Insulating Coating Patents (Class 257/632)
  • Publication number: 20110215387
    Abstract: The invention includes semiconductor constructions containing optically saturable absorption layers. An optically saturable absorption layer can be between photoresist and a topography, with the topography having two or more surfaces of differing reflectivity relative to one another. The invention also includes methods of patterning photoresist in which a saturable absorption layer is provided between the photoresist and a topography with surfaces of differing reflectivity, and in which the differences in reflectivity are utilized to enhance the accuracy with which an image is photolithographically formed in the photoresist.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Lucien J. Bissey, William A. Stanton
  • Publication number: 20110215447
    Abstract: A semiconductor device including a low dielectric constant film of which the relative dielectric constant is less than 3.5, is provided with one or more seal rings that are moisture blocking walls forming a closed loop in a plan view, and where at least one of the seal rings includes a seal ring protrusion portion in inward protruding form in the vicinity of a chip corner.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 8, 2011
    Applicant: Renesas Electronics Corporation
    Inventors: Takeshi Furusawa, Norio Miura, Kinya Goto, Masazumi Matsuura
  • Publication number: 20110215445
    Abstract: Described herein are methods of forming dielectric films comprising silicon, oxide, and optionally nitrogen, carbon, hydrogen, and boron. Also disclosed herein are the methods to form dielectric films or coatings on an object to be processed, such as, for example, a semiconductor wafer.
    Type: Application
    Filed: January 28, 2011
    Publication date: September 8, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Liu Yang, Manchao Xiao, Bing Han, Kirk S. Cuthill, Mark L. O'Neill
  • Publication number: 20110215446
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a bonding pad, comprising an adhesion/barrier layer, connected to a pad through an opening in a passivation layer, next adhering the semiconductor chip to a substrate using a glue material, next bonding a wire to the bonding pad and to the substrate, forming a polymer material on the substrate, covering the semiconductor chip and the wire, next forming a lead-free solder ball on the substrate, and then cutting the substrate and polymer material to form a chip package.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Publication number: 20110210428
    Abstract: Method for producing semiconductor components with a contact structure having a high aspect ratio comprising the following steps: providing an essentially plane semiconductor substrate having a first side and a second side, applying a mask onto at least a first partial area on at least one of the sides of the semiconductor substrate and applying a contact structure onto at least a second partial area, which is different from first partial area, on at least one of the sides of semiconductor substrate.
    Type: Application
    Filed: August 12, 2008
    Publication date: September 1, 2011
    Inventors: Bernd Bitnar, Holger Neuhaus, Andreas Krause
  • Patent number: 8008752
    Abstract: A component for an information display device has a transparent substrate having a surface that has a first refractive index. The surface is selectively coated in a pattern comprising a transparent electrically conductive layer disposed at least at a first region of the surface and at a second region of the surface. The first region of the surface is separated from the second region by a third region that is devoid of the transparent conductive layer. The transparent conductive layer has a second refractive index that is higher than the first refractive index. The first, second and third regions are commonly overcoated with a transparent layer comprising non-conductive nanoparticles, the overcoating layer being disposed over the transparent conductive layer at the first and second regions and also disposed over the third region that is devoid of the transparent conductive layer. The refractive index of the layer comprising nanoparticles is higher than the first refractive index.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 30, 2011
    Assignee: TPK Touch Solutions Inc.
    Inventor: Chun-Min Hu
  • Publication number: 20110204490
    Abstract: According one embodiment, a film forming apparatus includes a stage, a coating section, a vapor supply section, a blower section, and a controller. On the stage, an coating target is placed. The coating section applies a material to a predetermined region on the coating target placed on the stage to form a coating film. The vapor supply section generates solvent vapor capable of dissolving the coating film. The blower section blows the solvent vapor generated by the vapor supply section onto the coating film on the coating target placed on the stage. The controller controls an amount of the solvent vapor to be blown by the blower section so that: the coating film is dissolved; viscosity in a part of the coating film on a surface layer side is lower than that in a part thereof on the coating target side; and the viscosity in the part on the surface layer side and the viscosity of the coating target side take such values that prevent the coating film on the coating target from spreading.
    Type: Application
    Filed: March 15, 2011
    Publication date: August 25, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuyoshi SATO, Hiroyasu Kondo, Naoaki Sakurai, Katsuyuki Soeda, Kenichi Ooshiro, Shuichi Kimura
  • Publication number: 20110204491
    Abstract: A dielectric layer structure includes an interlayer dielectric (ILD) layer covering at least a metal interconnect structure and a single tensile film. The ILD layer further includes a low-k dielectric layer, and the single tensile film is positioned on the low-k dielectric layer for counteracting at least a part of a stress of the low-k dielectric layer.
    Type: Application
    Filed: May 6, 2011
    Publication date: August 25, 2011
    Inventor: Chin-Hsiang Lin
  • Patent number: 7999355
    Abstract: The present invention is a process for spin-on deposition of a silicon dioxide-containing film under oxidative conditions for gap-filling in high aspect ratio features for shallow trench isolation used in memory and logic circuit-containing semiconductor substrates, such as silicon wafers having one or more integrated circuit structures contained thereon, comprising the steps of: providing a semiconductor substrate having high aspect ratio features; contacting the semiconductor substrate with a liquid formulation comprising a low molecular weight aminosilane; forming a film by spreading the liquid formulation over the semiconductor substrate; heating the film at elevated temperatures under oxidative conditions. Compositions for this process are also set forth.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: August 16, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Mark Leonard O'Neill, Bing Han, Hansong Cheng, Manchao Xiao, Chia-Chien Lee
  • Patent number: 7999356
    Abstract: According to one aspect of the present invention, there is provided a composition for film formation, comprising a compound represented by general formula (I) or a hydrolyzed-dehydrocondensation product thereof: X13-mR1mSiR2SiR3nX23-n??(I) wherein R1 and R3 represent a hydrogen atom or a monovalent substituent; R2 represents a divalent group having an alicyclic structure with four carbon atoms or a derivative of the divalent group; X1 and X2 represent a hydrolysable group; and m and n are an integer of from 0 to 2.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Nakasaki, Nobuhide Yamada, Miyoko Shimada, Hideshi Miyajima, Kei Watanabe
  • Publication number: 20110193202
    Abstract: Apparatus and methods are disclosed herein for fabricating semiconductor device features with a half-pitch node of 22 nm and beyond using single exposure and single etch (1P1E) photolithography techniques. The method includes exposing in a single exposure a photoresist layer to the exposure source through a photolithography mask where the photolithography mask has on it an island pattern of a material having high percentage transmission. The photoresist layer is developed using a negative tone developer to form a hole pattern in the photoresist layer. The 1P1E does not require the second photo exposure of the double patterning method. Furthermore, the method circumvents the island pattern collapsing issues and the need for strong illumination associated with exiting single 1P1E processes.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Vincent Yu, Shih-Che Wang, Chun-Kuang Chen
  • Publication number: 20110192451
    Abstract: A metal substrate with an insulation layer has a metallic substrate having at least an aluminum base, and an insulation layer formed on the aluminum base of the metallic substrate. The insulation layer is a anodized film of aluminum that has a porous structure having plural pores and a Martens hardness of 1000 N/mm2 to 3500 N/mm2. A ratio of an average pore size of the plural pores to an average wall thickness of the plural pores ranges from 0.2 to 0.5.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 11, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Keigo SATO, Ryuichi NAKAYAMA, Shigenori YUYA, Shinya SUZUKI, Shuji KANAYAMA
  • Publication number: 20110186969
    Abstract: A semiconductor device and a method of fabricating a semiconductor device are disclosed. Embodiments of the invention use a photosensitive self-assembled monolayer to pattern the surface of a substrate into hydrophilic and hydrophobic regions, and an aqueous (or alcohol) solution of a dopant compound is deposited on the substrate surface. The dopant compound only adheres on the hydrophilic regions. After deposition, the substrate is coated with a very thin layer of oxide to cap the compounds, and the substrate is annealed at high temperatures to diffuse the dopant atoms into the silicon and to activate the dopant. In one embodiment, the method comprises providing a semiconductor substrate including an oxide surface, patterning said surface into hydrophobic and hydrophilic regions, depositing a compound including a dopant on the substrate, wherein the dopant adheres to the hydrophilic region, and diffusing the dopant into the oxide surface of the substrate.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 4, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Devendra K. Sadana, Lidija Sekaric
  • Patent number: 7985695
    Abstract: An oxide film formation method comprises steps of: generating a plasma from a gas mixture containing an inert gas and an oxidizing gas whose mixing ratio to the inert gas is higher than 0, and is 0.007 or lower; and forming an oxide film on a surface of a silicon substrate by using the plasma.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 26, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuyuki Endo
  • Publication number: 20110175207
    Abstract: The invention relates to a method for producing metal oxide layers from oxides of rare earth metals on silicon-containing surfaces, to the device used to carry out the coating method, and to the use of the starting materials used in the method according to the invention for the coating method.
    Type: Application
    Filed: June 23, 2009
    Publication date: July 21, 2011
    Applicant: CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG
    Inventors: Hanno Schnars, Mathias Wickleder, Katharina Al-Shamery
  • Patent number: 7977669
    Abstract: It is an object of the present invention to provide a high-performance and high reliable semiconductor device and to provide a technique of manufacturing the semiconductor device at low cost with high yield. The semiconductor device is manufactured by steps of forming a first conductive layer, forming a first liquid-repellent layer over the first conductive layer, discharging a composition containing a material for a mask layer over the first liquid-repellent layer to form a mask layer, processing the first liquid-repellent layer with the use of the mask layer, forming a second liquid-repellent layer, forming an insulating layer over the first conductive layer and the second conductive layer, and forming a second conductive layer over the insulating layer.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: July 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mikio Yukawa, Gen Fujii, Hironobu Shoji
  • Publication number: 20110163424
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroaryl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 7, 2011
    Applicant: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Patent number: 7972980
    Abstract: A method of forming a conformal dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD) includes: introducing a nitrogen- and hydrogen-containing reactive gas and a rare gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space; and introducing a hydrogen-containing silicon precursor as a first precursor and a hydrocarbon gas as a second precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a conformal dielectric film doped with carbon and having Si—N bonds on the substrate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: July 5, 2011
    Assignee: ASM Japan K.K.
    Inventors: Woo Jin Lee, Akira Shimizu
  • Patent number: 7973390
    Abstract: A modifier for lowering relative dielectric constant of a low dielectric constant film used in semiconductor devices, the modifier of the low dielectric constant film being characterized in that it contains as an effective component a silicon compound represented by formula (1) R3-nHnSiN3??(1) in which R is a C1-C4 alkyl group, and n is an integer from 0 to 3.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: July 5, 2011
    Assignee: Central Glass Company, Limited
    Inventors: Tsuyoshi Ogawa, Mitsuya Ohashi
  • Publication number: 20110156221
    Abstract: The invention relates to a method for producing passivation layers on crystalline silicon by a) coating the silicon with a solution containing at least one polysilazane of the general formula (1): —(SiR?R?—NR??)-n, wherein R?, R?, R?? are the same or different and stand independently of each other for hydrogen or a possibly substituted alkyl, aryl, vinyl, or (trialkoxysilyl)alkyl group, wherein n is an integer and n is chosen such that the polysilazane has a number average molecular weight of 150 to 150,000 g/mol, b) subsequently removing the solvent by evaporation, whereby polysilazane layers of 50-500 nm thickness remain on the silicon wafer, and c) heating the polysilazane layer at normal pressure to 200-1000° C. in the presence of air or nitrogen, wherein upon tempering the ceramic layers release hydrogen for bulk passivation of the silicon.
    Type: Application
    Filed: August 26, 2009
    Publication date: June 30, 2011
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Klaus Rode, Hartmut Wiezer
  • Publication number: 20110147900
    Abstract: The present disclosure is related to a dielectric layer comprising a rare-earth aluminate (RExAl2-xO3 with 0<x<2) and having a perovskite crystalline structure, wherein the rare-earth aluminate comprises a rare-earth element having an atomic number higher than or equal to 63 and lower than or equal to 71. The disclosure also relates to method of manufacturing of a dielectric stack and a dielectric stack comprising said rare-earth aluminate dielectric layer and further comprising a template stack comprising at least an upper template layer, wherein the upper template layer has a perovskite structure, and wherein the upper template layer is underlying and in contact with the rare-earth aluminate dielectric layer. In a preferred embodiment the dielectric stack further comprises a lower template layer having a crystalline structure, wherein the lower template layer is underlying and in contact with the upper template layer.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 23, 2011
    Applicant: IMEC
    Inventors: Christoph Adelmann, Johan Swerts, Sven Van Elshocht, Jorge Kittl
  • Patent number: 7964917
    Abstract: A semiconductor device includes a plurality of first MIS transistors and a plurality of second MIS transistors formed on a semiconductor substrate and a liner insulating film applying stress along the gate length direction. Each of the first MIS transistors includes first L-shaped sidewalls each having an L-shaped cross-sectional shape, and each of the second MIS transistors includes second L-shaped sidewalls each having an L-shaped cross-sectional shape and outer sidewalls. The minimum thickness of a part of the liner insulating film located on each of second source/drain regions of the second MIS transistor is larger than the minimum thickness of a part thereof located on each of first source/drain regions of the first MIS transistor.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventor: Susumu Akamatsu
  • Patent number: 7960259
    Abstract: A semiconductor structure consistent with certain implementations has a crystalline substrate oriented with a {111} plane surface that is within 10 degrees of surface normal. An epitaxially grown electrically insulating interlayer overlays the crystalline substrate and establishes a coincident lattice that mates with the surface symmetry of the {111} plane surface. An atomically stable two dimensional crystalline film resides on the epitaxial insulating layer with a coincident lattice match to the insulating interlayer. Methods of fabrication are disclosed. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 14, 2011
    Assignee: International Technology Center
    Inventors: Brian D. Schultz, Gary Elder McGuire
  • Publication number: 20110127651
    Abstract: Polymers for extreme ultraviolet and 193 nm photoresists are disclosed. The polymers comprise a photoacid generator (PAG) residue, an acid cleavable residue and a diacid joined by ester linkages. The polymers include a photoacid generating diol, a diacid and an acid table diol.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 2, 2011
    Applicant: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW
    Inventors: Robert L. Brainard, Srividya Revuru
  • Patent number: 7952174
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: May 31, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Publication number: 20110121435
    Abstract: A photosensitive adhesive composition that comprises (A) a resin with a carboxyl and/or hydroxyl group, (B) a thermosetting resin, (C) a radiation-polymerizable compound and (D) a photoinitiator, wherein the 3% weight reduction temperature of the entire photoinitiator mixture in the composition is 200° C. or greater.
    Type: Application
    Filed: January 9, 2009
    Publication date: May 26, 2011
    Inventors: Kazuyuki Mitsukura, Takashi Kawamori, Takashi Masuko, Shigeki Katogi
  • Publication number: 20110101506
    Abstract: A structure for memorizing tensile stress in a semiconductor device includes a gate electrode of the semiconductor device; a silicon spacer adjacent to the gate electrode; and a capping layer encapsulating the gate electrode and the silicon spacer, wherein the silicon spacer and capping layer are configured to cause a tensile stress to be memorized in the gate electrode during an annealing process. A method for memorizing tensile stress in a semiconductor device includes forming a silicon spacer adjacent to a gate electrode of the semiconductor device; forming a capping layer over the silicon spacer and the gate electrode; and annealing the semiconductor device, wherein the silicon spacer and capping layer cause a tensile stress to be memorized in the gate electrode during annealing. A disposable silicon spacer is configured to induce a tensile stress in a semiconductor device during a stress memorization technique process.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: International Business Machines Corporation
    Inventors: Shahid A. Butt, Viorel Ontalus, Robert R. Robison
  • Publication number: 20110101508
    Abstract: A resist pattern thickening material containing a resin, a cyclic compound expressed by the general formula 1, at least one of compounds expressed by the general formulae 2 to 3, respectively, and water:
    Type: Application
    Filed: February 26, 2010
    Publication date: May 5, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Miwa KOZAWA, Koji Nozaki
  • Publication number: 20110101507
    Abstract: A method and a structure for reworking an antireflective coating (ARC) layer over a semiconductor substrate. The method includes providing a substrate having a material layer, forming a planarization layer on the material layer, forming an organic solvent soluble layer on the planarization layer, forming an ARC layer on the organic solvent soluble layer, forming a pattern in the ARC layer, and removing the organic solvent soluble layer and the ARC layer with an organic solvent while leaving the planarization layer unremoved. The structure includes a substrate having a material layer, a planarization layer on the material layer, an organic solvent soluble layer on the planarization layer, and an ARC layer on the organic solvent soluble layer.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hakeem Akinmade Yusuff, John A. Fitzsimmons, Ranee Wai-Ling Kwong
  • Patent number: 7928536
    Abstract: Techniques for obtaining a wiring layer with a high TDDB resistance and little leakage current, and accordingly, for manufacturing a highly reliable semiconductor device with a small electric power consumption are provided, in which an interfacial roughness reducing film is formed which is in contact with an insulator film and also in contact with a wiring line on the other side surface thereof, and has an interfacial roughness between the wiring line and the interfacial roughness reducing film smaller than that between the insulator film and the interfacial roughness reducing film.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Limited
    Inventors: Tadahiro Imada, Yoshihiro Nakata, Ei Yano
  • Publication number: 20110084367
    Abstract: A method of producing an epitaxial wafer, comprising: implanting oxygen ions from a surface of a silicon wafer, thereby forming an ion implanted layer in a surface layer of the silicon wafer; after forming the ion implanted layer, implanting boron ions from the surface of the silicon wafer to the whole area in the ion implanted layer; performing heat treatment of the silicon wafer after implanting boron ions, thereby forming a thinning-stopper layer including a mixture of silicon particles, silicon oxides, and boron, and forming an active layer in the silicon wafer on the surface side of the thinning-stopper layer; and forming an epitaxial layer on the surface of the silicon wafer after the heat treatment.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 14, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Hideki NISHIHATA, Yoshihisa NONOGAKI, Akihiko ENDO
  • Patent number: 7923819
    Abstract: A wiring structure of a semiconductor device or the like includes an interlayer insulating film having a fluorocarbon film formed on an underlayer, and a conductor buried in the interlayer insulating film. The fluorocarbon film contains nitrogen and is low in dielectric constant, excellent in reproducibility and stable.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 12, 2011
    Assignees: National Iniversity Corporation Tohoku University, Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Seiji Yasuda, Atsutoshi Inokuchi, Takaaki Matsuoka, Kohei Kawamura
  • Publication number: 20110079884
    Abstract: An integrated circuit with a passivation trapping layer. An integrated circuit with a hydrogen or deuterium releasing layer underlying a passivation trapping layer. Method for forming an integrated circuit having a hydrogen or deuterium releasing layer. Method for forming an integrated circuit having a passivation trapping layer.
    Type: Application
    Filed: September 24, 2010
    Publication date: April 7, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gul B. Basim, Scott R. Summerfelt, Ted S. Moise
  • Patent number: 7919416
    Abstract: A method of forming a conformal dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD) includes: introducing a nitrogen- and hydrogen-containing reactive gas and an additive gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space; and introducing a hydrogen-containing silicon precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a conformal dielectric film having Si—N bonds on the substrate.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: April 5, 2011
    Assignee: ASM Japan K.K.
    Inventors: Woo-Jin Lee, Akira Shimizu, Atsuki Fukazawa
  • Patent number: 7919835
    Abstract: The present invention provides a semiconductor device having a low-k film including an interconnect layer and a highly-reliable through-substrate contact plug. The semiconductor device includes: a semiconductor substrate having a first surface and a second surface facing each other; a first insulating film formed on the first surface of the semiconductor substrate and having a specific permittivity of 4 or higher; a circuit constituent element formed on the first surface of the semiconductor substrate and covered with the first insulating film); a contact plug formed in the first insulating film and electrically connected to the circuit constituent element; a through-substrate contact plug penetrating through the semiconductor substrate and the first insulating film; a second insulating film formed on the first insulating film and having a specific permittivity of 3.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Akiyama
  • Patent number: 7915160
    Abstract: Methods are provided for forming contacts for a semiconductor device. The methods may include depositing various materials, such as polysilicon, nitride, oxide, and/or carbon materials, over the semiconductor device. The methods may also include forming a contact hole and filling the contact hole to form the contact for the semiconductor device.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 29, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Cyrus E. Tabery, Srikanteswara Dakshina-Murthy, Chih-Yuh Yang, Bin Yu
  • Publication number: 20110062562
    Abstract: A dielectric layer structure includes an interlayer dielectric (ILD) layer covering at least a metal interconnect structure and a single tensile hydrophobic film. The ILD layer further includes a low-k dielectric layer, and the single tensile hydrophobic film is positioned on the low-k dielectric layer for counteracting at least a part of a stress of the low-k dielectric layer.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Inventor: Chin-Hsiang Lin
  • Patent number: 7902083
    Abstract: According to one embodiment of the disclosure, a method for passivating a circuit device generally includes providing a substrate having a substrate surface, forming an electrical component on the substrate surface, and coating the substrate surface and the electrical component with a first protective dielectric layer. The first protective dielectric layer is made of a generally moisture insoluble material having a moisture permeability less than 0.01 gram/meter2/day, a moisture absorption less than 0.04 percent, a dielectric constant less than 10, a dielectric loss less than 0.005, a breakdown voltage strength greater than 8 million volts/centimeter, a sheet resistivity greater than 1015 ohm-centimeter, and a defect density less than 0.5/centimeter2.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 8, 2011
    Assignee: Raytheon Company
    Inventors: John M. Bedinger, Michael A. Moore, Robert B. Hallock, Kamal Tabatabaie Alavi, Thomas E. Kazior
  • Publication number: 20110048527
    Abstract: This invention provides a silver thick film paste composition comprising a silver powder comprising silver particles, each said silver particle comprising silver components 100-2000 nm long, 20-100 nm wide and 20-100 nm thick assembled to form a spherically-shaped, open-structured particle, wherein the d50 particle size is from about 2.5 ?m to about 6 ?m. There is also provided a method of making a semiconductor device, and in particular a solar cell, using the silver thick film paste composition to form a front side electrode.
    Type: Application
    Filed: April 30, 2010
    Publication date: March 3, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Roberto Irizarry, Diptarka Majumdar
  • Patent number: 7898038
    Abstract: The invention, in one aspect, provides a method for fabricating a semiconductor device, which includes conducting an etch through an opening in an emitter layer to form a cavity from an underlying oxide layer that exposes a doped tub. A first silicon/germanium (SiGe) layer, which has a Ge concentration therein, is formed within the cavity and over the doped tub by adjusting a process parameter to induce a strain in the first SiGe layer. A second SiGe layer is formed over the first SiGe layer, and a capping layer is formed over the second SiGe layer.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 1, 2011
    Assignee: Agere Systems, Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh
  • Publication number: 20110042789
    Abstract: A chemical vapor deposition material includes an organosilane compound shown by the following general formula (1). wherein R1 and R2 individually represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group, or a phenyl group, R3 and R4 individually represent an alkyl group having 1 to 4 carbon atoms, an acetyl group, or a phenyl group, m is an integer from 0 to 2, and n is an integer from 1 to 3.
    Type: Application
    Filed: March 24, 2009
    Publication date: February 24, 2011
    Applicant: JSR Corporation
    Inventors: Hisashi Nakagawa, Yohei Nobe, Kang-go Chung, Ryuichi Saito, Terukazu Kokubo
  • Patent number: 7888741
    Abstract: A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Alfred Grill, Vishnubhai V. Patel, Darryl D. Restaino
  • Publication number: 20110031593
    Abstract: There are provided a method of manufacturing a semiconductor device, a substrate processing apparatus, and a semiconductor device. The method allows rapid formation of a conductive film, which has a low concentration of impurities permeated from a source owing to its dense structure, and a low resistivity. The method is performed by simultaneously supplying two or more kinds of sources into a processing chamber to form a film on a substrate placed in the processing chamber. The method comprises: performing a first source supply process by supplying at least one kind of source into the processing chamber at a first supply flow rate; and performing a second source supply process by supplying the at least one kind of source into the processing chamber at a second supply flow rate different from the first supply flow rate.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 10, 2011
    Applicant: HITACHI KOKUSAI ELECTRIC, INC.
    Inventors: Tatsuyuki SAITO, Masanori SAKAI, Yukinao KAGA, Takashi Yokogawa
  • Patent number: 7884449
    Abstract: The present invention provides a process for manufacturing an integrated circuit (IC) package and an integrated circuit (IC) package. The process, without limitation, includes providing an integrated circuit chip having a configuration, and forming a layer of overcoat material over the integrated circuit chip based upon the configuration.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Sean M Malolepszy, Rex W Pirkle
  • Publication number: 20110018108
    Abstract: Disclosed is a composition comprising a hydrolysate of an alkoxysilane compound, a hydrolysate of a siloxane compound represented by Formula (1), a surfactant, and an element having an electronegativity of 2.5 or less. In Formula (1), RA and RB independently represent a hydrogen atom, a phenyl group, —CaH2a+1, —(CH2)b(CF2)cCF3 or —CdH2d?1, RA and RB are not both hydrogen atoms simultaneously, RC and RD independently represent a single bond that links a silicon atom and an oxygen atom to form a cyclic siloxane structure, or each independently represent a hydrogen atom, a phenyl group, —CaH2a+1, —(CH2)b(CF2)cCF3, or —CdH2d?1, a represents an integer of 1 to 6, b represents an integer of 0 to 4, c represents an integer of 0 to 10, d represents an integer of 2 to 4, and n represents an integer of 3 or greater.
    Type: Application
    Filed: March 30, 2009
    Publication date: January 27, 2011
    Applicant: Mitsui Chemicals ,Inc.
    Inventors: Kazuo Kohmura, Hirofumi Tanaka
  • Publication number: 20110006406
    Abstract: A method is provided for producing a porogen-residue-free ultra low-k film with porosity higher than 50% and a high elastic modulus above 5 GPa. The method starts with depositing a SiCOH film using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) or Chemical Vapor Deposition (CVD) onto a substrate and then first Performing an atomic hydrogen treatment at elevated wafer temperature in the range of 200° C. up to 350° C. to remove all the porogens and then performing a UV assisted thermal curing step.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicants: IMEC, Katholieke Universiteit Leuven, K.U. LEUVEN R&D
    Inventors: Adam Michal Urbanowicz, Patrick Verdonck, Denis Shamiryan, Kris Vanstreels, Mikhail Baklanov, Stefan De Gendt
  • Patent number: 7867816
    Abstract: Provided is a method and system for designing an integrated circuit (IC) substrate, the substrate being formed to include at least one die. The method includes providing at least portions of IC power and a grounding function on a metal 2 substrate layer and utilizing all of a metal 3 substrate layer for the grounding function. Portions of the metal 2 layer and a metal 4 layer are utilized for the IC power, wherein all of the IC power is centralized underneath the die.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: January 11, 2011
    Assignee: Broadcom Corporation
    Inventor: Edmund Law
  • Publication number: 20110001221
    Abstract: A dielectric layer is provided. The dielectric layer includes a photo-sensitive polymer or a non-photo-sensitive polymer and an amorphous metal oxide disposed in the photo-sensitive polymer or a non-photo-sensitive polymer.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 6, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Ling Lin, Pang LIN, Tarng-Shiang Hu, Liang-Xiang Chen
  • Patent number: 7863749
    Abstract: A dense boron-based or phosphorus-based dielectric material is provided. Specifically, the present invention provides a dense boron-based dielectric material comprised of boron and at least one of carbon, nitrogen, and hydrogen or a dense phosphorus-based dielectric comprised of phosphorus and nitrogen. The present invention also provides electronic structures containing the dense boron-based or phosphorus-based dielectric as an etch stop, a dielectric Cu capping material, a CMP stop layer, and/or a reactive ion etching mask in a ULSI back-end-of-the-line (BEOL) interconnect structure. A method of forming the inventive boron-based or phosphorus-based dielectric as well as the electronic structure containing the same are also described in the present invention.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Robert D. Miller
  • Patent number: 7863609
    Abstract: A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: January 4, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Fumitake Nakanishi