Characterized By Their Shape, Relative Sizes Or Dispositions (epo) Patents (Class 257/E29.112)

  • Publication number: 20100244248
    Abstract: A nonvolatile memory device, includes: a lower side electrode aligned in a first direction; an upper side electrode positioned above the lower side electrode and aligned in a second direction intersecting the first direction; and a memory unit provided between the lower side electrode and the upper side electrode. At least one selected from the lower side electrode and the upper side electrode includes a first electrode and a second electrode, the first electrode having a forward-tapered side wall, the second electrode having a reverse-tapered side wall and being adjacent to the first electrode via an insulating layer in substantially identical plane.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 30, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Fukumizu
  • Patent number: 7786529
    Abstract: A semiconductor device includes a transistor having a recessed gate, contact plugs formed in a region of a plurality of trenches, which are formed by recessing a semiconductor substrate. Further, a metal line and a source/drain region can be connected through the contact plug, so that on-current can be increased as much as an increased channel area.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: August 31, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dae Sik Kim
  • Publication number: 20100200954
    Abstract: In an ion implantation method, a substrate is placed in a process zone and ions are implanted into a region of the substrate to form an ion implanted region. A porous capping layer is deposited on the ion implanted region. The substrate is annealed to volatize at least 80% of the porous capping layer overlying the ion implanted region during the annealing process. An intermediate product comprises a substrate, a plurality of ion implantation regions on the substrate, and a porous capping layer covering the ion implantation regions.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Inventors: JOSE IGNACIO DEL AGUA BORNIQUEL, Tze Poon, Robert Schreutelkamp, Majeed Foad
  • Publication number: 20100163952
    Abstract: A semiconductor device is described having an integrated high-k dielectric layer and metal control gate. A method of fabricating the same is described. Embodiments of the semiconductor device include a high-k dielectric layer disposed on a floating gate. The high-k dielectric layer defines a recess. A metal control gate is formed in the recess.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Chia-Hong Jan, Walid M. Hafez
  • Publication number: 20100155953
    Abstract: Conductive oxide electrodes are described, including a bi-layer barrier structure electrically coupled with an adhesion layer, and an electrode layer, wherein the bi-layer barrier structure includes a first barrier layer electrically coupled with the adhesion layer, and a second barrier layer electrically coupled with the first barrier layer and to the electrode layer. The conductive oxide electrodes and their associated layers can be fabricated BEOL above a substrate that includes active circuitry fabricated FEOL and electrically coupled with the conductive oxide electrodes through an interconnect structure that can also be fabricated FEOL. The conductive oxide electrodes can be used to electrically couple a plurality of non-volatile re-writeable memory cells with conductive array lines in a two-terminal cross-point memory array fabricated BEOL over the substrate and its active circuitry, the active circuitry configured to perform data operations on the memory array.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventor: Jonathan Bornstein
  • Publication number: 20100140752
    Abstract: A semiconductor device has a first conductive layer formed over a top surface of a substrate. A first insulating layer is formed over the substrate. A first dielectric layer is formed over the first insulating layer. A second conductive layer is formed over the first conductive layer and first dielectric layer. A second dielectric layer is formed over the second conductive layer. A polymer material is deposited over the second dielectric layer and second conductive layer. A third conductive layer is formed over the polymer material and second conductive layer. The third conductive layer is electrically connected to the second conductive layer. A first solder bump is formed over the third conductive layer. A conductive via is formed through a back surface of the substrate. The conductive via is electrically connected to the first conductive layer. The polymer material has a low coefficient of thermal expansion.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicant: STATS ChipPAC, LTD.
    Inventors: Pandi Chelvam Marimuthu, Shuangwu Huang, Nathapong Suthiwongsunthorn
  • Publication number: 20100140739
    Abstract: Disclosed is a semiconductor device which includes a substrate having an air layer or void therein, an interlayer dielectric film above the substrate, and a metal wiring having a spiral structure on the interlayer dielectric film corresponding to or over the air layer. The semiconductor device exhibits reduced parasitic capacitance between the metal wiring (used as an inductor) and the substrate, thereby improving a self-resonance frequency as well as an applicable frequency band of the inductor.
    Type: Application
    Filed: November 27, 2009
    Publication date: June 10, 2010
    Inventor: Nam Joo KIM
  • Patent number: 7723776
    Abstract: Flash memory devices include a pair of elongated, closely spaced-apart main active regions in a substrate. A sub active region is also provided in the substrate, extending between the pair of elongated, closely spaced-apart main active regions. A bit line contact plug is provided on, and electrically contacting, the sub active region and being at least as wide as the sub active region. An elongated bit line is provided on, and electrically contacting, the bit line contact plug remote from the sub active region.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 25, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi
  • Patent number: 7701027
    Abstract: A method and apparatus for a photoinduced electromotive force sensor. The sensor has an active substrate formed of a semi-insulating photoconductor with sufficient carrier trap density to form an effective charge grating and pairs of electrodes disposed on the active substrate, where the sensor is configured to reduce the photovoltaic effect caused by the incident light in the vicinity of the electrodes. The shape or composition of the electrodes may be selected to reduce the photovoltaic effect or the electrodes may be disposed on the substrate to average out the photovoltaic effect arising from each one of the electrodes.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 20, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David M. Pepper, Gilmore J. Dunning, Marvin B. Klein, Gerald David Bacher, Bruno Pouet
  • Patent number: 7683402
    Abstract: Semiconductor devices whose current characteristics can be prevented from varying even if a phase shift mask is used for patterning gate electrodes of MISFETs, and a manufacturing method thereof are disclosed. According to one aspect of the present invention, there is provided a semiconductor device comprising a first transistor including a first gate electrode provided above a semiconductor substrate, and a first source and a first drain provided in the semiconductor substrate, a second transistor arranged to be adjacent to the first transistor, and including a second gate electrode provided above the semiconductor substrate in parallel with the first gate electrode, and a second source and a second drain provided in the semiconductor substrate, and a third gate electrode provided between the first transistor and the second transistor and in parallel with the first and second gate electrodes.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Fujii, Kouichirou Inoue, Naoto Higuchi, Taisei Suzuki
  • Patent number: 7671475
    Abstract: A nonvolatile semiconductor memory includes a cell unit having a select gate transistor and a memory cell connected in series, a select gate line connected to the select gate transistor, and a word line connected to the memory cell. One end of the word line is bent to the select gate line side, and a fringe is connected between a bent point and a distal end of the word line.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Kamigaichi, Takeshi Murata, Itaru Kawabata
  • Publication number: 20100026611
    Abstract: A display device in which a non-display region is formed in a portion of a display region which is formed of a mass of the pixels, out of the plurality of gate signal lines and the plurality of drain signal lines, the gate signal lines and the drain signal lines which are arranged so as to traverse the non-display region when the gate signal lines and the drain signal lines straightly extend imaginarily are formed in a pattern where the gate signal lines and the drain signal lines are routed around the non-display region
    Type: Application
    Filed: July 27, 2009
    Publication date: February 4, 2010
    Inventors: Koichi IGETA, Osamu Nagashima
  • Patent number: 7615445
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures. An array having inverted-T shaped floating gates may be formed in a self-aligned manner.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 10, 2009
    Assignee: SanDisk Corporation
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Patent number: 7595265
    Abstract: Contact resistance of a semiconductor device may be reduced, and thereby the reliability of the semiconductor device may be enhanced, when a metal line is formed in a semiconductor device according to a method including: (i) forming a metal layer on a semiconductor substrate; (ii) forming a groove on an upper surface of the metal layer by etching the metal layer; (iii) etching the metal layer so as to form a groove-engraved lower metal line that is wider than the groove; (iv) forming an insulator layer covering the semiconductor substrate and the groove-engraved lower metal line; (v) etching the insulator layer so as to form a contact hole exposing the groove; and (vi) forming a contact electrode filling the contact hole and an upper metal line connected thereto, above the insulator layer.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: September 29, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Joon-Bum Shim
  • Publication number: 20090224225
    Abstract: A method of making an integrally gated carbon nanotube field ionization device comprising forming a first insulator layer on a first side of a substrate, depositing a conductive gate layer on the first insulator layer, forming a cavity in the substrate by etching a second side of the substrate to near the first insulator layer, wherein the second side is opposite the first side and wherein a portion of the first insulator is over the cavity, etching an aperture in the portion of the first insulator layer and the conductive gate layer to form an aperture sidewall, depositing a second insulator layer, removing the second insulator layer from the top surface, depositing a metallization layer over the second insulator layer, depositing a catalyst layer on the metallization layer and growing a carbon nanotube from the catalyst layer.
    Type: Application
    Filed: April 8, 2009
    Publication date: September 10, 2009
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David S.Y. Hsu, Jonathan L. Shaw
  • Patent number: 7579656
    Abstract: A transistor for a semiconductor device may include a lower semiconductor layer, an active pattern, including a groove region, on the lower semiconductor layer, a gate pattern at least partially overlapping the active pattern including the groove region, and a gate insulating layer interposed between the active pattern and the gate pattern, wherein a bottom surface of the groove region may be lower than a top surface of the active pattern and higher than a lower surface of the active pattern.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Woong Kang, Hae-Wang Lee
  • Patent number: 7569883
    Abstract: Power electronic MOS device of the type comprising a plurality of elementary power MOS transistors and a gate structure comprising a plurality of conductive strips realized with a first conductive material such as polysilicon, a plurality of gate fingers or metallic tracks connected to a gate pad and at least a connection layer arranged in series to at least one of said conductive strip. Such gate structure comprising at least a plurality of independent islands formed on the upper surface of the conductive strips and suitably formed on the connection layers. Said islands being realized with at least one second conductive material such as silicide.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: August 4, 2009
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri, Antonio Giuseppe Grimaldi, Gaetano Bazzano
  • Publication number: 20090166811
    Abstract: A semiconductor device has a semiconductor chip and through electrodes formed passing through the semiconductor chip. A ground layer connected to the through electrode and a patch antenna connected to the through electrode are provided through an inorganic insulating layer formed of SiO2 or SiN on a second face opposite to a first face (main face) of the semiconductor chip.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD
    Inventor: Tomoharu FUJII
  • Patent number: 7535104
    Abstract: A metal structure for a contact pad of a wafer or substrate (101), which have copper interconnecting traces (102) surrounded by a barrier metal layer (103). The wafer or substrate is protected by an insulating overcoat (104). In the structure, the barrier metal layer is selectively exposed by a window (110) in the insulating overcoat. A layer of copper (105), adherent to the barrier metal, conformally covers the exposed barrier metal. Preferably, the copper layer is deposited by sputtering using a shadow mask. A layer of nickel (106) is adherent to the copper layer and a layer of noble metal (106) is adherent to the nickel layer. The noble metal may be palladium, or gold, or a palladium layer with an outermost gold layer. Preferably, the nickel and noble metal layers are deposited by electroless plating.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: May 19, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Howard R Test, Donald C Abbott
  • Patent number: 7528449
    Abstract: A semiconductor device includes a plurality of gate electrodes, source and drain regions, a plurality of source contacts, a plurality of drain contacts, substrate contacts, and a salicide block. The gate electrodes are arrayed in parallel on a semiconductor region on a semiconductor substrate. The source and drain regions are formed in the semiconductor region on both sides of each gate electrode. The source contacts are formed on the source region. The drain contacts are formed on the drain region. The substrate contacts are formed on the semiconductor substrate and electrically connect to the semiconductor substrate. The salicide block is formed between the gate electrode and the plurality of drain contacts. The salicide block prevents silicidation on the drain region. The length of the salicide block in a channel length direction increases as the distance from the substrate contact increases.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: May 5, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Chie Sutou, Hirobumi Kawashima
  • Patent number: 7521804
    Abstract: A semiconductor device capable of preventing an electrical short between contacts and their adjacent contact pads and a method of manufacturing the same are provided. A first interlayer insulating layer is formed on the semiconductor substrate including the active region. Contact pads pass through the first interlayer insulating layer and contact with the active region. Contacts are formed on the contact pads and are connected to a conductive layer disposed above the contacts. The contact pads have a height lower than a top surface of the first interlayer insulating layer such that the contact pads have smaller thickness than the first interlayer insulating layer.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-jun Park
  • Publication number: 20090096065
    Abstract: A monolithic electronic chip including: a substrate; a first circuit formed on a first circuit portion of the substrate; a second circuit formed on a second circuit portion of the substrate; and at least one conductive impedance tap formed a through-hole in the substrate. The substrate includes first and second opposing surfaces and at least one through-hole extending from the first surface to the second surface. Each of the circuit portions is disposed on one or both of the opposing surfaces. Each conductive impedance tap is coupled to the surface of the through-hole it is formed in to electrically couple the substrate to a reference voltage. The impedance between each circuit and the reference voltage via the conductive impedance tap(s) is less than the crosstalk impedance between the first circuit and the second circuit via the substrate.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: ITT MANUFACTURING ENTERPRISES, INC.
    Inventor: Dennis Whittaker
  • Patent number: 7511349
    Abstract: An integrated circuit chip includes a buffer layer, an underlying layer, a dielectric layer, a hole, and barrier layer. The buffer layer is over the underlying layer. The dielectric layer is over the buffer layer. The hole is formed in and extending through the dielectric layer and the buffer layer, and opens to the underlying layer. The hole includes a buffer layer portion at the buffer layer and a dielectric layer portion at the dielectric layer. At least part of the buffer layer portion of the hole has a larger cross-section area than a smallest cross-section area of the dielectric layer portion of the hole. The conformal barrier layer covers surfaces of the dielectric layer and the buffer layer in the hole. The hole is a via hole or a contact hole that is later filled with a conductive material to form a conductive via or a conductive contact.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: March 31, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Huan Tsai, Fang-Cheng Chen, Chao-Cheng Chen, Syun-Ming Jang
  • Publication number: 20090072354
    Abstract: The semiconductor device includes an upper electrode line structure and a lower electrode line structure provided over a semiconductor substrate. The semiconductor device also includes a guard contact having a first portion and a second portion. The guard contact is disposed between the upper electrode line structure and the lower electrode line structure. The first and second portions of the guard contact have different line widths.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 19, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Young Seok KIM
  • Publication number: 20090065764
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
    Type: Application
    Filed: November 5, 2008
    Publication date: March 12, 2009
    Applicant: NANOSYS, Inc.
    Inventors: David L. Heald, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Publication number: 20090057846
    Abstract: A method to fabricate adjacent silicon fins of differing heights comprises providing a silicon substrate having an isolation layer deposited thereon, patterning the isolation layer to form first and second isolation structures, patterning the silicon substrate to form a first silicon fin beneath the first isolation structure and a second silicon fin beneath the second isolation structure, depositing an insulating layer on the substrate, planarizing the insulating layer to expose top surfaces of the first and second isolation structures, depositing and patterning a masking layer to mask the first isolation structure but not the second isolation structure, applying a wet etch to remove the second isolation structure and expose the second silicon fin, epitaxially depositing a silicon layer on the second silicon fin, and recessing the insulating layer to expose at least a portion of the first silicon fin and at least a portion of the second silicon fin.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Inventors: Brian S. Doyle, Been-Yih Jin, Uday Shah
  • Patent number: 7489012
    Abstract: The invention is directed to a microdevice for containing electrically coupled cells while allowing their growth that allows the addition or removal of cells from their containment by providing an actuatable gate. When the gate is actuated, for example with electric current, the cells may be added or removed from their containment. The invention may be applied to a neurochip or any device for growing cells in a defined spatial arrangement.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: February 10, 2009
    Assignee: STMicroelectronics S.r.l.
    Inventors: Manuela La Rosa, Donata Nicolosi, Luigi Occhipinti, Giuseppe Spoto
  • Publication number: 20090008777
    Abstract: An interconnecting structure for a semiconductor die assembly, comprising: a substrate with pre-formed wiring circuit formed therein; a die having contact pads on an active surface; an adhesive material formed over the substrate to adhere the die over the substrate, wherein the substrate includes a via through the substrate and the adhesive material; and conductive material refilled into the via to couple the contact pads of the die to the wiring circuit of the substrate.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Diann-Fang Lin, Wen-Kun Yang
  • Publication number: 20080277746
    Abstract: A nanowire sensor with a self-aligned top electrode support insulator, and associated fabrication process are provided. The method begins with a doped silicon-containing substrate. A growth-promotion metal is deposited overlying the substrate. A silicon nitride electrode support is formed overlying the growth-promotion metal. Nanowires are grown from exposed regions of the growth-promotion metal and an insulator is deposited over the nanowires. A top insulator layer is removed to expose tips of the nanowires, and a top electrode metal is deposited overlying the nanowire tips and silicon nitride electrode support. Next, a stack etch is selectively performed, etching down to the level of the growth-promotion metal. A top electrode island is left that is centered on the silicon nitride electrode support and connected to the growth-promotion metal via the nanowires. Then, the sensor is dipped in a buffered hydrofluoric (BHF) solution, to remove any remaining insulator and to expose the nanowires.
    Type: Application
    Filed: January 9, 2007
    Publication date: November 13, 2008
    Inventors: Sheng Teng Hsu, Fengyan Zhang
  • Publication number: 20080246121
    Abstract: A semiconductive device is fabricated by forming, within a semiconductive substrate, at least one continuous region formed of a material having a non-uniform composition in a direction substantially perpendicular to the thickness of the substrate.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 9, 2008
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Daniel-Camille Bensahel, Yves Morand
  • Publication number: 20080237807
    Abstract: A second electrode is selectively brought into contact with a semiconductor substrate. Specifically, an insulating film having opening portions is provided on the second principal surface of the semiconductor substrate, and the second electrode is provided on the insulating film. The second electrode comes into contact with the second principal surface of the semiconductor substrate through the opening portions. The total area of the opening portions is approximately the half of the total area of the second principal surface of the semiconductor substrate. Consequently, minority carriers (holes) are prevented by the insulating film from being drawn out, and thus, the loss of the minority carriers around the second electrode is decreased. Accordingly, the conductivity modulation effect is improved. Therefore, the forward voltage can be decreased even with a structure in which the impurity concentration of a p type impurity region is decreased in order to shorten a reverse recover time.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 2, 2008
    Applicants: SANYO ELECTRIC CO., LTD, SANYO SEMICONDUCTOR CO., LTD.
    Inventors: Seiji MIYOSHI, Tetsuya Okada
  • Publication number: 20080224205
    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 18, 2008
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7405418
    Abstract: The invention relates to a memory device electrode, in particular for a resistively switching memory device, wherein the surface of the electrode is provided with a structure, in particular comprises one or a plurality of shoulders or projections, respectively. Furthermore, the invention relates to a memory cell comprising at least one such electrode, a memory device, as well as a method for manufacturing a memory device electrode.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: July 29, 2008
    Assignee: Infineon Technologies AG
    Inventors: Thomas Happ, Cay-Uwe Pinnow, Michael Kund
  • Publication number: 20080157117
    Abstract: A insulated gate bipolar transistors (IGBT) having an enhanced modulation layer provides reduced on-state power dissipation and better conductivity modulation than conventional devices. The IGBT includes an enhanced modulation layer disposed within a portion of the n? doped drift layer, in a n-type device, or p? doped drift layer, in a p-type device. The enhanced modulation layer contains a higher carrier concentration than the n? or p? doped drift layer. If the IGBT device is in an on state, the enhanced modulation layer decreases a size of a depletion region formed around the p well body region or n well body region. In a n-type enhanced modulation layer IGBT, electrons, traveling from the n+ region towards the emitter, are spread laterally and uniformly in the n? doped drift layer. In a p-type enhanced modulation layer IGBT, holes, traveling from the p+ region towards the emitter, are spread laterally and uniformly in the p? doped drift layer.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventors: Ty R. McNutt, Ginger G. Walden, Marc E. Sherwin
  • Publication number: 20080128701
    Abstract: The invention provides an electronic device configured to prevent or reduce electrostatic discharge from causing a pixel to malfunction. An electronic device manufactured according to the principles of the invention may include multiple conductive layers that cross but do not contact each other, wherein at least one of the conductive layers includes a width change part having a width that changes in a length direction of the at least one of the conductive layers, and a tab connected to at least one of the conductive layers at a region thereof that does not cross a neighboring conductive layer. Alternatively, the width change part may have a width that continuously varies along a length of the at least one conductive layer and may also have obtuse corner edges. The invention also provides a flat organic electroluminescent display (OELD) or LCD display device that includes such an electronic device.
    Type: Application
    Filed: January 23, 2008
    Publication date: June 5, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Eun-Ah Kim, Jeong-No Lee, Su-Mi Lee, Bong-Ju Shin, Mi-Jin Lee
  • Publication number: 20080105904
    Abstract: In a standard cell, dummy transistors have p-type and n-type dummy gate electrodes. The dummy transistors are in an OFF state all the time. The gate length of each of the dummy gate electrodes is extended over an end portion of a diffusion region toward the inside of the standard cell. Thus, the total surface area and the total perimeter of respective gate electrodes of all transistors provided in the standard cell are increased. As a result, for example, even though shapes of gate electrodes of transistors vary between the standard cell and each of other standard cells, transistor characteristics are substantially equal among the standard cells. Therefore, variations in delays of signals generated between the standard cells can be suppressed.
    Type: Application
    Filed: October 11, 2007
    Publication date: May 8, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Takashi Sumikawa, Kyoji Yamashita, Dai Motojima
  • Patent number: 7332811
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Patent number: 7326618
    Abstract: A method of making a transistor driver circuit with a plurality of transistors, each having source and drain regions formed in a substrate. At least first and second interconnect layers are formed on top of the substrate. A first plurality of contacts connect the source regions to one of the first or second interconnect layers. A second plurality of contacts connect the drain regions to the other of the first or second interconnect layers. The first and second interconnect layers cover a region above the substrate area in which the plurality of transistors reside so as to achieve a low ohmic result. The second interconnect layer has openings therein for one of the respective first or second plurality of contacts to pass therethrough and couple to the at least one first interconnect layer. Either the first or second interconnect layers can function as an input or output for the circuit.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: February 5, 2008
    Assignee: Broadcom Corporation
    Inventor: Victor Fong
  • Publication number: 20080012129
    Abstract: A semiconductor device includes a semiconductor chip having a first main surface having an electrode pad in an exposed state, and an interlayer insulation layer formed on the first main surface so that the electrode pad is partially exposed; a re-distribution wiring layer including a wiring pattern having a linear portion having one end portion electrically connected to the electrode pad and extending from the electrode pad, and a post electrode mounting portion with a recessed polygonal shape and connected to the other end portion of the linear portion; a post electrode formed on the post electrode mounting portion and having a bottom surface with a contour crossing an upper contour of the post electrode mounting portion at more than two points; a sealing portion disposed so that a top of the post electrode is exposed; and an outer terminal formed on the top of the post electrode.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 17, 2008
    Inventor: Kiyonori Watanabe
  • Patent number: 7301239
    Abstract: A wiring structure with improved resistance to void formation and a method of making the same are described. The wiring structure has a first conducting layer that includes a large area portion which is connected to an end of a protrusion with a plurality of “n” overlapping segments and at least one bending portion. The other end of the protrusion is connected to the bottom of a via which has an overlying second conducting layer. A bend is formed by overlapping the ends of two adjacent segments at an angle between 45° and 135°. The protrusion may also include at least one extension at a segment end beyond a bend. A bending portion and extension are used as bottlenecks to delay the diffusion of a vacancy from the large area portion to the vicinity of the via and is especially effective for copper interconnects or in a via test structure.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: November 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Jung Wang, Su-Chen Fan, Ding-Da Hu, Hsueh-Chung Chen
  • Patent number: 7279744
    Abstract: An MOS device is formed including a semiconductor layer of a first conductivity type, and first and second source/drain regions of a second conductivity type formed in the semiconductor layer proximate an upper surface of the semiconductor layer, the first and second source/drain regions being spaced apart relative to one another. A drift region is formed in the semiconductor layer proximate the upper surface of the semiconductor layer and at least partially between the first and second source/drain regions. An insulating layer is formed on at least a portion of the upper surface of the semiconductor layer and above at least a portion of the drift region. A gate is formed on the insulating layer and at least partially between the first and second source/drain regions. The MOS device further includes a shielding structure formed on the insulating layer above at least a portion of the drift region.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 9, 2007
    Assignee: Agere Systems Inc.
    Inventors: Peter L. Gammel, Isik C. Kizilyalli, Marco G. Mastrapasqua, Muhammed Ayman Shibib, Zhijian Xie, Shuming Xu
  • Publication number: 20070228523
    Abstract: Nano-scale devices and methods provide reduced feature dimensions of features on the devices. A surface of a device substrate having a pattern of spaced apart first nanowires is consumed, such that a dimension of the first nanowires is reduced. A second nanowire is formed in a trench or gap between adjacent ones of the first nanowires, such that the nano-scale device includes a set of features that includes the first nanowires with the reduced dimension and the second nanowire spaced from the adjacent first nanowires by sub-trenches.
    Type: Application
    Filed: February 23, 2007
    Publication date: October 4, 2007
    Inventor: Shashank Sharma
  • Patent number: 7268067
    Abstract: Integrated circuit packages that connect solder balls between solder ball pads of a die and substrate pads of a printed circuit board (PCB). The solder balls are electrically disconnected from any circuit of the die, i.e., “dummy” solder balls, and are used to temporarily hold the die in position with respect to the PCB until the circuit is wire bonded and an underfill material is cured between the die and the PCB to more permanently connect them together. The underfill material is selected to have a coefficient of thermal expansion (CTE) that is substantially equal to the CTE of the solder balls to prevent thermal mismatch problems. An overmolding compound is disposed about the die and the underfill material and about the wire bonds to complete the package. Various arrangements of the solder ball pads on the die include columnar and row, corner, diagonal, cross, and periphery arrangements.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Frank L. Hall, Cary J. Baerlocher
  • Patent number: 7259430
    Abstract: A non-volatile memory device includes a fin body protruded from a semiconductor substrate. The fin body has first and second side surfaces opposite to each other. An inner dielectric layer pattern is formed on an upper surface, and the first and second side surfaces of the fin body. A floating gate electrode is formed on the inner dielectric layer pattern. The floating gate electrode has an uneven upper surface. An outer dielectric layer is formed on the floating gate electrode. A control gate electrode is formed on the outer dielectric layer.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Jae-Man Yoon, Tae-Yong Kim, Dong-Gun Park, Choong-Ho Lee
  • Patent number: 7220984
    Abstract: The influence of surface geometry on metal properties is studied within the limit of the quantum theory of free electrons. It is shown that a metal surface can be modified with patterned indents to increase the Fermi energy level inside the metal, leading to decrease in electron work function. This effect would exist in any quantum system comprising fermions inside a potential energy box. Also disclosed is a method for making nanostructured surfaces having perpendicular features with sharp edges.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 22, 2007
    Assignee: Borealis Technical Limited
    Inventors: Avto Tavkhelidze, Stuart Harbron
  • Patent number: 7170176
    Abstract: A technology for easily forming a multi-layer wiring structure that is fine and reliable. In the multi-layer wiring structure, the lower-layer wiring and the upper-layer wiring that are formed to sandwich an insulating layer are electrically connected to each other in a projection formed in the lower-layer wiring. The projection includes a columnar conductive member and the upper and lower layers thereof and each of the lower layer and the upper layer is formed of a conductive layer formed over the entire lower-layer wiring. The upper-layer is electrically connected to the lower-layer wiring in the portion where the projection is exposed substantially on the same plane as the top surface of the insulating layer.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akira Ishikawa, Tetsuji Yamaguchi
  • Patent number: 7112855
    Abstract: The disclosure relates to a transistor driver circuit with a plurality of transistors, each having source and drain regions formed in a substrate. At least first and second interconnect layers are formed on top of the substrate. A first plurality of contacts connect the source regions to one of the first or second interconnect layers. A second plurality of contacts connect the drain regions to the other of the first or second interconnect layers. The first and second interconnect layers cover a region above the substrate area in which the plurality of transistors reside so as to achieve a low ohmic result. The second interconnect layer has openings therein for one of the respective first or second plurality of contacts to pass therethrough and couple to the at least one first interconnect layer. Either the first or second interconnect layers can function as an input or output for the circuit.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 26, 2006
    Assignee: Broadcom Corporation
    Inventor: Victor Fong
  • Patent number: 7034358
    Abstract: The present invention relates to a method for producing a vertical transistor, and to a vertical transistor. A sacrificial gate oxide and a sacrificial gate electrode are used during the production of the vertical transistor to makes it possible to considerably reduce or entirely avoid negative effects that normally result from the production of insulation structures between the vertical transistors. In particular, broadening of the gate oxide at the edge of the gate electrode can be prevented, and the edge of the gate electrode can be influenced deliberately. This allows vertical transistors to be produced having a current/voltage characteristic that can be adjusted specifically. In particular, vertical transistors can be produced having a pronounced corner effect.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: April 25, 2006
    Assignee: Infineon Technologies AG
    Inventors: Dietrich Bonart, Gerhard Enders, Peter Voigt