Layered Patents (Class 257/750)
  • Patent number: 8736064
    Abstract: An interconnect element is provided. A monolithic dielectric element has a first exposed major surface, a plurality of first recesses extending inwardly from the first major surface, and a second exposed major surface remote from the first major surface, a plurality of second recesses extending inwardly from the second major surface. A plurality of first metal interconnect patterns are embedded in the plurality of first recesses and extend in one or more directions along the first major surface. A plurality of second metal interconnect patterns are embedded in the plurality of second recesses and extend in one or more directions along the second major surface. A plurality of non-hollow metal posts extend through the dielectric element between at least some of the plurality of first metal interconnect patterns and at least some of the plurality of second metal interconnect patterns.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: May 27, 2014
    Assignee: Invensas Corporation
    Inventors: Hideki Kotake, Kiyoshi Hyodo, Inetaro Kurosawa, Yukio Hashimoto, Toku Yoshino, Tomoo Iijima
  • Publication number: 20140138831
    Abstract: Some implementations provide a semiconductor device that includes a substrate coupled to a die through a thermal compression bonding process. The semiconductor device also includes a trace coupled to the substrate. The trace includes a first conductive material having a first oxidation property. The trace also includes a first surface layer including a second conductive material having a second oxidation property. The second oxidation property is less susceptible to oxidation than the first oxidation property. The first and second conductive materials are configured to provide an electrical path between the die and the substrate. The first surface layer has a thickness that is 0.3 microns (?m) or less.
    Type: Application
    Filed: January 15, 2013
    Publication date: May 22, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Houssam W. Jomaa, Omar J. Bchir, Milind P. Shah, Manuel Aldrete, Chin-Kwan Kim
  • Publication number: 20140138830
    Abstract: A metal interconnection structure includes a substrate and a protective laver. The substrate includes at least a first conductive layer. The protective layer is a single-layered structure disposed on the substrate, and a quantity of oxygen (O) in an upper part of the protective layer is more than a quantity of oxygen (O) in a lower part of the protective layer. A material of the upper part of the protective layer includes silicon oxycarbide (SiCO) or silicon oxycarbonitride (SiCNO), and a material of the lower part of the protective layer includes silicon carbide (SiC) or silicon carbonitride (SiCN).
    Type: Application
    Filed: November 18, 2012
    Publication date: May 22, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yuh-Min Lin, Wen-Ting Chen, Yi-Yu Wu
  • Publication number: 20140131871
    Abstract: A method of forming an interconnection structure is disclosed, including providing a substrate having a first side and a second side opposite to the first side, forming a via hole through the substrate, wherein the via hole has a first opening in the first side and a second opening in the second side, forming a first pad covering the first opening, and forming a via structure in the via hole subsequent to forming the first pad, wherein the via structure includes a conductive material and is adjoined to the first pad.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Hsin-Chang TSAI, Chia-Yen LEE, Peng-Hisn LEE
  • Patent number: 8723322
    Abstract: A method of metal sputtering, comprising the following steps. A wafer holder and inner walls of a chamber are coated with a seasoning layer comprised of: a) a material etchable in a metal barrier layer etch process; or b) an insulating or non-conductive material. A wafer having two or more wafer conductive structures is placed upon the seasoning layer coated wafer holder. The wafer is cleaned wherein a portion of the seasoning layer is re-deposited upon the wafer over and between adjacent wafer conductive structures. A metal barrier layer is formed over the wafer. The wafer is removed from the chamber and at least two adjacent upper metal structures are formed over at least one portion of the metal barrier layer.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: May 13, 2014
    Assignee: Megit Acquisition Corp.
    Inventors: Hsien-Tsung Liu, Chien-Kang Chou, Ching-San Lin
  • Patent number: 8723320
    Abstract: A power module includes a substrate having a surface on which a plurality of wiring patterns are formed, a semiconductor device mounted on the substrate and electrically connected to a part of the plurality of wiring patterns, and a terminal portion with a lead electrically connected to the other part of the plurality of wiring patterns, and is configured that the lead of the terminal portion is formed by laminating a plurality of metal members which contain a material substantially the same as or softer than the material for forming the other part of wiring patterns, and the material of the plurality of metal members, which is the same as or softer than the material for forming the other part of wiring patterns is electrically connected to the other part of wiring patterns through ultrasonic bonding.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 13, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Isamu Yoshida, Michiaki Hiyoshi, Takehide Yokozuka, Akihiro Muramoto
  • Publication number: 20140124899
    Abstract: A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Roland Gooch, Buu Diep, Thomas Allan Kocian, Stephen H. Black, Adam M. Kennedy
  • Patent number: 8716871
    Abstract: A semiconductor device that includes a first metal layer component formed over a substrate. The semiconductor device includes a via formed over the first metal layer component. The via has a recessed shape. The semiconductor device includes a second metal layer component formed over the via. The semiconductor device includes a first dielectric layer component formed over the substrate. The first dielectric layer component is located adjacent to, and partially over, the first metal layer component. The first dielectric layer component contains fluorine. The semiconductor device includes a second dielectric layer component formed over the first dielectric layer component. The first dielectric layer component and the second dielectric layer component are each located adjacent to the via. The second dielectric layer component is free of fluorine.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Uway Tseng, Shu-Hui Su
  • Publication number: 20140117534
    Abstract: A structure comprises a first passivation layer formed over a substrate, a second passivation layer formed over the first passivation layer, wherein the second passivation layer includes a first opening with a first dimension, a bond pad embedded in the first passivation layer and the second passivation layer, a protection layer formed on the second passivation layer comprising a second opening with a second dimension, wherein the second dimension is greater than the first dimension and a connector formed on the bond pad.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company. Ltd.
  • Patent number: 8710663
    Abstract: To provide a semiconductor device having a reduced size and thickness while suppressing deterioration in reliability. After a semiconductor wafer is ground at a back surface thereof with a grinding material into a predetermined thickness, the resulting semiconductor wafer is diced along a cutting region to obtain a plurality of semiconductor chips. While leaving grinding grooves on the back surface of each of the semiconductor chips, the semiconductor chip is placed on the upper surface of a die island via a conductive resin paste so as to face the back surface of the semiconductor chip and the upper surface of the die island each other. The die island has, on the upper surface thereof, a concave having a depth of from 3 ?m to 10 ?m from the edge of the concave to the bottom of the concave.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 29, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Eiji Ono, Eiji Osugi
  • Patent number: 8704372
    Abstract: Integrated circuits, a process for recessing an embedded copper feature within a substrate, and a process for recessing an embedded copper interconnect within an interlayer dielectric substrate of an integrated circuit are provided. In an embodiment, a process for recessing an embedded copper feature, such as an embedded copper interconnect, within a substrate, such as an interlayer dielectric substrate, includes providing a substrate having an embedded copper feature disposed therein. The embedded copper feature has an exposed surface and the substrate has a substrate surface adjacent to the exposed surface of the embedded copper feature. The exposed surface of the embedded copper feature is nitrided to form a layer of copper nitride in the embedded copper feature. Copper nitride is selectively etched from the embedded copper feature to recess the embedded copper feature within the substrate.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: April 22, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Errol T. Ryan, Xunyuan Zhang
  • Publication number: 20140097542
    Abstract: Disclosed is a flip chip packaging device and structure of interconnections between a chip and a substrate. In one embodiment, a flip chip packaging device can include: (i) a chip and a substrate; (ii) a plurality of first connecting structures and a plurality of second connecting structures that are aligned and configured to electrically connect the chip and the substrate; and (iii) where each of the plurality of first connecting structures comprises a first metal, and each of the plurality of second connecting structures comprises a second metal, and where a hardness of the first metal is less than a hardness of the second metal.
    Type: Application
    Filed: August 26, 2013
    Publication date: April 10, 2014
    Applicant: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventor: Xiaochun Tan
  • Patent number: 8692372
    Abstract: Provided are semiconductor devices including a semiconductor substrate, an insulating layer including a contact hole through which the semiconductor substrate is exposed, and a polysilicon layer filling the contact hole. The polysilicon layer is doped with impurities and includes an impurity-diffusion prevention layer. In the semiconductor devices, the impurities included in the polysilicon layer do not diffuse into the insulating layer and the semiconductor substrate due to the impurity-diffusion prevention layers.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-kak Lee, Sung-gil Kim, Soo-jin Hong, Sun-ghil Lee, Deok-hyung Lee
  • Patent number: 8692371
    Abstract: Disclosed are a semiconductor apparatus and a manufacturing method thereof. The manufacturing method of the semiconductor apparatus includes: forming a semiconductor chip on a semiconductor substrate; adhering a carrier wafer with a plurality of through holes onto the semiconductor chip; polishing the semiconductor substrate; forming a first via hole at the rear side of the polished semiconductor substrate; forming a first metal layer below the polished semiconductor substrate and at the first via hole; and removing the carrier wafer from the polished semiconductor substrate.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Byoung-Gue Min
  • Patent number: 8686562
    Abstract: According to one disclosed embodiment, an electrical contact for use on a semiconductor device comprises an electrode stack including a plurality of metal layers and a capping layer formed over the plurality of metal layers. The capping layer comprises a refractory metal nitride. In one embodiment, a method for fabricating an electrical contact for use on a semiconductor device comprises forming an electrode stack including a plurality of metal layers over the semiconductor device, and depositing a refractory metal nitride capping layer of the electrode stack over the plurality of metal layers. The method may further comprise annealing the electrode stack at a temperature of less than approximately 875° C. In some embodiments, the method may additionally include forming one of a Schottky metal layer and a gate insulator layer between the electrode stack and the semiconductor device.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 1, 2014
    Assignee: International Rectifier Corporation
    Inventor: Sadiki Jordan
  • Publication number: 20140084302
    Abstract: An integrated circuit is provided, the integrated circuit including: a carrier including at least one electronic component and at least one contact area disposed on a first side of the carrier, wherein the at least one electronic component is electrically connected to the at least one contact area; an inorganic material layer wafer bonded to the first side of the carrier, wherein the carrier has a first coefficient of thermal expansion, and wherein the inorganic material layer has a second coefficient of thermal expansion, wherein the second coefficient of thermal expansion has a difference of less than 100% compared with the first coefficient of thermal expansion; and at least one contact via formed through the inorganic material layer, wherein the at least one contact via contacts the at least one contact area.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Khalil Hosseini, Joachim Mahler, Anton Mauder
  • Patent number: 8673772
    Abstract: A method of forming a biosensor chip enables a bond pad and detector electrode to be formed of different materials (one is formed of a connection layer such as copper and the other is formed of a diffusion barrier layer such as tantalum or tantalum nitride). A single planarizing operation is used for both the bond pad and the detector electrode. By using the same processing, resist patterning on an already-planarized surface is avoided, and the cleanliness of both the bond pad and detector electrode is ensured. Self-aligned nanoelectrodes and bond pads are obtained.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 18, 2014
    Assignee: NXP B.V.
    Inventor: Frans Widdershoven
  • Publication number: 20140050243
    Abstract: A semiconductor metallurgy includes a ratio of germanium and palladium that provides low contact resistance to both n-type material and p-type material. The metallurgy allows for a contact that does not include gold and is compatible with mass-production CMOS techniques. The ratio of germanium and palladium can be achieved by stacking layers of the materials and annealing the stack, or simultaneously depositing the germanium and palladium on the material where the contact is to be manufactured.
    Type: Application
    Filed: December 22, 2011
    Publication date: February 20, 2014
    Inventors: Siddharth Jain, John Bowers, Matthew Sysak, John Heck, Ran Feldesh, Richard Jones, Yoel Shetrit, Michael Geva
  • Publication number: 20140048943
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Publication number: 20140048936
    Abstract: An interconnect assembly that operates in environments well exceeding 200° C. without degradation and/or failure. The interconnect assembly of the present invention eliminates the incompatible metal interfaces of the prior art and relies on aluminum first-metal wire to electrically connect to first-metal pads on a chip and a second-metal wire to electrically connect to second-metal plated contacts on a package. Both wire types are then electrically connected together utilizing a high temperature transition pad disposed between the chip and contacts on the package, therefore eliminating incompatible metal interfaces of the prior art.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventor: Alex Ned
  • Patent number: 8648464
    Abstract: According to one embodiment, a semiconductor device is disclosed. The device includes a semiconductor substrate, and an interconnection above the semiconductor substrate. The interconnection includes a co-catalyst layer, a catalyst layer on the co-catalyst layer, and a graphene layer on the catalyst layer. The co-catalyst layer includes a portion contacting the catalyst layer. The portion has a face-centered cubic structure with a (111) plane oriented parallel to a surface of the semiconductor substrate. The catalyst layer has a face-centered cubic structure with a (111) plane oriented parallel to the surface of the semiconductor substrate.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Kitamura, Makoto Wada, Yuichi Yamazaki, Masayuki Katagiri, Atsuko Sakata, Akihiro Kajita, Tadashi Sakai, Naoshi Sakuma, Ichiro Mizushima
  • Publication number: 20140035095
    Abstract: The invention provides a semiconductor package and a method for fabricating a base for a semiconductor package. The semiconductor package includes a conductive trace embedded in a base. A semiconductor device is mounted on the conductive trace via a conductive structure.
    Type: Application
    Filed: December 20, 2012
    Publication date: February 6, 2014
    Applicant: Media Tek Inc.
    Inventors: Tzu-Hung LIN, Wen-Sung HSU, Ta-Jen YU, Andrew C. CHANG
  • Publication number: 20140035139
    Abstract: To prevent cracking in a passivation film by oxidation of an antireflection film, a semiconductor device includes a metal wiring layer for a pad, an insulating layer which is provided so as to cover the metal wiring layer and which includes an opening portion from which a part of a surface of the metal wiring layer is exposed. The metal wiring layer includes a first metal layer, and a second metal layer which is provided over the first metal layer except for the opening portion and which is thinner than the first metal layer. The metal wiring layer has a groove portion in a predetermined region except for the opening portion. The first metal layer protrudes, in an eaves shape, to the groove portion. The second metal layer on a side wall inside the groove portion is thinner than the second metal layer outside the groove portion.
    Type: Application
    Filed: June 5, 2013
    Publication date: February 6, 2014
    Inventor: Osamu KATO
  • Publication number: 20140035140
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The method comprises following steps. A first silicon-containing conductive material is formed on a substrate. A second silicon-containing conductive material is formed on the first silicon-containing conductive material. The first silicon-containing conductive material and the second silicon-containing conductive material have different dopant conditions. The first silicon-containing conductive material and the second silicon-containing conductive material are thermally oxidized for turning the first silicon-containing conductive material wholly into an insulating oxide structure, and the second silicon-containing conductive material into a silicon-containing conductive structure and an insulating oxide layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Hang-Ting Lue, Yi-Hsuan Hsiao
  • Patent number: 8643147
    Abstract: An integrated circuit structure includes a lower dielectric layer; an upper dielectric layer over the lower dielectric layer; and a seal ring. The seal ring includes an upper metal line in the upper dielectric layer; a continuous via bar underlying and abutting the upper metal line, wherein the continuous via bar has a width greater than about 70 percent of a width of the upper metal line; a lower metal line in the lower dielectric layer; and a via bar underlying and abutting the lower metal line. The via bar has a width substantially less than a half of a width of the lower metal line.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Shih-Hsun Hsu, Shang-Yun Hou, Hao-Yi Tsai, Chen-Hua Yu
  • Patent number: 8643151
    Abstract: An embodiment of the disclosure provides a semiconductor device. The semiconductor device includes a plurality of metallization layers comprising a topmost metallization layer. The topmost metallization layer has two metal features having a thickness T1 and being separated by a gap. A composite passivation layer comprises a HDP CVD oxide layer under a nitride layer. The composite passivation layer is disposed over the metal features and partially fills the gap. The composite passivation layer has a thickness T2 about 20% to 50% of the thickness T1.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Liu, Chyi-Tsong Ni, Hsiao-Yin Lin, Chung-Min Lin
  • Patent number: 8633593
    Abstract: A semiconductor device includes a semiconductor substrate; and a through electrode that penetrates the semiconductor substrate. The semiconductor substrate has a groove structure that is positioned between a peripheral edge of the semiconductor substrate and the through electrode.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 21, 2014
    Assignee: Elpida Memory, Inc.
    Inventors: Akira Ide, Koji Torii
  • Patent number: 8629561
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Patent number: 8604625
    Abstract: A semiconductor device has a substrate having a plurality of conductive pads formed thereon. A semiconductor die is provided having a plurality of conductive pillars formed thereon. A solder is used for electrically coupling the conductive pillars to the conductive pads. Solder mask is formed on portions of the conductive pads to prevent the solder from flowing in an unwanted direction on the conductive pads.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Byong Jin Kim, Min Chul Shin, Ho Choi
  • Patent number: 8604616
    Abstract: A semiconductor chip including a chip via plug penetrating a substrate, a semiconductor stack thereof, a semiconductor device package thereof, and an electronic apparatus having the same are disclosed. The semiconductor chip comprising, a substrate including an inner semiconductor circuit, a conductive redistribution structure formed on the substrate including a conductive redistribution interconnection and a conductive redistribution via plug, wherein the redistribution via plug is connected to the inner semiconductor circuit; a conductive chip pad formed on the substrate, and a conductive chip via plug configured to penetrate the substrate and electrically connected to the redistribution structure.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Jong-Joo Lee
  • Patent number: 8598704
    Abstract: A semiconductor device includes a first interconnection including a first end, a second interconnection connected to the first interconnection and including a width being gradually wider towards the first end, a third interconnection and a fourth interconnection, the third interconnection and the fourth interconnection being arranged to sandwich the second interconnection. The first interconnection, the second interconnection, the third interconnection, and the fourth interconnection are each formed in a same layer and a width of the first interconnection is wider than a width of the second interconnection.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshihisa Matsubara
  • Patent number: 8598705
    Abstract: A composite substrate for a semiconductor chip includes a first covering layer containing a semiconductor material, a second covering layer, and a core layer arranged between the first covering layer and the second covering layer, wherein the core layer has a greater coefficient of thermal expansion than the covering layers.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 3, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jürgen Moosburger, Peter Stauβ, Andreas Plöβl
  • Patent number: 8598703
    Abstract: A semiconductor device having a via chain circuit including a plurality of fine interconnections and an extension interconnection wider than the fine interconnections, having a first end connected to one or more of the fine interconnections and a second end located in an area of the semiconductor device external to the via chain circuit. One or more of the fine interconnections becomes wider gradually towards the connection to the extension interconnection. The extension interconnection is formed in a same layer as the one or more of the fine interconnections connected to the extension interconnection. The one or more of the fine interconnections connected to the extension interconnection is connected to the extension interconnections at a position where the fine interconnections become wider.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshihisa Matsubara
  • Patent number: 8592985
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: November 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Publication number: 20130307151
    Abstract: A method of repairing hollow metal void defects in interconnects and resulting structures. After polishing interconnects, hollow metal void defects become visible. The locations of the defects are largely predictable. A repair method patterns a mask material to have openings over the interconnects (and, sometimes, the adjacent dielectric layer) where defects are likely to appear. A local metal cap is formed in the mask openings to repair the defect. A dielectric cap covers the local metal cap and any recesses formed in the adjacent dielectric layer.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Junjing Bao, Samuel S. Choi, Ronald G. Filippi, Naftali E. Lustig, Andrew H. Simon
  • Publication number: 20130307152
    Abstract: A fabrication method of a semiconductor package is provided, which includes the steps of: forming a packaging substrate on a first carrier; bonding a second carrier to the packaging substrate; removing the first carrier; disposing a chip on the packaging substrate; forming an encapsulant on the packaging substrate for encapsulating the chip; and removing the second carrier. The first and second carriers provide the thin-type packaging substrate with sufficient rigidity for undergoing the fabrication processes without cracking or warpage, thereby meeting the miniaturization requirement and improving the product yield.
    Type: Application
    Filed: August 17, 2012
    Publication date: November 21, 2013
    Inventors: Wei Chung Hsiao, Chun Hsien Lin, Yu Cheng Pai, Liang Yi Hung, Ming Chen Sun, Shao Tzu Tang, Ying Chou Tsai, Chang Yi Lan
  • Patent number: 8587112
    Abstract: An electroless Cu layer is formed on each side of a packaging substrate containing a core, at least one front metal interconnect layer, and at least one backside metal interconnect layer. A photoresist is applied on both electroless Cu layers and lithographically patterned. First electrolytic Cu portions are formed on exposed surfaces of the electroless Cu layers, followed by formation of electrolytic Ni portions and second electrolytic Cu portions. The electrolytic Ni portions provide enhanced resistance to electromigration, while the second electrolytic Cu portions provide an adhesion layer for a solder mask and serves as an oxidation protection layer. Some of the first electrolytic Cu may be masked by lithographic means to block formation of electrolytic Ni portions and second electrolytic Cu portions thereupon as needed. Optionally, the electrolytic Ni portions may be formed directly on electroless Cu layers.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Hai P. Longworth, David J. Russell, Krystyna W. Semkow
  • Patent number: 8581404
    Abstract: A method for fabricating multiple metal layers includes the following steps. An electronic component is provided with multiple contact points. A first metal layer is deposited over said electronic component. A first mask layer is deposited over said first metal layer. A second metal layer is deposited over said first metal layer exposed by an opening in said first mask layer. Said first mask layer is removed. A second mask layer is deposited over said second metal layer. A third metal layer is deposited over said second metal layer exposed by an opening in said second mask layer. Said second mask layer is removed. Said first metal layer not covered by said second metal layer is removed.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 12, 2013
    Assignee: Megit Acquistion Corp.
    Inventors: Chiu-Ming Chou, Mou-Shiung Lin
  • Patent number: 8575751
    Abstract: A conductive bump formed on an electrode surface of an electronic component. This conductive bump is composed of a plurality of photosensitive resin layers having different conductive filler contents. Consequently, this conductive bump is able to realize conflicting functions, namely, improvement in adhesion strength with the electrode and reduction of contact resistance.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Daisuke Sakurai, Yoshihiko Yagi
  • Patent number: 8569887
    Abstract: A copper interconnect line formed on a passivation layer is protected by a copper-containing material layer including a group III element, a group IV element, a group V element or combinations thereof.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Ling Hwang, Yi-Wen Wu, Chung-Shi Liu
  • Publication number: 20130277836
    Abstract: A method and structure for fabricating sensor(s) or electronic device(s) using vertical mounting with interconnections. The method includes providing a resulting device including at least one sensor or electronic device, formed on a die member, having contact region(s) with one or more conductive materials formed thereon. The resulting device can then be singulated within a vicinity of the contact region(s) to form one or more singulated dies, each having a singulated surface region. The singulated die(s) can be coupled to a substrate member, having a first surface region, such that the singulated surface region(s) of the singulated die(s) are coupled to a portion of the first surface region. Interconnections can be formed between the die(s) and the substrate member with conductive adhesives, solder processes, or other conductive bonding processes.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: DAVE PAUL JENSEN, HONG WAN, JON EWANICH
  • Patent number: 8564131
    Abstract: The invention is characterized in including interconnect layer formed on surface of a substrate forming desired element region, inter layer dielectric covering surface of said interconnect layer, silicon nitride film formed so as covering whole surface of said inter layer dielectric, metal interconnect layer consisting of gold layer as the uppermost lay metal formed on the upper layer of said silicon nitride film, and planarized dielectric formed on said metal interconnect layer.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: October 22, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Goro Nakatani, Tatsuya Sakamoto
  • Patent number: 8558381
    Abstract: The present teachings provides a semiconductor device which has a semiconductor substrate, and a lower electrode including a first layer in contact with a lower surface of the semiconductor substrate, a second layer in contact with a lower surface of the first layer, and a third layer stacked at a position farther from the semiconductor substrate than the second layer, wherein the first layer is an aluminum layer containing silicon, the second layer is a layer including silicon as a primary component, and the third layer is a solder joint layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihito Mizuno
  • Publication number: 20130264713
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Patent number: 8552559
    Abstract: A new interconnection scheme is described, comprising both coarse and fine line interconnection schemes in an IC chip. The coarse metal interconnection, typically formed by selective electroplating technology, is located on top of the fine line interconnection scheme. It is especially useful for long distance lines, clock, power and ground buses, and other applications such as high Q inductors and bypass lines. The fine line interconnections are more appropriate to be used for local interconnections. The combined structure of coarse and fine line interconnections forms a new interconnection scheme that not only enhances IC speed, but also lowers power consumption.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: October 8, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Publication number: 20130256890
    Abstract: A method, and an apparatus formed thereby, to construct shallow recessed wells on top of exposed conductive vias on the surface of a semiconductor. The shallow recessed wells are subsequently filled with a conductive cap layer, such as a tantalum nitride (TaN) layer, to prevent or reduce oxidation which may otherwise occur naturally when exposed to air, or possibly occur during an under-bump metallization process.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lin-Ya Huang, Chi-Sheng Juan, Chien-Lin Tseng
  • Patent number: 8546947
    Abstract: A chip structure comprises a substrate, a first built-up layer, a passivation layer and a second built-up layer. The substrate includes many electric devices placed on a surface of the substrate. The first built-up layer is located on the substrate. The first built-up layer is provided with a first dielectric body and a first interconnection scheme, wherein the first interconnection scheme interlaces inside the first dielectric body and is electrically connected to the electric devices. The first interconnection scheme is constructed from first metal layers and plugs, wherein the neighboring first metal layers are electrically connected through the plugs. The passivation layer is disposed on the first built-up layer and is provided with openings exposing the first interconnection scheme. The second built-up layer is formed on the passivation layer.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 1, 2013
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin, Ching-Cheng Huang
  • Patent number: 8541882
    Abstract: An IC device comprises a stack of contact levels, each including conductive layer and an insulation layer. A dielectric liner surrounds an interlevel conductor within an opening in the stack of contact levels. The opening passes through a portion of the stack of contact levels. The interlevel conductor is electrically insulated from the conductive layers of each of the contact levels through the dielectric liner. A portion of the conductive layer at the opening is recessed relative to adjacent insulation layers. The dielectric liner may have portions extending between adjacent insulation layers.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 24, 2013
    Assignee: Macronix International Co. Ltd.
    Inventors: Shih-Hung Chen, Yan-Ru Chen, Lo-Yueh Lin
  • Publication number: 20130241068
    Abstract: According to one embodiment, a method for forming a semiconductor device includes: forming a first underlayer film that contains a first atom selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals; forming, on the first underlayer film, a second underlayer film that contains a second atom selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals, the second atom being an atom not contained in the first underlayer film; and forming, on the second underlayer film, a silicon oxide film by a CVD or ALD method by use of a silicon source containing at least one of an ethoxy group, a halogen group, an alkyl group, and an amino group, or a silicon source of a siloxane system.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masayuki TANAKA, Kenichiro Toratani, Kazuhiro Matsuo
  • Patent number: 8536703
    Abstract: A semiconductor device and an electronic system are provided. The semiconductor device includes a lower conductive pattern, and an intermediate conductive pattern on the lower conductive pattern. An upper conductive pattern is provided on the intermediate conductive pattern and is electrically connected to the intermediate conductive pattern. The intermediate conductive pattern includes a first portion and a second portion that extends from a part of the first portion and that is disposed at a higher level from the lower conductive pattern than the first portion. The upper conductive pattern is disposed on the first portion of the intermediate conductive pattern and has a top surface that is disposed at a higher level from the lower conductive pattern than the second portion of the intermediate conductive pattern.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Kee Kim, Byeung-Chul Kim, Hoon-Jeong, Yong-Woo Kwon