Insulated Gate Capacitor Or Insulated Gate Transistor Combined With Capacitor (e.g., Dynamic Memory Cell) Patents (Class 257/296)
  • Patent number: 9923001
    Abstract: A highly reliable semiconductor device suitable for miniaturization and high integration is provided. The semiconductor device includes a first transistor, a first insulator over the first transistor, a second transistor over the first insulator, a second insulator over the second transistor, and a capacitor over the second insulator. The first insulator has a barrier property against oxygen and hydrogen. The second transistor includes an oxide semiconductor. The second insulator includes an oxygen-excess region. The capacitor includes a first electrode, a second electrode, and a dielectric between the first electrode and the second electrode. The dielectric includes a third insulator having a barrier property against oxygen and hydrogen. The first insulator and the third insulator are in contact with each other on an outer edge of a region where the second transistor is located so that the second transistor and the second insulator are enclosed by the first insulator and the third insulator.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: March 20, 2018
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei Yamazaki
  • Patent number: 9924120
    Abstract: A pixel unit includes a photoelectric conversion element; a first transistor, which is coupled to the photoelectric conversion element, configured to transfer an electric charge that has been subjected to photoelectric conversion at the photoelectric conversion element; a second transistor configured to reset the electric charge transferred by the first transistor; and a diffusion region including diffused impurities. The diffusion region accumulates the electric charge transferred from the first transistor. The diffusion region is disposed between the first and second transistors. The diffusion region includes a first region that is directly coupled to gates of the first and second transistors; and a second region that is adjacent to the first region, the second region being directly coupled to the gate of the first transistor and being coupled to the second transistor via the first region. The impurity concentration is lower in the second region than in the first region.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 20, 2018
    Assignee: Ricoh Company, Ltd.
    Inventor: Atsushi Suzuki
  • Patent number: 9922991
    Abstract: A semiconductor memory device includes a stacked body including a first electrode layer and a second electrode layer stacked on the first electrode layer, and first and second interconnections on a first surface of the stacked body. The first and second electrode layers have first and second end surfaces respectively in the first surface. The first interconnection is electrically connected to the first electrode layer through a first region of the first end surface; and the second interconnection is electrically connected to the second electrode layer through a second region of the second end surface. The first and second interconnections extend in a first direction on the first surface. The first and second regions are arranged in a second direction crossing the first direction with a crossing angle smaller than 90 degrees. The first region and the second region each have a boundary along the second direction.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: March 20, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tetsuya Kamigaki, Isahiro Hasegawa, Shinichi Ito, Soichi Inoue, Tatsuhiko Higashiki, Kei Hattori, Koichi Matsuno, Seiji Morita
  • Patent number: 9917161
    Abstract: A semiconductor device includes active pillars protruding from a semiconductor substrate and spaced apart from each other in a first direction and a second direction that is perpendicular to the first direction, a word line extending in the first direction between the active pillars, a drain region disposed in an upper portion of each of the active pillars, and a separation pattern provided between the word line and the drain region. A bottom surface of the separation pattern is disposed at a lower level than a bottom surface of the drain region.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: March 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jungwoo Song, Jaekyu Lee, Jaerok Kahng, YongJun Kim
  • Patent number: 9911813
    Abstract: A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: March 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Bin Lu, Elison de Nazareth Matioli, Tomas Apostol Palacios
  • Patent number: 9905467
    Abstract: A semiconductor device includes a substrate, a first insulating structure, a second insulating structure, at least one first active semiconductor fin, and at least one second active semiconductor fin. The first insulating structure and the second insulating structure are disposed on the substrate. The first active semiconductor fin is disposed on the substrate and has a protruding portion protruding from the first insulating structure. The second active semiconductor fin is disposed on the substrate and has a protruding portion protruding from the second insulating structure. The protruding portion of the first active semiconductor fin and the protruding portion of the second active semiconductor fin have different heights.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: February 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Sheng Li, Hsin-Chieh Huang, Chi-Wen Liu
  • Patent number: 9899377
    Abstract: A semiconductor device and a method for producing thereof is provided. The semiconductor device includes a plurality of device cells, each comprising a body region, a source region, and a gate electrode adjacent to the body region and dielectrically insulated from the body region by a gate dielectric; and an electrically conductive gate layer comprising the gate electrodes or electrically connected to the gate electrodes of the plurality of device cells. The gate layer is electrically connected to a gate conductor and includes at least one of an increased resistance region and a decreased resistance region.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 20, 2018
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Frank Dieter Pfirsch, Francisco Javier Santos Rodriguez, Stephan Voss, Wolfgang Wagner
  • Patent number: 9893145
    Abstract: On-chip, three-dimensional MIM capacitors are provided. In one aspect, a method for forming a device includes: forming at least one MOSFET structure and at least one MIM capacitor structure on a substrate each structure including: a metal gate, and source and drain regions on opposite sides of the metal gate, and wherein the structures are buried in a dielectric; forming metal contacts in the dielectric down to the source and drain regions; forming a mask that selectively covers the MOSFET structure; removing the dielectric from uncovered portions of the MIM capacitor structure forming gaps between the metal contacts and the metal gate in the MIM capacitor structure; depositing a capacitor dielectric in the gaps; and depositing a fill metal onto the capacitor dielectric filling the gaps. A MIM capacitor and a device including an MIM capacitor are also provided.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Theodorus E. Standaert
  • Patent number: 9893143
    Abstract: An analog capacitor is disclosed. The analog capacitor may include a main analog capacitor, an interlayer insulating layer, and a plurality of stacked sub analog capacitors. The main analog capacitor may be formed over a semiconductor substrate. The interlayer insulating layer may be interposed between the semiconductor substrate and the main analog capacitor. The plurality of stacked sub analog capacitors may be inserted into the interlayer insulating layer.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: February 13, 2018
    Assignee: SK hynix Inc.
    Inventors: Jun Ho Cheon, Chang Yong Ahn, Seok Joon Kang
  • Patent number: 9893271
    Abstract: A semiconductor memory device includes a selection transistor on a semiconductor substrate, a lower contact plug connected to a drain region of the selection transistor, and a magnetic tunnel junction pattern on the lower contact plug, the magnetic tunnel junction pattern including a bottom electrode in contact with the lower contact plug, the bottom electrode being an amorphous tantalum nitride layer, a top electrode on the bottom electrode, first and second magnetic layers between the top and bottom electrodes, and a tunnel barrier layer between the first and second magnetic layers.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: February 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Junghwan Park, Jonguk Kim, Soonoh Park, Jung Moo Lee, Sugwoo Jung
  • Patent number: 9887238
    Abstract: A semiconductor device and a method for fabricating the semiconductor device have been provided. The method for fabricating a semiconductor device includes the steps of: forming a channel layer on a substrate; forming a gate dielectric layer on the channel layer; forming a source layer and a drain layer adjacent two sides of the gate dielectric layer; forming a bottom gate on the gate dielectric layer; forming a phase change layer on the bottom gate; and forming a top gate on the phase change layer.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: February 6, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wanxun He, Su Xing
  • Patent number: 9887088
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a memory region defined thereon; forming a trench in the substrate; forming a barrier layer in the trench; forming a conductive layer on the barrier layer; performing a first etching process to remove part of the conductive layer; and performing a second etching process to remove part of the barrier layer. Preferably, the second etching process comprises a non-plasma etching process.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 6, 2018
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Shih-Fang Tzou, Fu-Che Lee, Ming-Feng Kuo, Li-Chiang Chen
  • Patent number: 9883591
    Abstract: A microelectronic system includes a printed circuit board and a semiconductor package mounted on the printed circuit board. The printed circuit board includes a laminated core having an internal conductive layer and a build-up layer. The build-up layer includes a top conductive layer. Microvias are disposed in the build-up layer to connect the top conductive layer with the internal conductive layer. A power/ground ball pad array is disposed in the top conductive layer. The power/ground ball pad array includes power ball pads and ground ball pads arranged in an array with a fixed ball pad pitch P. The power/ground ball pad array includes a 4-ball pad unit area comprised of only one ground ball pad and three power ball pads, or comprised of only one power ball pad and three ground ball pads. The 4-ball pad unit area has a rectangular shape and a dimension of about 2P×2P.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 30, 2018
    Assignee: MEDIATEK INC.
    Inventors: Sheng-Ming Chang, Chia-Hui Liu, Shih-Chieh Lin, Chun-Ping Chen
  • Patent number: 9876029
    Abstract: A semiconductor memory device according to an embodiment comprises: a plurality of memory strings arranged in a first direction intersecting a surface of a semiconductor substrate, each of the memory strings including a plurality of memory transistors connected in series in a second direction along the surface of the semiconductor substrate; a source side select transistor connected to one end of the memory string; a drain side select transistor connected to the other end of the memory string; a plurality of source lines respectively connected, via the source side select transistor, to each of the plurality of memory strings arranged along the first direction; a bit line commonly connected, via the drain side select transistor, to the plurality of memory strings arranged along the first direction; a word line connected to a gate electrode of the memory transistor; and a layer selector disposed between the source line and the source side select transistor and commonly connected to the plurality of memory strin
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 23, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Jun Fujiki, Takeshi Kamigaichi, Hideaki Aochi
  • Patent number: 9871096
    Abstract: A capacitor includes a bottom electrode and a top electrode positioned above the bottom electrode. The top electrode and the bottom electrode are conductively coupled to one another. A middle electrode is positioned between the bottom electrode and the top electrode. A lower dielectric layer is positioned between the bottom electrode and the middle electrode. An upper dielectric layer is positioned between the middle electrode and the top electrode. A first contact is conductively coupled to the top electrode. A second contact is conductively coupled to the middle electrode.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: January 16, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ki Young Lee, Woong Lae Cho, Jae Ho Joung
  • Patent number: 9865740
    Abstract: An object is to provide a method for manufacturing a highly reliable semiconductor device including thin film transistors which have stable electric characteristics and are formed using an oxide semiconductor. A method for manufacturing a semiconductor device includes the steps of: forming an oxide semiconductor film over a gate electrode with a gate insulating film interposed between the oxide semiconductor film and the gate electrode, over an insulating surface; forming a first conductive film including at least one of titanium, molybdenum, and tungsten, over the oxide semiconductor film; forming a second conductive film including a metal having lower electronegativity than hydrogen, over the first conductive film; forming a source electrode and a drain electrode by etching of the first conductive film and the second conductive film; and forming an insulating film in contact with the oxide semiconductor film, over the oxide semiconductor film, the source electrode, and the drain electrode.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: January 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Junichiro Sakata, Shunpei Yamazaki
  • Patent number: 9865604
    Abstract: A semiconductor device having a high degree of freedom of layout has a first part AR1, in which a plurality of p-type wells PW and n-type wells NW are alternately arranged to be adjacent to each other along an X-axis direction. A common power feeding region (ARP2) for the plurality of wells PW is arranged on one side so as to interpose the AR1 in a Y-axis direction, and a common power feeding region (ARN2) for the plurality of wells NW is arranged on the other side. In the power feeding region (ARP2) for the PW wells, a p+-type power-feeding diffusion layer P+(DFW) having an elongate shape extending in the X-axis direction is formed. A plurality of gate layers GT extending in the X-axis direction to cross the boundary between the PW and NW wells are arranged in the AR1, and a plurality of MIS transistors are correspondingly formed.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: January 9, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Ken Shibata, Yuta Yanagitani
  • Patent number: 9859283
    Abstract: A semiconductor memory structure includes a substrate including a memory cell region, a peripheral circuit region and a cell edge region defined thereon, and the cell edge region is defined in between the memory cell region and the peripheral circuit region. The semiconductor memory structure includes a plurality of active regions formed in the memory cell region, the cell edge region and the peripheral circuit region, and at least a dummy bit line formed on the active regions in the cell edge region. The dummy bit line is extended along a first direction and overlaps at least two active regions in a second direction. And the first direction and the second direction are perpendicular to each other. The dummy bit line includes a first inner line portion and an outer line portion, and the first inner line portion and the outer line portion include different widths and different spacers.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 2, 2018
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Li-Wei Feng, Chien-Ting Ho, Yu-Cheng Tung
  • Patent number: 9859302
    Abstract: This invention relates to a fin field-effect transistor semiconductor structure. The method of forming the semiconductor structure can include patterning a plurality of precursor fins on a semiconductor layer having a layer portion A and a layer portion B. The semiconductor layer can be located on a substrate. The layer portion B can be selectively etched to form B fins and a top half of precursor fins. The layer portion A can be selectively etched to form A fins and the substrate can be etched to form a bottom half of the decoupling fins. The precursor fins can be removed to expose the A fins, the decoupling fins, and the B fins. One of the A fins and the B fins can form n-type fins and the other can form p-type fins.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Kangguo Cheng
  • Patent number: 9859282
    Abstract: A high-density semiconductor structure includes a substrate, a bit line and a first memory unit. The bit line, disposed on the substrate, has a first side and a second side. The first memory unit includes a first transistor, a first capacitor, a second transistor and a second capacitor. The first transistor disposed on the substrate has a first terminal and a second terminal. The first terminal connects the bit line. The first capacitor connects the second terminal of the first transistor. The second transistor disposed on the substrate has a third terminal and a fourth terminal. The third terminal connects the bit line. The second capacitor connects the fourth terminal of the second transistor. The first capacitor and the second capacitor are separated from the bit line in a direction perpendicular to an extending direction of the bit line and located on the first side of the bit line.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 2, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Ching-Cheng Lung, Yu-Tse Kuo, Chun-Hsien Huang, Shu-Ru Wang
  • Patent number: 9859285
    Abstract: A semiconductor substrate is provided. Active areas and trench isolation regions are formed. The active areas extend along a first direction. Buried word lines extending along a second direction are formed in the semiconductor substrate. Two of the buried word lines intersect with each of the active areas, separating each of the active areas into a digit line contact area and two cell contact areas. Buried digit lines extending along a third direction are formed above the buried word lines. An upper portion of the trench isolation region is removed to form an L-shaped recessed area around each of the cell contact areas. The L-shaped recessed area exposes sidewalls of the cell contact areas. An epitaxial silicon growth process is then performed to grow an epitaxial silicon layer from the exposed sidewalls and a top surface of each of the cell contact areas, thereby forming enlarged cell contact areas.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 2, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Kuo-Chen Wang
  • Patent number: 9853113
    Abstract: A semiconductor device includes a first planar semiconductor (e.g., silicon) layer, first and second pillar-shaped semiconductor (e.g., silicon) layers, a first gate insulating film, a first gate electrode, a second gate insulating film, a second gate electrode, a first gate line connected to the first and second gate electrodes, a first n-type diffusion layer, a second n-type diffusion layer, a first p-type diffusion layer, and a second p-type diffusion layer. A center line extending along the first gate line is offset by a first predetermined amount from a line connecting a center of the first pillar-shaped semiconductor layer and a center of the second pillar-shaped semiconductor layer.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: December 26, 2017
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada, Hiroki Nakamura
  • Patent number: 9853027
    Abstract: Some embodiments include a method of forming a pattern. A semiconductor substrate has first and second rows extending along a first direction, and which alternate with one another along a second direction. Each of the rows includes course regions that are to be included along patterned structures. The course regions within the first rows are staggered relative to the course regions within the second rows. The patterned structures comprise first segments which extend along a third direction, and comprise second segments which extend along a fourth direction different from the third direction. Patterned masking material is formed across the substrate to define a first pattern having the first segments of the patterned structures, and to define a second pattern having the second segments of the patterned structures. The patterned structures are formed within the first and second patterns defined by the patterned masking material. Some embodiments include apparatuses having finFETs.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: December 26, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 9847337
    Abstract: Some embodiments include a memory array which has rows of fins. Each fin has a first pedestal, a second pedestal and a trough between the first and second pedestals. A first source/drain region is within the first pedestal, a second source/drain region is within the second pedestal, and a channel region is along the trough between the first and second pedestals. Digit lines are electrically coupled with the first source/drain regions. Ferroelectric capacitors are electrically coupled with the second source/drain regions. Wordlines are along the rows of fins and overlap the channel regions. Conductive isolation lines are under the wordlines along the rows of fins.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: December 19, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 9847328
    Abstract: The improvement of the reliability of a semiconductor device having a split gate type MONOS memory is implemented. An ONO film and a second polysilicon film are sequentially formed so as to fill between a first polysilicon film and a dummy gate electrode. Then, the dummy gate electrode is removed. Then, the top surfaces of the first and second polysilicon films are polished, thereby to form a memory gate electrode formed of the second polysilicon film at the sidewall of a control gate electrode formed of the first polysilicon film via the ONO film. As a result, the memory gate electrode high in perpendicularity of the sidewall, and uniform in film thickness is formed.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: December 19, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Tatsuyoshi Mihara
  • Patent number: 9842856
    Abstract: According to an embodiment, a semiconductor memory device comprises: a plurality of control gate electrodes stacked above a substrate; a first semiconductor layer extending in a first direction above the substrate and facing the plurality of control gate electrodes; a gate insulating layer extending in the first direction and provided between the control gate electrode and first semiconductor layer; and a second semiconductor layer positioned downwardly of the first semiconductor layer and gate insulating layer, and connected to a lower end of the first semiconductor layer and the substrate. Moreover, the first semiconductor layer comprises: a first portion contacting an upper surface of the second semiconductor layer at a position more downward than a lower end of the gate insulating layer; and a second portion connected to an upper end of the first portion, extending in the first direction, and having a different crystalline structure from the first portion.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 12, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuya Okamoto, Tatsufumi Hamada
  • Patent number: 9837423
    Abstract: A device isolation region is formed, delimiting an active region in a substrate. A word line is formed, extending across the active region and the device isolation region and buried therein. A bit line is formed crossing the word line on the substrate. A channel is formed adjacent the word line, the channel having a retrograde doping profile having a doping concentration that increases away from a top surface of the active region. Formation of the channel includes performing a field ion implantation in the active region having a projected range near a bottom of the device isolation region.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: December 5, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeonghoon Oh, Ilgweon Kim, Hyon Namkung
  • Patent number: 9837421
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor having a first electrode layer, a second electrode layer, and an insulating layer between the first electrode layer and the second electrode layer. At least three dielectric layers are between a bottom surface of the capacitor and the active region.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chern-Yow Hsu, Cheng-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 9837422
    Abstract: A method for fabricating a semiconductor device includes: etching a semiconductor substrate and forming a plurality of bodies separated from one another by a plurality of trenches; forming a protective layer with open parts to expose both sidewalls of each of the bodies; forming buried bit lines in the bodies by silicidizing exposed portions of the bodies through the open parts; and forming a dielectric layer to gap-fill the trenches and define air gaps between adjacent buried bit lines.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: December 5, 2017
    Assignee: SK Hynix Inc.
    Inventors: You-Song Kim, Jin-Ki Jung
  • Patent number: 9831424
    Abstract: A nanoporous (NP) memory may include a non-porous layer and a nanoporous layer sandwiched between the bottom and top electrodes. The memory may be free of diodes, selectors, and/or transistors that may be necessary in other memories to mitigate crosstalk. The nanoporous material of the nanoporous layer may be a metal oxide, metal chalcogenide, or a combination thereof. Further, the memory may lack any additional components. Further, the memory may be free from requiring an electroformation process to allow switching between ON/OFF states.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: November 28, 2017
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Gunuk Wang, Yang Yang
  • Patent number: 9831303
    Abstract: A process for fabricating a capacitor is described. A template layer including a stack of at least one first layer and at least one second layer is formed over a substrate, wherein the at least one first layer and the at least one second layer have different etching selectivities and are arranged alternately. An opening is formed through the template layer. A wet etching process is performed to recess the at least one first layer relative to the at least one second layer, at the sidewall of the opening. A bottom electrode of the capacitor is formed at the bottom of the opening and on the sidewall of the opening, and then the template layer is removed.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 28, 2017
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Chi-Hsiang Kuo, Cheng-Shun Chen, Chang-Yao Hsieh
  • Patent number: 9831092
    Abstract: A semiconductor device includes a control gate electrode and a memory gate electrode which are formed over the main surface of a semiconductor substrate in a memory cell region, and a first electrode and a second electrode which are formed over the main surface of the semiconductor substrate in a shunt region. The first electrode is formed integrally with the control gate electrode, and the second electrode is formed integrally with the memory gate electrode. The second electrode includes a first section formed along the side wall of the first electrode, and a second section extending along the main surface of the semiconductor substrate. Also, the height of the upper surface of the first electrode with respect to the main surface of the semiconductor substrate is generally same to the height of the upper surface of the first section of the second electrode.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 28, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Tatsuyoshi Mihara
  • Patent number: 9831171
    Abstract: A device including a first metal feature is disposed in a first insulating layer. A second metal feature is disposed in a second insulating layer and separated from the first metal feature by a portion of a first etch stop liner disposed between the first and the second insulating layers. The second metal feature is capacitively coupled to the first metal feature through the first etch stop liner.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: November 28, 2017
    Assignee: Infineon Technologies AG
    Inventors: Bernd Landgraf, Jens Hahn
  • Patent number: 9825142
    Abstract: Methods of fabricating semiconductor devices include forming a first impurity region in a substrate by implanting a first impurity of a first conductivity type in a cell region and a peripheral region of the substrate to a first target depth from a top surface of the substrate; forming a second impurity region in the cell region and the peripheral region by implanting a second impurity of the first conductivity type into the cell region and the peripheral region to a second target depth that is smaller than the first depth from the top surface of the substrate; forming a cell transistor with a channel in the cell region, wherein the first impurity region forms the channel of the cell transistor; and forming a peripheral transistor with a channel in the peripheral region, wherein the second impurity region forms the channel of the peripheral transistor.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: November 21, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: HyeoungWon Seo, Daehyun Moon, Jooyoung Lee, Ilgweon Kim, Dongjin Jung
  • Patent number: 9824889
    Abstract: Methods for depositing silicon include cycling dosing between 1 and 100 cycles of one or more first chlorosilane precursors on a III-V surface at a temperature between 300° C. and 500° C. to form a first layer. Methods may include desorbing chlorine from the first layer by treating the first layer with atomic hydrogen to form a second layer. Methods may include forming a silicon multilayer on the second layer by cycling dosing between 1 and 100 cycles of one or more second chlorosilane precursors and atomic hydrogen at a temperature between 300° C. and 500° C. A layered composition includes a first layer selected from the group consisting of InxGa1-xAs, InxGa1-xSb, InxGa1-xN, SiGe, and Ge, wherein X is between 0.1 and 0.99, and a second layer, wherein the second layer comprises Si—H and Si—OH.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 21, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew C. Kummel, Mary Edmonds, Mei Chang, Jessica S. Kachian
  • Patent number: 9825029
    Abstract: A discrete capacitor of the present invention includes a substrate having a front surface portion, an impurity diffusion layer formed on the front surface portion of the substrate, an oxide film formed on the substrate and having a first opening to selectively expose the impurity diffusion layer, a dielectric film formed on the impurity region having been exposed from the oxide film, and a first electrode opposed to the impurity diffusion layer with the dielectric film therebetween, wherein the impurity concentration on the front surface portion of the impurity diffusion layer is 5×1019 cm?3 or more.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: November 21, 2017
    Assignee: ROHM CO., LTD
    Inventor: Hiroki Yamamoto
  • Patent number: 9825093
    Abstract: Embodiments are directed to a method of forming portions of a fin-type field effect transistor (FinFET) device. The method includes forming at least one source region having multiple sides, forming at least one drain region having multiple sides, forming at least one channel region having multiple sides, forming at least one gate region around the multiple sides of the at least one channel region and forming the at least one gate region around the multiple sides of the at least one drain region.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: November 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chung H. Lam, Chung-Hsun Lin, Darsen D. Lu, Philip J. Oldiges
  • Patent number: 9818652
    Abstract: Structures for a commonly-bodied field-effect transistors and methods of forming such structures. The structure includes a body of semiconductor material defined by a trench isolation region in a semiconductor substrate. The body includes a plurality of first sections, a plurality of second sections, and a third section, the second sections coupling the first sections and the third section. The third section includes a contact region used as a common-body contact for at least the first sections. The first sections and the third section have a first height and the second sections have a second height that is less than the first height.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chengwen Pei, Ping-Chuan Wang, Kai D. Feng
  • Patent number: 9812458
    Abstract: A memory device that is as small in area as possible and has an extremely long data retention period. A transistor with extremely low leakage current is used as a cell transistor of a memory element in a memory device. Moreover, in order to reduce the area of a memory cell, the transistor is formed so that its source and drain are stacked in the vertical direction in a region where a bit line and a word line intersect each other. Further, a capacitor is stacked above the transistor.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daisuke Matsubayashi
  • Patent number: 9805968
    Abstract: According to an exemplary embodiment, a method of forming a semiconductor device is provided. The method includes: providing a vertical structure over a substrate; forming an etch stop layer over the vertical structure; forming an oxide layer over the etch stop layer; performing chemical mechanical polishing on the oxide layer and stopping on the etch stop layer; etching back the oxide layer and the etch stop layer to expose a sidewall of the vertical structure and to form an isolation layer; oxidizing the sidewall of the vertical structure and doping oxygen into the isolation layer by using a cluster oxygen doping treatment.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: October 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Cheng-Tung Lin, Teng-Chun Tsai, Li-Ting Wang, De-Fang Chen, Bing-Hung Chen, Huang-Yi Huang, Hui-Cheng Chang, Huan-Just Lin, Ming-Hsing Tsai
  • Patent number: 9806070
    Abstract: A layout of a semiconductor device includes active area regions, gate electrodes crossing the plurality of active area regions, spacers along sides of the corresponding plurality of gate electrodes, a first contact patterning region, a second contact patterning region, and a contact area. The first contact patterning region overlaps at least one active area region among the plurality of active area regions, at least one gate electrode among the plurality of gate electrodes, and at least one spacer among the plurality of spacers, the at least one spacer corresponding to the at least one gate electrode. The second contact patterning region overlaps a portion of the first contact patterning region. The contact area overlaps the at least one active area region. A boundary of the contact area is defined by boundaries of the first contact patterning region, the second contact patterning region and the at least one spacer.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: October 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 9793185
    Abstract: Embodiments of a method for forming a device using test structures are presented. The method includes providing a wafer with a device layer. The device layer includes a main device region and a perimeter region. The device layer is patterned with active and test patterns. Test patterns include dummy patterns disposed in a test device area. The wafer is processed to form at least one test device disposed in the perimeter region and one or more active devices disposed in the main device region. The test device determines a design window of the one or more active devices. Additional processing is performed to complete forming the device.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 17, 2017
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Wanbing Yi, Daxiang Wang, Juan Boon Tan, Kemao Lin, Shaoqiang Zhang
  • Patent number: 9792976
    Abstract: Provided is a memory device including a delay circuit having gate insulation films with thicknesses different from each other. The memory device includes a delay circuit configured to input an input signal and output an output signal, and circuit blocks configured to control an operation of reading or writing memory cell data in response to the input signal or the output signal. One of transistors constituting a circuit block has a gate insulation film having such a thickness that an effect of negative biased temperature instability (NBTI) or positive biased temperature instability (PBTI) on the transistors is minimized. The delay circuit may be affected little by a shift in a threshold voltage that may be caused by NTBI or PBTI, and thus, achieve target delay time.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: October 17, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-sung Yoon, Doo-young Kim
  • Patent number: 9793275
    Abstract: A multilayer circuit (400) includes a base layer (205) which has a number of base vias (247, 415), a first overlying layer (215) formed on the base layer (205) and having a first routing section (210) and a second overlying layer (220) formed on the first overlying layer (215). The second overlying layer (220) has a second routing section (210) and is formed using the same set of masks. The first routing section (210) and the second routing section (210) form a unique electrical pathway (248) between a base via (247) and an element in an overlying layer. A method for forming a multilayer circuit is also provided.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 17, 2017
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Dmitri Borisovich Strukov, Julien Borghetti
  • Patent number: 9787473
    Abstract: Techniques for use of carbon nanotubes as an anti-tampering feature and for use of randomly metallic or semiconducting carbon nanotubes in the generation of a physically unclonable cryptographic key generation are provided. In one aspect, a cryptographic key having an anti-tampering feature is provided which includes: an array of memory bits oriented along at least one bit line and at least one word line, wherein each of the memory bits comprises a memory cell, wherein the cryptographic key is stored in the memory cell, and wherein the memory cell is connected to the at least one bit line; and a metallic carbon nanotube interconnect which connects the memory cell to the at least one word line. A cryptographic key and method for processing the cryptographic key are also provided.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: October 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Shu-Jen Han, Keith A. Jenkins, Dirk Pfeiffer
  • Patent number: 9786766
    Abstract: A semiconductor device includes a gate electrode formed on a sidewall of a structure extending from a semiconductor substrate. A junction region is form in the structure to a first depth from a top of the structure and formed to overlap the gate electrode. A protection layer is formed between an outer wall of the structure and the gate electrode to a second depth less than the first depth from the top of the structure.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: October 10, 2017
    Assignee: SK Hynix Inc.
    Inventor: Jang Uk Lee
  • Patent number: 9786600
    Abstract: A semiconductor device having a cell area and a peripheral area includes a semiconductor substrate, a cell insulating isolation region delimiting a cell active region of the semiconductor substrate in the cell area, a word line disposed within the semiconductor substrate in the cell area, a bit line contact plug disposed on the cell active region, a bit line disposed on the bit line contact plug, a peripheral insulating isolation region delimiting a peripheral active region of the semiconductor substrate in the peripheral area, and a peripheral transistor including a peripheral transistor lower electrode and a peripheral transistor upper electrode. The bit line contact plug is formed at the same level in the semiconductor device as the peripheral transistor lower electrode, and the bit line electrode is formed at the same level in the semiconductor device as the peripheral transistor upper electrode.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 10, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Il Cho, Nam-Gun Kim, Jin-Young Kim, Hyun-Chul Yoon, Bong-Soo Kim, Kwan-Sik Cho
  • Patent number: 9768115
    Abstract: Semiconductor devices are provided including a plurality of nonlinear bit lines formed on a substrate including a plurality of active areas; a plurality of word lines that pass through the plurality of active areas; an integral spacer that covers two sidewalls of the plurality of nonlinear bit lines and defines a plurality of spaces that expose two adjacent ones of the plurality of active areas; two conductive patterns that respectively abut on the two adjacent active areas in one of the plurality of spaces that is selected; and a contact separating insulation layer that is formed between the two conductive patterns in the one selected space.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: September 19, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yunjung Choi, Kivin Im, Dongbok Lee, Inseak Hwang
  • Patent number: 9768174
    Abstract: A semiconductor device for efficiently compressing a large volume of image data is provided. The semiconductor device includes a memory cell array, an analog processing circuit, a writing circuit, and a row driver, whereby highly efficient compressing of image data can be performed. A first current corresponding to first data and a second current corresponding to one of a plurality of second data that is a target for comparison with the first data are generated in the writing circuit. A differential current between the first current and the second current is supplied to the analog processing circuit, so that the first data and the plurality of second data are compared. Accordingly, a piece of the second data that has the same content as the first data is detected, and a displacement from the first data to the second data can be calculated.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: September 19, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiyuki Kurokawa
  • Patent number: 9768265
    Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor layer, a first electrode, first and second oxide layers, and a storage layer. The first oxide layer is provided between the semiconductor layer and the first electrode. The second oxide layer is provided between the first oxide layer and the first electrode. The storage layer is provided between the first and second oxide layers. The storage layer includes a first region including silicon nitride, a second region provided between the first region and the second oxide layer and including silicon nitride, and a third region provided between the first and second regions. The third region includes a plurality of first metal atoms. A first density of bond of the first metal atoms in the third region is lower than a second density of bond of the first metal atom and a nitrogen atom in the third region.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: September 19, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Daisuke Matsushita, Yasushi Nakasaki, Tsunehiro Ino