  • Publication number: 20130185930
    Abstract: A process of forming and the resulting nano-pitted metal substrate that serves both as patterns to grow nanostructured materials and as current collectors for the resulting nanostructured material is disclosed herein. The nano-pitted substrate can be fabricated from any suitable conductive material that allows nanostructured electrodes to be grown directly on the substrate.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 25, 2013
    Applicant: THE UNIVERSITY OF TULSA
    Inventor: The University Of Tulsa
  • Patent number: 8492008
    Abstract: The invention relates to a cutting tool for the machining of wood or a wood-based material, in particular a wood composite material, or a plastic, wherein a layer system for the formation of a surface coating is present on a surface of a cutting edge of the cutting tool. An outermost surface layer of the layer system is formed from a composition of the form [Cr1-xOx]zXaCbNc with 0.05<x<0.75 and 0<z?1, 0?a<1, 0?b<1, 0?c<1 and z+a+b+c=1 and X being an element from the group of the chemical elements consisting of Si, B, Al, Mn, Fe, Co, Ni, Cu, Sc, Y, La, Th, the elements of the group of the lanthanides and the elements of the group IIa of the periodic system of the elements. The invention further relates to a method for the manufacture of a workpiece.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 23, 2013
    Assignee: Sulzer Metaplas GmbH
    Inventor: Jorg Vetter
  • Patent number: 8491759
    Abstract: Embodiments of the disclosure may provide a matching network for physical vapor deposition. The matching network may include a first RF generator coupled to a deposition chamber target through a first impedance matching network having a first tuning circuit. The first RF generator may be configured to introduce a first AC signal to the deposition chamber target. The matching network may also include a second RF generator coupled to a deposition chamber pedestal through a second impedance matching network. The second RF generator may be configured to introduce a second AC signal to the deposition chamber pedestal. The first tuning circuit may be configured to modify an effect of the second AC signal on plasma formed between the deposition chamber target and the deposition chamber pedestal.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: July 23, 2013
    Assignee: COMET Technologies USA, Inc.
    Inventors: John A. Pipitone, Gerald E. Boston
  • Publication number: 20130168231
    Abstract: Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma etching can be performed in a same process chamber.
    Type: Application
    Filed: December 31, 2011
    Publication date: July 4, 2013
    Applicant: Intermolecular Inc.
    Inventors: Hong Sheng Yang, Kent Riley Child, Brian Hatcher, ShouQian Shao, Jingang Su, James Tsung
  • Publication number: 20130168232
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 4, 2013
    Inventors: Jaim NULMAN, Sergio EDELSTEIN, Mani SUBRAMANI, Zheng XU, Howard E. GRUNES, Avi TEPMAN, John C. FORSTER, Praburam GOPALRAJA
  • Patent number: 8475634
    Abstract: A method of magnetically enhanced sputtering an electrically-conductive material onto interior surfaces of a trench described herein includes providing a magnetic field adjacent to a target formed at least in part from the electrically-conductive material, and applying a DC voltage between an anode and the target as a plurality of pulses. A high-frequency signal is applied to the pedestal supporting the semiconductor substrate to generate a self-bias field adjacent to the semiconductor substrate. The high-frequency signal is applied to the pedestal in pulses, during periods of time that overlap with the periods during which the DC voltage pulses are applied. The periods of time that the high-frequency signals are applied include a duration that extends beyond termination of the DC voltage pulse applied between the anode and the target. During each DC voltage pulse the electrically-conductive material is sputter deposited onto the side walls of the trench formed in the semiconductor substrate.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 2, 2013
    Assignee: OC Oerlikon Balzers AF
    Inventors: Jurgen Weichart, Stanislav Kadlec
  • Publication number: 20130161184
    Abstract: A gas blocking layer forming apparatus comprises a vacuum chamber that provides a space where a chemical vapor deposition process and a sputtering process are performed; a holding unit that is provided at a lower side within the vacuum chamber and mounts thereon a target object on which an organic/inorganic mixed multilayer gas blocking layer is formed; a neutral particle generation unit that is provided at an upper side within the vacuum chamber and generates a neutral particle beam having a high-density flux with a current density of about 10 A/m2 or more; and common sputtering devices that are provided at both sides of the neutral particle generation unit, wherein each common sputtering device has a sputtering target of which a surface is inclined toward a surface of the target object.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 27, 2013
    Applicant: Korea University Research and Business Foundation
    Inventor: Korea University Research and Business Foundation
  • Patent number: 8470140
    Abstract: The invention relates to a method for producing an ultrabarrier layer system through vacuum coating a substrate with a layer stack that is embodied as an alternating layer system of smoothing layers and transparent ceramic layers, but comprising at least one smoothing layer between two transparent ceramic layers, which are applied by sputtering, in which during the deposition of the smoothing layer a monomer is admitted into an evacuated coating chamber in which a magnetron plasma is operated.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: June 25, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Christoph Charton, Matthias Fahland, Mario Krug, Nicolas Schiller, Steffen Straach
  • Patent number: 8470141
    Abstract: A magnetron sputtering electrode for use within a magnetron sputtering device that includes a cathode body, a target receiving area defined adjacent the cathode body, a plurality of magnets received within a magnet receiving chamber and an anode shield surrounding the cathode body. At least a portion of a coolant passageway is defined by the anode shield, whereby the coolant passageway is adapted to receive coolant to circulate therethrough thereby cooling the anode shield.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 25, 2013
    Assignee: Angstrom Sciences, Inc.
    Inventor: Mark A. Bernick
  • Patent number: 8470142
    Abstract: A sputtering apparatus for depositing a target material on a substrate includes a chamber, a target in the chamber to provide the target material, a carrier to carry the substrate in the chamber to face the target, and a plurality of masks arranged along sides of the carrier and being movable back and forth with respect to the carrier.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: June 25, 2013
    Assignees: LG Display Co., Ltd., AVACO Co., Ltd., LG Electronics, Inc.
    Inventors: Sung Eun Kim, Tae Hyun Lim, Hwan Kyu Yoo, Kwang Jong Yoo, Yang Sik Moon, Byeong Cheol An
  • Publication number: 20130150238
    Abstract: A thermochromic substrate and a method of manufacturing the same, in which the crystallinity of a thermochromic layer can be improved. The method includes the steps of forming a pre-thermochromic layer on a glass substrate by coating the glass substrate with pure vanadium, forming a seed layer by heat-treating the pre-thermochromic layer, and forming a thermochromic layer by coating the heat-treated seed layer with a vanadium dioxide (VO2) thin film.
    Type: Application
    Filed: April 13, 2012
    Publication date: June 13, 2013
    Inventors: Yongwon CHOI, Yung-Jin JUNG, Donggun MOON, Jeeyun CHA
  • Patent number: 8460522
    Abstract: A plurality of targets are disposed in parallel with, and at a given distance to, one another. In case a predetermined thin film is formed by sputtering, the occurrence of non-uniformity in the film thickness distribution and the film quality distribution can be restricted. During the time when electric power is charged to a plurality of targets (31a to 31h) which are disposed inside a sputtering chamber (11a) so as to lie opposite to the process substrate (S), and are disposed at a predetermined distance from, and in parallel with, one another, thereby forming a predetermined thin film by sputtering, each of the targets is reciprocated at a constant speed in parallel with the process substrate. Also, magnet assemblies that form tunnel-shaped magnetic flux (M) in front of each target are reciprocated at a constant speed in parallel with each of the targets.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 11, 2013
    Assignee: ULVAC, Inc.
    Inventors: Yuichi Oishi, Takashi Komatsu, Junya Kiyota, Makoto Arai
  • Patent number: 8460519
    Abstract: Sputtering in a physical vapor deposition (PVD) chamber may, in one embodiment, utilize a target laterally offset from and tilted with respect to the substrate. In another aspect, target power may be reduced to enhance film protection. In yet another aspect, magnetron magnets may be relatively strong and well balanced to enhance film protection. In another aspect, a shutter may be provided to protect the substrate in start up conditions. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 11, 2013
    Assignee: Applied Materials Inc.
    Inventors: Mengqi Ye, Zhendong Liu, Peijun Ding
  • Patent number: 8454804
    Abstract: Sputtering in a physical vapor deposition (PVD) chamber may, in one embodiment, utilize a target laterally offset from and tilted with respect to the substrate. In another aspect, target power may be reduced to enhance film protection. In yet another aspect, magnetron magnets may be relatively strong and well balanced to enhance film protection. In another aspect, a shutter may be provided to protect the substrate in start up conditions. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: June 4, 2013
    Assignee: Applied Materials Inc.
    Inventors: Mengqi Ye, Zhendong Liu, Peijun Ding
  • Patent number: 8454805
    Abstract: A method of depositing an amorphous layer of AlON includes providing an aluminum sputter target in a chamber, exposing the target and chamber to O2 to saturate the exposed surfaces with oxygen, introducing a substrate into the chamber in an atmosphere containing at least nitrogen and oxygen, and sputtering the target in the nitrogen and oxygen atmosphere to deposit an amorphous AlON film.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 4, 2013
    Assignee: SPTS Technologies Limited
    Inventor: Anthony Wilby
  • Patent number: RE44414
    Abstract: A hard coating film to be applied to the surface of a tool, which has a composition of (Cr1-a-bAlaSib) (BxCyN1-x-y) with atomic ratios specified below. 0<a?0.4 0.05?b?0.35 0.25?1?a?b?0.9 0?x?0.15 0?y?0.5 or a composition of (M1-a-bAlaSib) (BxCyN1-x-y) with atomic ratios specified below. 0.05?a?0.5 0.1<b?0.35 0?x?0.15 0?y?0.5 where M denotes Ti and Cr. The hard coating film for cutting tools has better wear resistance than conventional ones.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 6, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Kenji Yamamoto, Susumu Kujime