Fluid Patents (Class 361/689)
  • Patent number: 9354255
    Abstract: An output stage module for a power amplifier device (e.g., for a power amplifier device of a transmit unit of a magnetic resonance device) includes a housing and a carrier that is arranged within the housing. The carrier is made of a non-electrically-conducting, thermally-conducting material with low electrical losses (e.g., a ceramic carrier). At least two transistor dies are arranged on the carrier. At least one transistor, in each case, is assigned to a phase of a symmetrical input signal. In and/or on the carrier, a first conductor structure connecting (e.g., inductively) a drain output of the at least two transistor dies to an output signal and to second conductor structures each conducting an input signal to at least one gate input of the at least two transistor dies are provided. At least one cooling channel routed adjacent to at least one transistor die of the at least two transistor dies is provided.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 31, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventor: Adam Albrecht
  • Patent number: 9295169
    Abstract: Arrangement in an automated test system to connect to a plurality of functional modules of different forms including a common chassis defining a plurality of identical connectors and a backplane associated with the chassis and providing electrical connections for functional modules when engaged with the connectors. A set of adapters is provided including a first adapter having a coupling at an attachment end and a module receiving end configured to mate with one or more functional modules each having a first form, and a second adapter having a coupling at an attachment end and a module receiving end configured to mate with one or more functional modules each having a second form different than the first form. The couplings of the adapters are the same such that the adapters are freely insertable via their attachment ends into engagement with any of the connectors.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 22, 2016
    Assignee: Advanced Testing Technologies, Inc.
    Inventors: Robert Spinner, Eli Levi, Richard Engel
  • Patent number: 9282685
    Abstract: Flux concentration cores that encircle bus bars are arranged at different heights. When viewed from an extending direction (a Z-direction) of the bus bars, the first flux concentration core and the second flux concentration core that are adjacent to one another partially overlap each other, and the second flux concentration core and the third flux concentration core that are adjacent to each other partially overlap each other. Therefore, the flux concentration cores are able to be arranged around the bus bars even when the spaces between the bus bars are narrow.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: March 8, 2016
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin AW CO., LTD.
    Inventors: Yusuke Seo, Yutaka Hotta
  • Patent number: 9247675
    Abstract: A power converter includes an inverter in an inverter case, and a DC/DC converter in a converter case detachably fixed to the inverter case. The inverter includes power semiconductor modules, and the DC/DC converter includes a down-converter circuit and/or a boost converter circuit. The inverter case includes first and second path-forming members thermally contacting the converter case. In the first path-forming member, the power semiconductor module is inserted into a first coolant path. In the second path-forming member, the power semiconductor module inserted into the second coolant path, which is parallel to the first coolant path. The DC/DC converter includes an inductance device, and a switching device board on which a switching device con rolling electric current in the inductance device is mounted. The inductance and switching devices are in an area of the converter case thermally contacting first and second path forming members.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 26, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Katsuhiro Higuchi, Akira Ishii, Hidenori Shinohara
  • Patent number: 9161477
    Abstract: A hydraulic distributor capable of distributing a liquid coolant to a plurality of cooling devices, includes a liquid coolant inlet conduit into the hydraulic distributor; a plurality of supply conduits for the cooling devices by the liquid coolant, each of the supply conduits being hydraulically connected to the inlet conduit through a supply duct; a liquid coolant outlet conduit from the distributor; a plurality of liquid coolant return conduits in the distributor, each of the return conduits being hydraulically connected to the outlet conduit by a return duct; wherein at least one of the liquid coolant supply or return conduits can be fitted with a floating connector allowing for a hydraulic connection with at least one of the cooling devices among the plurality of cooling devices.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: October 13, 2015
    Assignee: BULL SAS
    Inventors: Fabien Demange, Jean-Christophe Bonnin
  • Patent number: 9111900
    Abstract: A power semiconductor device comprising a power semiconductor module and a heat sink and a method for its manufacture. The heat sink has a first cooling housing component, with a cutout passing therethrough, and a second cooling housing component, with a cooling plate arranged in the cutout. The first and second cooling housing components are configured and arranged relative to one another so that a cavity is formed at the side of the cooling plate facing away from the power semiconductor components. The cooling plate is connected to the first cooling housing component by a first weld seam which extends circumferentially therearound. The first weld seam seals the cooling plate in relation to the first cooling housing component, and the second cooling housing component is connected to the first cooling housing component. The inventive power semiconductor device has good heat conduction from the power semiconductor components to a heat sink.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 18, 2015
    Assignee: Semikron Elektronik GmbH & Co., KG
    Inventors: Ingo Bogen, Markus Beck, Hartmut Kulas, Alexander Popescu, Reinhard Helldörfer
  • Patent number: 9042100
    Abstract: An assembly for cooling heat generating components, such as power electronics, computer processors and other devices. Multiple components may be mounted to a support and cooled by a flow of cooling fluid. A single cooling fluid inlet and outlet may be provided for the support, yet multiple components, including components that have different heat removal requirements may be suitably cooled. One or more manifold elements may provide cooling fluid flow paths that contact a heat transfer surface of a corresponding component to receive heat.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Aavid Thermalloy, LLC
    Inventor: Sukhvinder S. Kang
  • Patent number: 9042147
    Abstract: A power inverter includes a power semiconductor module that includes a power semiconductor device, a control circuit board that outputs a control signal used for controlling the power semiconductor device, a driver circuit board that outputs a driving signal used for driving the power semiconductor device, a conductive metal base plate arranged in a space between the driver circuit board and the control circuit board in which a fine and long opening portion is formed, wiring that connects the driver circuit board and the control circuit board through the opening portion and delivers the control signal to the driver circuit board, and an AC busbar that is arranged on a side opposite to the metal base plate through the driver circuit board and delivers an AC current output from the power semiconductor module to a drive motor. At least a portion of the AC busbar that faces the opening portion extends in a direction directly running in a longitudinal direction of the fine and long opening portion.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 26, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akira Ishii, Keisuke Fukumasu
  • Patent number: 9009971
    Abstract: A method is provided for facilitating cooling of electronic components of an electronic system. The method includes: providing a housing at least partially surrounding and forming a compartment about the components, and providing an immersion-cooling fluid is disposed within the compartment, at least one component of the electronic system being at least partially non-immersed within the fluid in the compartment; providing a wicking film element physically coupled to a main surface of the at least one component and partially disposed within the fluid within the compartment; and securing, via a coupling element, the wicking film element in physical coupling to the main surface of the at least one component without the coupling element overlying the main surface of the component(s). As an enhancement, the wicking film element wraps over the component to physically couple to two opposite main sides of the component.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20150103489
    Abstract: An electronic device includes a substrate wafer made of an insulating material and having an electrical connection network. An integrated circuit chip is mounted to a top side of the substrate wafer. The substrate wafer contains an internal duct. The duct is formed by a covered trench located in the top side of the substrate wafer. The trench contains a thermally conductive material, for example being a fluid. Openings in the top side of the substrate wafer that are offset from the trench permit the making of an electrical connection between the integrated circuit and the electrical connection network.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Applicant: STMICROELECTRONICS (GRENOBLE 2) SAS
    Inventors: David AUCHERE, Yvon IMBS
  • Patent number: 9007771
    Abstract: A thermosyphon heat exchanger includes a first set of first conduit elements for heat absorbing and a second set of second conduit elements for heat releasing. A first end of the first set can be connected to a first end of the second set by at least one manifold and a second end of the first set is connected to a second end of the second set by at least one other manifold. At least one first set of first conduit elements and the at least one second set of second conduit elements are at least partially arranged such that a stack is formed.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: April 14, 2015
    Assignee: ABB Research Ltd.
    Inventor: Bruno Agostini
  • Patent number: 9007768
    Abstract: A system for cooling items of equipment likely to give off energy, comprises: an enclosure comprising a membrane that is porous to water vapor and sealed to liquid water, said membrane separating the cavity into a first portion designed to contain a fluid consisting of water and vapor, a second portion designed to contain the vapor resulting from the vaporization of the water, a temperature sensor for measuring the temperature of the liquid-vapor fluid contained in the cavity, a device to discharge the vapor from the cavity into the environment creating a vacuum in this cavity and breaking the natural liquid/vapor balance of the cavity containing the liquid, thus causing a vaporization of a portion of the liquid, a means for controlling the flow rate of the vapor discharged to outside of the cavity, said control means being regulated on the signal delivered by the temperature sensor.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 14, 2015
    Assignee: Thales
    Inventor: Martin Raynaud
  • Publication number: 20150092347
    Abstract: A cooling device includes a cooling member connected with a cooling pipe through which a cooling medium flows, a first fastening mechanism part provided at a first position on the cooling member and configured to fasten the cooling member and a substrate in a state where an electronic part to be cooled is sandwiched between the cooling member and the substrate, and a second fastening mechanism part provided at a second position on the cooling member that is different from the first position, the second position being located at a position where a first load exerted on the cooling member and a second load exerted on the cooling member maintain a balance in the electronic part, the first load being applied by the cooling pipe and the first fastening mechanism part, the second load being applied by the second fastening mechanism part.
    Type: Application
    Filed: September 12, 2014
    Publication date: April 2, 2015
    Inventors: Tsuyoshi So, Keita Hirai, Yoshinori Uzuka
  • Publication number: 20150070841
    Abstract: A cooling structure for an inverter (31) controls a motor (6) to drive an automobile. This inverter device (22) includes a power circuit section (28) having an inverter (31) to convert a DC power of a battery (19) to an AC power for the motor (6), and a casing (39) enclosing the power circuit section (28). A fin (41) is provided in an outer surface of the casing (39), a coolant path (42) for the flow of a cooling medium is provided within the casing (39) or in the outer surface thereof, and a pump (43) circulating the cooling medium in the coolant path (42) is disposed in the casing (39). With this structure, the flow resistance for cooling the inverter (31) is reduced to allow the pump (43) to be downsized and a proper cooling can be accomplished to the amount of heat by the inverter (31).
    Type: Application
    Filed: April 3, 2013
    Publication date: March 12, 2015
    Applicant: NTN CORPORATION
    Inventors: Minoru Suzuki, Tetsuya Yamamoto, Koichi Okada
  • Publication number: 20150073509
    Abstract: Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils (e.g., a primary coil and a secondary coil) may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to the primary coil to absorb heat generated during the inductive coupling and reduce temperature increases of the primary coil. In one example, the phase change material may be configured to absorb heat from an energy transfer coil. A housing may be configured to contain the phase change material and a coupling mechanism may be configured to removably attach the housing to the energy transfer coil.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Todd A. Kallmyer, John E. Kast, David P. Olson, Randy S. Roles, Venkat R. Gaddam
  • Patent number: 8964384
    Abstract: Embodiments provide methods, apparatuses, and systems for providing a cooling flow to a component. In various examples, a chip socket may include a cavity configured to couple to the component. The chip socket may include a first channel and a second channel. The first channel may act as an ingress channel while the second channel may act as an egress channel. The ingress and egress channels may be configured to facilitate cooling of the component.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kevin B Leigh, George D Megason
  • Publication number: 20150042342
    Abstract: An apparatus for cooling an electrical component includes a circuit board with the electrical component disposed on the circuit board. The apparatus includes a cover disposed on the circuit board. The cover and the circuit board form a closed cavity in which the electronic component is disposed. The cavity has a first opening for introduction of a fluid and a second opening for discharge of a fluid.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventor: Adam Albrecht
  • Patent number: 8953314
    Abstract: A fully-passive, dynamically configurable directed cooling system for a microelectronic device is disclosed. In general, movable pins are suspended within a cooling plenum between an active layer and a second layer of the microelectronic device. In one embodiment, the second layer is another active layer of the microelectronic device. The movable pins are formed of a material that has a surface tension that decreases as temperature increases such that, in response to a temperature gradient on the surface of the active layer, the movable pins move by capillary flow in the directions of decreasing temperature. By moving in the direction of decreasing temperature, the movable pins move away from hot spots on the surface of the active layer, thereby opening a pathway for preferential flow of a coolant through the cooling plenum at a higher flow rate towards the hot spots.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: February 10, 2015
    Assignee: Georgia Tech Research Corporation
    Inventor: Andrei G. Fedorov
  • Patent number: 8953319
    Abstract: A heat-dissipating module applied to a circuit board having an electronic element is disclosed. The heat-dissipating module includes a plurality of connecting portions, a contacting portion and a folded portion. The heat-dissipating module is connected to the circuit board by the connecting portions, and a first surface of the contacting portion contacts the electronic element. The folded portion is connected to the contacting portion. The heat-dissipating module is suitable for a thin and light electronic device and has firm structure.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 10, 2015
    Assignee: Asustek Computer Inc.
    Inventor: Cheng-Yu Wang
  • Patent number: 8953317
    Abstract: Cooling apparatuses and methods are provided for immersion-cooling one or more electronic components. The cooling apparatus includes a housing at least partially surrounding and forming a fluid-tight compartment about the electronic component(s) and a dielectric fluid disposed within the fluid-tight compartment, with the electronic component(s) immersed within the dielectric fluid. A vapor-condenser and one or more wicking components are also provided. The vapor-condenser includes a plurality of thermally conductive condenser fins extending within the fluid-tight compartment, and the wicking component(s) is disposed within the fluid-tight compartment in physical contact with at least a portion of one or more thermally conductive condenser fins of the thermally conductive condenser fins extending within the compartment.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8947880
    Abstract: A chassis for a plurality of computers for use in a data center, the chassis at least one extensible fin, the fin either extensible perpendicularly from the front of the chassis or extensible parallel with the front of the chassis.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: February 3, 2015
    Assignee: Lenovo Enterprise Solutions (Singapore) Ptd. Ltd.
    Inventors: Matthew R. Archibald, Jerrod K. Buterbaugh
  • Patent number: 8933860
    Abstract: A thermal management system and method for active cooling of high speed seeker missile domes or radomes comprising bonding to an IR dome or RF radome a heat pipe system having effective thermal conductivity of 10-20,000 W/m*K and comprising one or more mechanically controlled oscillating heat pipes, employing supporting integrating structure including a surface bonded to the IR dome or RF radome that matches the coefficient of thermal expansion the dome or radome material and that of said one or more mechanically controlled oscillating heat pipes, and operating the heat pipe system to cool the IR dome or RF radome while the missile is in flight.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 13, 2015
    Assignees: Integral Laser Solutions, Inc., The Curators of the University of Missouri
    Inventors: LaVerne Arthur Schlie, Hongbin Ma
  • Patent number: 8929071
    Abstract: A cooling device includes a ceramic substrate with a metal layer bonded to an outer planar surface. The cooling device also includes a channel layer bonded to an opposite side of the ceramic substrate and a manifold layer bonded to an outer surface of the channel layer. The substrate layers are bonded together using a high temperature process such as brazing to form a single substrate assembly. A plenum housing is bonded to the single substrate assembly via a low temperature bonding process such as adhesive bonding and is configured to provide extended manifold layer inlet and outlet ports.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 6, 2015
    Assignee: General Electric Company
    Inventors: Richard Alfred Beaupre, Ljubisa Dragoljub Stevanovic, Daniel Jason Erno, Charles Gerard Woychik
  • Patent number: 8929074
    Abstract: Electronic device assemblies employing dual phase change materials and vehicles incorporating the same are disclosed. In one embodiment, an electronic device assembly includes a semiconductor device having a surface, wherein the semiconductor device operates in a transient heat flux state and a normal heat flux state, a coolant fluid thermally coupled to the surface of the semiconductor device, and a phase change material thermally coupled to the surface of the semiconductor device. The phase change material has a phase change temperature at which the phase change material changes from a first phase to a second phase. The phase change material absorbs heat flux at least when the semiconductor device operates in the transient heat flux state.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Ercan Mehmet Dede
  • Publication number: 20150003012
    Abstract: An electronic device includes: a support member; an electronic component stacked over the support member with a plurality of connections therebetween; and a refrigerant pipe through which a refrigerant passes, the refrigerant pipe being provided between at least some connections among the plurality of connections. A method for manufacturing an electric device includes: stacking an electronic component over a support member with a plurality of connections therebetween; and providing a refrigerant pipe, through which a refrigerant passes, between at least some connections among the plurality of connections.
    Type: Application
    Filed: May 16, 2014
    Publication date: January 1, 2015
    Applicant: FUJITSU LIMITED
    Inventors: Shunji BABA, Kenji FUKUZONO, Yuki HOSHINO
  • Patent number: 8922998
    Abstract: A cooling apparatus is provided which includes one or more coolant-cooled structures attached to one or more electronic components, one or more coolant conduits, and one or more coolant manifolds. The coolant-cooled structure(s) includes one or more coolant-carrying channels, and the coolant manifolds includes one or more rotatable manifold sections. One coolant conduit couples in fluid communication a respective rotatable manifold section and the coolant-carrying channel(s) of a respective coolant-cooled structure. The respective rotatable manifold section is rotatable relative to another portion of the coolant manifold to facilitate detaching of the coolant-cooled structure from its associated electronic component while maintaining the coolant-cooled structure in fluid communication with the respective rotatable manifold section through the one coolant conduit, which in one embodiment, is a substantially rigid coolant conduit.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Eric J. McKeever, Robert E. Simons
  • Patent number: 8921702
    Abstract: In one possible implementation, a thermal plane structure includes a non-wicking structural microtruss between opposing surfaces of a multilayer structure and a thermal transport medium within the thermal plane structure for fluid and vapor transport between a thermal source and a thermal sink. A microtruss wick is located between the opposing surfaces and extends between the thermal source and the thermal sink.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 30, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: William B. Carter, Peter D. Brewer, Adam F. Gross, Jeffrey L. Rogers, Keith V. Guinn, Alan J. Jacobsen
  • Publication number: 20140376184
    Abstract: A semiconductor device exhibits low pressure loss and is capable of cooling a plurality of power semiconductor chips evenly. This semiconductor device includes a semiconductor module and a cooler for cooling a power semiconductor element mounted in the semiconductor module. A cooling unit of the cooler has a first header part that has a first bottom surface disposed between a coolant inlet and an end portion of a first substrate on the coolant outlet side and inclined toward a bottom plane of cooling fins so that a coolant supplied from the coolant inlet flows toward the cooling fins; and a second header part that has a second bottom surface inclined from an end portion of the bottom plane of the cooling fins on the coolant outlet side so that the coolant discharged from the cooling fins flows to the coolant outlet.
    Type: Application
    Filed: April 11, 2013
    Publication date: December 25, 2014
    Applicant: FUJI ELECTRIC CO. LTD.
    Inventor: Hiromichi Gohara
  • Publication number: 20140376183
    Abstract: In some examples, a cooling system includes a silicon substrate defining a first trench, a second trench, and a plurality of channels extending between the first trench and the second trench. The silicon substrate may define a first surface and a second surface substantially opposite to and substantially parallel to the first surface, and each of the plurality of channels may extend substantially parallel to the surface of the silicon substrate. The cooling system also may include a microelectronic device comprising a heat-generating area. The microelectronic device may be attached to the first surface or the second surface of the silicon substrate. In some examples, the plurality of channels may be etched between the first trench and the second trench.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventor: Steve Chang
  • Publication number: 20140369000
    Abstract: A terminal unit according to an embodiment of the present invention includes: a case forming the outer shape; and a frame disposed in the case and having a heat dissipation channel, in which the frame includes: a first panel made of a material having high thermal conductivity and disposed in the case; and a second panel made of a material having a high insulating property and combined with the first panel.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 18, 2014
    Inventors: Injoong Kim, Joungwook Park
  • Publication number: 20140368999
    Abstract: A temperature control module for a socket is provided with of an upper docking plate and a lower docking plate. The upper docking plate has a recess for accommodating a socket and two temperature-controlling fluid passages. One end of the passages communicates with the recess, and the other end thereof is connected to a temperature-controlling fluid source. The lower docking plate is disposed under the upper docking plate and covers the recess. A fluid chamber is formed of the recess of the docking plate, the lower docking plate and the socket. The temperature-controlling fluid source outputs a temperature-controlling fluid to the fluid chamber via the temperature-controlling fluid passages for maintaining the socket at a specific temperature.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 18, 2014
    Applicant: CHROMA ATE INC.
    Inventors: Xin-Yi Wu, Jui-Chih CHOU, Hsuan-Jen SHEN
  • Patent number: 8899060
    Abstract: Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T0 that is sent to the equipment. To minimize power consumption PTotal for the entire system, where PTotal=P0+PCool is the sum of the electronic equipment's power consumption P0 plus the cooling equipment's power consumption PCool, PTotal is obtained experimentally, by measuring P0 and PCool, as a function of three parameters: coolant temperature T0; weather-related temperature T3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T3 and C, the value T0* of T0 that minimizes PTotal.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Shawn Anthony Hall, Gerard Vincent Kopcsay
  • Patent number: 8897011
    Abstract: Disclosed herein is a heat dissipation system for a power module, the heat dissipation system including: first and second heat dissipation plates spaced apart from each other while facing each other, to form a cooling medium flow passage; first and second inflow lines extended to the cooling medium flow passage of the first and second heat dissipation plates, to transfer cooling media flowing therein at different flow rates or different fluxes to the cooling medium flow passage; and first and second inlets respectively connected with the first and second inflow lines to allow the cooling media to flow therein.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Hoon Kwak, Jong Man Kim, Young Ho Sohn
  • Publication number: 20140340845
    Abstract: A fluid cooled enclosure includes a fluid conduit that provides a fluid coolant path between sides of a housing. Optionally, the fluid conduit can provide bi-directional fluid coolant paths. In another example, an interface block can be provided with a first interface surface engaging an interface surface of a first end portion of the fluid conduit. In another example, a first end portion of the fluid conduit is fabricated with a first material composition and the interface block is fabricated with a second material composition that has a higher thermal conductivity than the first material composition. In further examples, methods of cooling a conduction cooled circuit module comprise the steps of mounting an interface block to a conduction cooled circuit module, mounting the interface block with respect to the fluid conduit, and cooling the electrical circuits of the conduction cooled circuit module by flowing fluid coolant through the fluid conduit.
    Type: Application
    Filed: April 4, 2014
    Publication date: November 20, 2014
    Applicant: DY 4 Systems, Inc.
    Inventors: Ivan Straznicky, William Edward Ratliff
  • Patent number: 8891235
    Abstract: A thermal interface unit includes a pedestal, a first contact surface below the pedestal to interface with a first die and a flat spring to enable the first contact surface to adapt to a variable height of a first die of a multi-chip package (MCP).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: Joseph F. Walczyk, Jin Yang, James G. Maveety, Todd P. Albertson, Ashish Gupta, Jin Pan, Arun Krishnamoorthy
  • Patent number: 8891240
    Abstract: An apparatus and method for cooling a semiconductor device. The apparatus comprises a chamber configured for receiving a cooling fluid; and a plurality of contact elements comprising respective first ends disposed within the chamber; wherein, during operation, respective second ends of contact elements contact a surface of the semiconductor device for transferring heat generated in the semiconductor device to the cooling fluid.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: November 18, 2014
    Assignee: Semicaps Pte Ltd
    Inventors: Choon Meng Chua, Lian Ser Koh, Sze Wei Choong, Jacob Chee Hong Phang
  • Patent number: 8885329
    Abstract: When testing or powering up a magnet in a magnetic resonance imaging device, a switch is provided that switches a winding between resistive and superconductive modes. The switch includes a housing that contains a winding wound about a bobbin, and an internal coolant cavity that contains coolant that cools the winding, A baffle separates the internal coolant cavity from an external coolant reservoir. The baffle has small apertures that permit influx of liquid coolant into the internal cavity to cool the winding, At high temperatures, the coolant in the internal cavity vaporizes causing the winding to further increase its temperature and resistance, Upon reduction of heat to the winding, the winding cools sufficiently to permit influx of liquid coolant, thereby restoring a superconductive mode of operation to the winding.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 11, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Alexander A. Akhmetov
  • Patent number: 8885341
    Abstract: An improved electronic communications system and process 100 with front to back cooling can be provided in which the flow of influent cooling air can be directed horizontally through an intake cooling plenum chamber 145-146 positioned above or below line cards 127-129 and then passed downwardly through an inlet side cooling plenum 139-141. The cooling air can thereafter be propelled sideways, laterally and horizontally across passageways 138 between the line cards to remove heat generated by the line cards. The effluent heated air can be passed upwardly through an outlet side cooling plenum 142-144 and can be discharged through an exhaust cooling plenum to chamber 147-148 which can be diagonally separated from the intake cooling plenum chamber 145-146 by a fluid-impermeable plate 149-151.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: November 11, 2014
    Assignee: Motorola Mobility LLC
    Inventor: Guillaume F. Desmarets
  • Patent number: 8881994
    Abstract: A system and method for lowering the structural natural frequency of a synthetic jet actuator is disclosed. A synthetic jet actuator is provided that includes a first plate, a second plate spaced apart from the first plate and arranged parallelly thereto, and a spacer element configured to space the first plate apart from the second plate and define a chamber along with the first and second plates. The spacer element includes at least one orifice formed therein such that the chamber is in fluid communication with an environment external to the chamber, and the spacer element is constructed to deform in a bending motion in response to a deflection of at least one of the first and second plates.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventors: Todd Garrett Wetzel, Thomas Elliot Stecher, Charles Erklin Seeley, Charles Franklin Wolfe, Jr., Yogen Vishwas Utturkar, Bryan Patrick Whalen
  • Patent number: 8867205
    Abstract: A fluid cooling system and associated fitting assembly for an electronic component such as a multi-processor computer offer easy and reliable connect and disconnect operations while doing so in a minimum amount of available space without damaging associated components of an electronic device, computer or cooling system. One exemplary fitting assembly includes a manifold mount with a port that is in fluid communication with a manifold tube. A fitting is sized and configured to mate with the port and is in fluid communication with associated cooling tubes of a cold plate. A latch is pivotally mounted to the manifold mount for movement to and between a first position in which the latch secures the fitting to the manifold mount and a second position in which the fitting is capable of being disconnected from the manifold mount.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventor: Jason R. Eagle
  • Patent number: 8863869
    Abstract: The metallic case of a power conversion apparatus includes a casing having a side wall, as well as an upper case and a lower case, a first area being formed between a cooling jacket provided at the inner periphery of the side wall and the lower case, the metal base plate dividing the first area between the cooling jacket and the upper case into a lower side second area and an upper side third area, first and second power modules being fastened to a top surface and a capacitor module being provided in the first area, driving circuits that drive inverter circuits of the power modules respectively being provided in the second area, and a control circuit that controls the driver circuits being provided in the third area.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: October 21, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Kinya Nakatsu, Hideyo Suzuki, Fusanori Nishikimi, Takeshi Matsuo, Toshiya Satou
  • Patent number: 8861202
    Abstract: A thermal management component for a Rechargeable Energy Storage Systems (RESS) assembly and a method of managing the temperature of a RESS battery module using the component are disclosed. The thermal management component comprises (i) a frame having a chamber defined therein; and (ii) a heat exchange plate in mechanical communication with at least a portion of the frame. The method comprises (a) providing a thermal management component as described herein; and (b) circulating at least one heat transfer fluid through said component.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Mathew L. Nassoiy
  • Publication number: 20140301039
    Abstract: In various embodiments, a package may be provided. The package may include a chip carrier. The package may further include a chip arranged over the chip carrier. The package may also include encapsulation material encapsulating the chip and partially the chip carrier. A coolant receiving recess may be provided over the chip in the encapsulation material, wherein the coolant receiving recess is configured to receive coolant.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Klaus Schiess, Khalil Hosseini
  • Patent number: 8854809
    Abstract: A data center includes a modular building structure forming an enclosure having a bottom side. An external support system extends from the modular building structure. A series of heat sinks are each configured to extend from an interior to an exterior of the enclosure and protrude below the bottom side of the modular building structure into a fluid. Electronic components and devices are housed within the enclosure.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 7, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew Daniel Neumann, Timothy Michael Rau
  • Patent number: 8848371
    Abstract: A cooling system has an inlet plenum and at least one cooling channel which communicates with the inlet plenum. The cooling channel passes adjacent to a component to be cooled from an upstream inlet to a downstream outlet. A pair of electrodes are positioned adjacent the inlet to create an electric field tending to resist a bubble formed in an included dielectric liquid from moving in an upstream direction due to a dielectrophoretic force. Instead, a dielectrophoretic force urges the bubble in a downstream direction.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Matthew Robert Pearson
  • Patent number: 8848347
    Abstract: An assembly may include at least one duct and at least one distribution box, wherein the distribution box is mounted on the duct in fluid-tight engagement therewith for enclosing a distribution chamber therewith. Also, a method of mounting a distribution box to a duct, at a distribution point that is spaced-apart from duct ends, may include positioning a distribution point duct section in the distribution box, and hermetically sealing a distribution chamber, defined within the distribution box, from an environment of the distribution box.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 30, 2014
    Assignee: Draka Comteq B.V.
    Inventors: Mijndert Doorn, Jianming Zeng, Kees Van Trigt
  • Publication number: 20140285969
    Abstract: In a capacitor module, a capacitor, a seal member that seals the capacitor, an electronic element electrically connected to the capacitor, a temperature sensor that measures a temperature around the capacitor, and a wire member electrically connected to the temperature sensor are provided. A holder holds at least the electronic element, the temperature sensor, and the wire member. The holder is fixed to the seal member while the temperature sensor is located between the electronic element and at least part of the capacitor via the seal member.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Kazunari KOJIMA, Yoshiki TOMITA
  • Publication number: 20140285970
    Abstract: There is provided an electric power conversion system. Bus bars 160 and 161 as heat-producing elements are provided on a circuit board assembly 150, and the circuit board assembly 150 is fixed to a DC-DC converter case 110. The DC-DC converter case 110 is integrated with an inverter 200, and a refrigerant channel 101 is formed therebetween. By bringing newly provided bus bar solder-fixed parts 160c, 160d, 161c, and 161d of those bus bars into contact with a refrigerant channel range 101A, heat generated at the bus bars 160 and 161 is released into a refrigerant via a metal board and the DC-DC converter case 110, respectively.
    Type: Application
    Filed: October 11, 2012
    Publication date: September 25, 2014
    Inventors: Hidenori Shinohara, Akihiro Goto, Tadahiko Chida
  • Patent number: 8839509
    Abstract: Multiple high-voltage side and low-voltage side electric conductors are formed from one sheet of a conductive plate in such a way that the multiple electric conductors are arranged in parallel to one another across an initial gap between the high-voltage side and the low-voltage side electric conductors. The multiple electric conductors are connected to one another via connecting portions. An intermediate portion of the connecting portion is deformed so as to reduce the initial gap to a smaller adjusted gap. Portions of the electric conductors as well as switching devices mounted to the electric conductors are sealed by sealing material. The connecting portions are cut away so that the electric conductors are finally separated from one another.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 23, 2014
    Assignee: DENSO CORPORATION
    Inventors: Noriyuki Kakimoto, Masao Yamada
  • Patent number: 8842434
    Abstract: A server rack heat dissipation system for a server including an electronic component comprises a first and a second heat dissipation assembly. The first heat dissipation assembly includes a first heat exchanger and a first pipeline. The first heat exchanger is inside the server rack and in thermal contact with the electronic component. The first pipeline is in thermal contact with the first heat exchanger and has a first coolant. The second heat dissipation assembly includes a second heat exchanger. The second heat exchanger is inside the server rack and in thermal contact with the first pipeline. The second heat exchanger can remove the heat of the electronic component in the first coolant in advance. Accordingly, the time of the first coolant being maintained in a vapor phase can be shortened, so that a power the fluid driving device used for driving the first coolant is reduced.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: September 23, 2014
    Assignee: Inventec Corporation
    Inventors: Chien-An Chen, Kai-Yang Tung