Coating By Vapor, Gas, Or Smoke Patents (Class 427/248.1)
  • Publication number: 20130078455
    Abstract: Described are methods for deposition of metal-aluminum films using metal PCAI precursors and aluminum precursors. Such metal-aluminum films can include metal aluminum carbide, metal aluminum nitride and metal aluminum carbonitride films. The aluminum precursors may be alkyl aluminum precursors or amine alanes.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: David Thompson, Jeffrey W. Anthis
  • Patent number: 8404135
    Abstract: A method for cleaning and refurbishing a chamber component includes placing a chamber component having process deposits on an exterior surface in a plasma vapor deposition chamber. The chamber component is bombarded with a plasma comprising Argon for a period of time sufficient to remove the process deposits from the exterior surface of the chamber component.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Bin Chiou, Wen-Cheng Cheng, Wen-Sheng Wu
  • Patent number: 8404878
    Abstract: Disclosed are titanium-containing precursors and methods of synthesizing the same. The compounds may be used to deposit titanium, titanium oxide, strontium-titanium oxide, and barium strontium titanate containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 26, 2013
    Assignee: American Air Liquide, Inc.
    Inventors: Venkateswara R. Pallem, Christian Dussarrat
  • Patent number: 8402845
    Abstract: An apparatus for deploying two fluids separately into a reaction chamber is provided. The apparatus includes a first distribution network that is formed on a plate having a distribution face and a dispensing face. The first distribution network is defined by a plurality of recessed channels on the distribution face. The plurality of recessed channels includes a plurality of thru-ports that extend from the plurality of recessed channels to the dispensing face. The apparatus further includes a second distribution network that has passages formed below the plurality of recessed channels and above the dispensing face. A first set of ports extends from the passages to the distribution face and a second set of ports extends from a top surface of the distribution face to the dispensing face.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: March 26, 2013
    Assignee: Intermolecular, Inc.
    Inventor: Jay B. Dedontney
  • Publication number: 20130071551
    Abstract: A coating process and apparatus; the apparatus including a unit for forming a mixture that includes at least one precursor of a surface reaction, a unit for atomizing the mixture into droplets, a unit for transporting the droplets of mixture towards a surface of a substrate to be coated with the surface reaction. The unit for forming a mixture are adjusted to mix to the mixture a liquid carrier substance, which is not a precursor of the surface reaction, and the boiling point of which in the defined process space is lower than the boiling point of the precursor of the surface reaction. The proposed arrangement improves both speed and quality of the coating process.
    Type: Application
    Filed: March 2, 2011
    Publication date: March 21, 2013
    Applicant: BENEQ OY
    Inventors: Markku Rajala, Olli Pekonen
  • Publication number: 20130071564
    Abstract: Technologies are generally described for a method and system configured effective to alter a defect area in a layer on a substrate including graphene. An example method may include receiving and heating the layer to produce a heated layer and exposing the heated layer to a first gas to produce a first exposed layer, where the first gas may include an amine. The method may further include exposing the first exposed layer to a first inert gas to produce a second exposed layer and exposing the second exposed layer to a second gas to produce a third exposed layer where the second gas may include an alane or a borane. Exposure of the second exposed layer to the second gas may at least partially alter the defect area.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Miller
  • Patent number: 8399055
    Abstract: The invention provides, inter alia, capillary extraction devices, and methods of making and using the same.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: March 19, 2013
    Inventors: Rania Bakry, Gunther Bonn, Douglas T. Gjerde, Christian W. Huck, Gunther Stecher
  • Patent number: 8399072
    Abstract: A process for producing silicon rods including providing a reactor vessel containing at least one reaction chamber surrounded by a jacket, wherein a pre-heating fluid is circulated in the jacket; one or more electrode assemblies extending into the reaction chamber wherein each electrode assembly comprises a gas inlet, one or more heat transfer fluid inlets/outlets, at least one pair of silicon filaments, the filaments connected to each other at their upper ends with a silicon bridge to form a filament/slim rod assembly, each filament/slim rod assembly enclosed in an isolation jacket; a source of a silicon-bearing gas connected to the interior of the vessel for supplying the gas into the reaction chamber to produce a reaction and to deposit polycrystalline silicon on the filament by chemical vapor deposition thereby producing a rod of polycrystalline silicon; a heat transfer system that is connected to the jacketed reaction chamber that supplies heat transfer fluid to preheat the reaction chamber; and a power
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: March 19, 2013
    Assignee: Savi Research, Inc.
    Inventors: Vithal Revankar, Sanjeev Lahoti
  • Publication number: 20130066082
    Abstract: Organometallic compounds suitable for use as vapor phase deposition precursors for metal-containing films are provided. Methods of depositing metal-containing films using certain organometallic precursors are also provided. Such metal-containing films are particularly useful in the manufacture of electronic devices.
    Type: Application
    Filed: March 13, 2012
    Publication date: March 14, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: John Anthony Thomas Norman, Xinjian Lei
  • Publication number: 20130064973
    Abstract: A system and method for conditioning a chamber is disclosed. An embodiment comprises utilizing the deposition chamber to deposit a first layer and conditioning the deposition chamber. The conditioning the deposition chamber can be performed by depositing a heterogeneous material over the first layer. The heterogeneous material can cover and encapsulate the first layer, thereby preventing particles of the first layer from breaking off and potentially landing on a substrate during a subsequent processing run.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Yu Chen, Chia-Ming Tsai, Liang-Chen Chi, Jian-Yuan Chen, Ke-Chih Liu
  • Publication number: 20130064976
    Abstract: A method for atomizing a precursor liquid for vapor generation and thin film deposition on a substrate. The precursor liquid is atomized by a carrier gas to form a droplet aerosol comprised of small precursor liquid droplets suspended in the carrier gas. The droplet aerosol is then heated to form vapor, producing a gas/vapor mixture that can be introduced into a deposition chamber to form thin films on a substrate. The liquid is introduced into the atomizing apparatus in such a manner as to avoid excessive heating that can occur or lead to the formation of undesirable by-products due to material degradation as result of thermal decomposition. The method is particularly suited for vaporizing high molecular weight substances with a low vapor pressure that requires a high vaporization temperature for the liquid to vaporize. The method can also be used to vaporize solid precursors dissolved in a solvent for vaporization.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 14, 2013
    Applicant: MSP Corporation
    Inventor: Benjamin Y.H. Liu
  • Publication number: 20130064975
    Abstract: A method and system includes removable shields arranged inside a deposition chamber to prevent vaporized material from accumulating on the walls of the chamber. The removable shields can be removed for cleaning.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Inventor: Stephen P. Murphy
  • Publication number: 20130065706
    Abstract: An approach is provided for coating a golf club head with a material. The approach involves securing a first golf club head component to a second golf club head component using an adhesive, resulting in a golf club head main body having an exterior surface. The approach further includes physical vapor depositing at least one layer on at least a portion of the exterior surface of the golf club head main body at a temperature less than a melting point of the adhesive.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: SRI SPORTS LIMITED
    Inventors: Sharon J. PARK, Joseph C. CHEN
  • Publication number: 20130064977
    Abstract: Method of depositing an atomic layer on a substrate. The method comprises supplying a precursor gas from a precursor-gas supply of a deposition head that may be part of a rotatable drum. The precursor gas is provided from the precursor-gas supply towards the substrate. The method further comprises moving the precursor-gas supply by rotating the deposition head along the substrate which in its turn is moved along the rotating drum.
    Type: Application
    Filed: February 11, 2011
    Publication date: March 14, 2013
    Applicant: Nederlandse Organisatie voor toegepast-natuurweten schappelijk onderzoek TNO
    Inventors: Adrianus Johannes Petrus Maria Vermeer, Freddy Roozeboom, Joop Van Deelen
  • Publication number: 20130064974
    Abstract: Methods and apparatuses for converting expanded polystyrene into a rigid material are disclosed herein. The methods of modifying EPS herein generally include placing EPS workload into a pressurized chamber and applying heat and pressure through a gas. The application of heat and pressure is held for a determined amount of time, the pressure of the internal chamber is then lowered below atmospheric pressure and a hot or cool step is administered. The resulting CPS product can be modified in a multiple number of ways depending on the desired end product.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Inventor: Duncan Edward Meyers
  • Patent number: 8394454
    Abstract: A precursor delivery system for an irradiation beam instrument having a vacuum chamber includes an injection tube for injecting gasses into the vacuum chamber of the instrument and a main gas line having an inlet and an outlet. The outlet is connected to the injection tube, and the inlet is connected to a sequential pair of valves connected to a carrier gas source. A crucible for holding precursor material is selectively connected to the main gas line at a location between the pair of valves and the injection tube. The source of carrier gas may be selectively connected to the inlet by sequential operation of the pair of carrier gas valves, so that pulses of carrier gas assist the flow of precursor material to the injection tube. Rapid purging of the system between precursors is enabled by a valve selectively connecting the main line to an envelope in communication with the instrument vacuum. Methods of CVD and etching using the system are also disclosed.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: March 12, 2013
    Assignee: Omniprobe, Inc.
    Inventors: Rocky Kruger, Aaron Smith, Thomas M. Moore
  • Publication number: 20130059078
    Abstract: Disclosed are atomic layer deposition methods using ruthenium-containing precursors to form ruthenium-containing films for use in the manufacture of semiconductor, photovoltaic, LCD-TFT, or flat panel type devices.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 7, 2013
    Inventors: Julien Gatineau, Christian Dussarrat
  • Publication number: 20130059132
    Abstract: A laminate includes two substrates that are connected by means of a bonding layer, the bonding layer enabling a one-dimensional composite structure. This enables a purely inorganic compound of different materials and a significantly improved connection when using adhesives.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 7, 2013
    Applicant: Leibniz-Institut fuer neue Materialien gemeinnuetzige GmbH
    Inventors: Oral Cenk Aktas, Michael Veith, Juseok Lee, Hakima Smail, Marina Martinez Miró
  • Publication number: 20130059431
    Abstract: The present invention relates to a device for processing substrates in a processing system with at least one process tool disposed in at least one process area, which tool has two substrate levels disposed opposite each other in the process area, which are aligned at least approximately vertical, wherein the device is adapted to process at least two substrates at the same time in the process area by means of the process tool, wherein the substrates can be disposed in the substrate levels such that coatings of the substrates face each other and, at least during processing, a quasi-closed process space is formed between the substrates. It further relates to a method for processing coated substrates in a processing system, wherein the substrates have coatings and the substrates are each disposed opposite each other such that the coatings of the substrates face each other and, at least during processing, a quasi-closed process space is formed between the substrates.
    Type: Application
    Filed: February 22, 2011
    Publication date: March 7, 2013
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Jessica Hartwich, Franz Karg
  • Patent number: 8389053
    Abstract: A method of cleaning a powdery source supply system prevents outflow of particles from a chamber or an introduction line in a film forming process. A substrate processing system includes a powdery source supply system and a film forming processing unit. The powdery source supply system includes an ampoule for accommodating a powdery source, a carrier gas supply unit for supplying a carrier gas into the ampoule, an introduction line for connecting the ampoule and the film forming processing unit, a purge line branched from the introduction line, and a valve for opening or closing the introduction line. When the valve is opened and the interior of the purge line is evacuated prior to the film forming process, the carrier gas supply unit supplies a carrier gas so that the viscous force acting on particles by the carrier gas is greater than the viscous force in the film forming process.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Tsuyoshi Moriya, Toshio Hasegawa, Hideaki Yamasaki
  • Patent number: 8388754
    Abstract: A method and apparatus for depositing a film on a substrate includes introducing a material and a carrier gas into a heated chamber. The material may be a semiconductor material, such as a cadmium chalcogenide. A resulting mixture of vapor and carrier gas containing no unvaporized material is provided. The mixture of vapor and carrier gas are remixed to achieve a uniform vapor/carrier gas composition, which is directed toward a surface of a substrate, such as a glass substrate, where the vapor is deposited as a uniform film.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: March 5, 2013
    Assignee: First Solar, Inc.
    Inventors: Ricky Charles Powell, Andrew Kelly Gray, Todd Alden Coleman
  • Publication number: 20130052371
    Abstract: A chemical vapor deposition (CVD) reactor comprises a deposition zone, a substrate carrier and a liner assembly. The deposition zone is constructed so as to have a positive pressure reactant gases fixed showerhead introducing reactant gas supporting thin film CVD deposition. The substrate carrier movably supports a substrate and the liner assembly within the deposition zone and is heated so as to be subjected to a CVD process. The liner assembly partly encloses selected portions of the deposition zone, particularly portions of the substrate carrier and thereby enclose a hot zone surrounding a substrate to be processed so as to retain heat in that zone but allows gas flow radially outwardly toward walls of a surrounding cold-wall reactor with exhaust ports surrounding the deposition zone that exhaust spent reactant gases. The liner assembly is a sink for solid reaction byproducts while gaseous reaction byproducts are pumped out at the exhaust ports.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: ALTA DEVICES, INC.
    Inventors: Gregg Higashi, Khurshed Sorabji, Lori D. Washington
  • Publication number: 20130052368
    Abstract: A method of forming a metal-containing film by atomic layer deposition is provided herein. The method comprises using (a) at least one metal fluorinated ?-diketonate precursor; and (b) a co-reagent comprising at least one optionally-substituted hydrazine.
    Type: Application
    Filed: March 14, 2011
    Publication date: February 28, 2013
    Applicant: SIGMA-ALDRICH CO. LLC
    Inventors: Simon Rushworth, Paul Williams
  • Publication number: 20130052347
    Abstract: A method, comprising: —providing a process space atmosphere at a process space atmosphere pressure; —providing an exterior atmosphere at an exterior atmosphere pressure that is different from the process space atmosphere pressure; —providing a passage via which the exterior atmosphere is in open communication with the process space atmosphere, and via which substrates are exchangeable between the exterior atmosphere and the process space atmosphere; —injecting an exchange fluid into the passage at at least one exchange fluid injection point, so as to effect a flow of exchange fluid that extends through at least a part of the passage, wherein said flow is directed towards—the exterior in case the exterior atmosphere pressure is greater than the process space atmosphere pressure; or—the process space in case the exterior atmosphere pressure is smaller than the process space atmosphere pressure.
    Type: Application
    Filed: January 31, 2011
    Publication date: February 28, 2013
    Applicant: LEVITECH B.V.
    Inventors: Valdimir Kuznetsov, Pieter Tak
  • Publication number: 20130052346
    Abstract: A chemical vapor deposition reactor has one or more deposition zones bounded by gas flow virtual walls, within a housing having closed walls. Each deposition zone supports chemical vapor deposition onto a substrate. Virtual walls formed of gas flows laterally surround the deposition zone, including a first gas flow of reactant gas from within the deposition zone and a second gas flow of non-reactant gas from a region laterally external to the deposition zone. The first and second gas flows are mutually pressure balanced to form the virtual walls. The virtual walls are formed by merging of gas flows at the boundary of each deposition zone. The housing has an exhaust valve to prevent pressure differences or pressure build up that would destabilize the virtual walls. Cross-contamination is reduced, between the deposition zones and the closed walls of the housing or an interior region of the housing outside the gas flow virtual walls.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: ALTA DEVICES, INC.
    Inventors: Gregg Higashi, Alexander Lerner, Khurshed Sorabji, Lori D. Washington
  • Publication number: 20130052349
    Abstract: This invention relates to organometallic compounds represented by the formula HaM(NR1R2)x(NR3H)y(NH2)z wherein M is a metal or metalloid, each of R1, R2 and R3 is the same or different and is independently a hydrocarbon group or a heteroatom-containing group, a is a value from 0 to 3, x is a value from 0 to 3, y is a value from 0 to 4, z is a value from 0 to 4, and a+x+y+z is equal to the oxidation state of M, provided that at least one of y and z is a value of at least 1, a process for producing the organometallic compounds, and a method for producing a film or coating from organometallic precursor compounds.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Inventor: Scott Houston Meiere
  • Patent number: 8383200
    Abstract: A method of creating adherent surface coatings on carbide cutting tools or other workpiece substrates through the development of polycrystalline diamond coatings or composite coatings comprising a refractory metal carbide and polycrystalline diamond is described. The coating is deposited through a sequenced chemical vapor deposition process, first using a specified gas mixture of hydrogen and a refractory metal halide to deposit a base layer of a refractory metal carbide. This step is followed by a second step in which polycrystalline diamond is deposited from a gas mixture comprising a hydrocarbon and hydrogen. Co-deposition of refractory metal carbide and diamond in the second step to create a toughened diamond coating is also contemplated.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Leonid C. Lev, Michael J. Lukitsch
  • Patent number: 8382901
    Abstract: A method and apparatus for depositing a film on a substrate includes introducing a material and a carrier gas into a heated chamber. The material may be a semiconductor material, such as a cadmium chalcogenide. A resulting mixture of vapor and carrier gas containing no unvaporized material is provided. The mixture of vapor and carrier gas are remixed to achieve a uniform vapor/carrier gas composition, which is directed toward a surface of a substrate, such as a glass substrate, where the vapor is deposited as a uniform film.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 26, 2013
    Assignee: First Solar, Inc.
    Inventors: Ricky Charles Powell, Andrew Kelly Gray, Todd Alden Coleman
  • Publication number: 20130045338
    Abstract: Microstructured pigments include a dielectric core having a diffraction grating. The microstructured dielectric core is encapsulated with one or more encapsulation layers which are deposited using chemical vapor deposition in a fluidized bed. The fluidizing conditions allow for providing uniform and highly-conforming encapsulation layers.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Inventor: Alberto Argoitia
  • Patent number: 8377208
    Abstract: A polycrystal silicon manufacturing apparatus and a method of manufacturing polycrystal silicon using the same are disclosed. The polycrystal silicon manufacturing apparatus includes a reaction pipe comprising silicon particles provided therein; a flowing-gas supply unit configured to supply flowing gas to the silicon particles provided in the reaction pipe; and a first pressure sensor configured to measure a pressure of a first area in the reaction pipe; a second pressure sensor configured to measure a pressure of a second area in the reaction pipe; and a particle outlet configured to exhaust polycrystal silicon formed in the reaction pipe outside, when a difference between a first pressure measured by the first pressure sensor and a second pressure measured by the second pressure sensor is a reference pressure value or more.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 19, 2013
    Assignee: Siliconvalue LLC.
    Inventors: Yunsub Jung, Keunho Kim, Yeokyun Yoon, Ted Kim
  • Patent number: 8377518
    Abstract: In-situ flux measurement methods, devices, and systems are provided. According to some embodiments, an in-situ molecular flux device generally comprises a electrically conductive container configured to hold a precursor material, a heat source proximate the electrically conductive container to heat the precursor material to release ions such that an ion current is produced; and a current-measuring device in electrical communication with the electrically conductive container to measure the ion current associated with the heated precursor material. Other embodiments are also claimed and described.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 19, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: W. Alan Doolittle, Alexander G Carver
  • Publication number: 20130041170
    Abstract: Organometallic complexes and use thereof in thin film deposition, such as CVD and ALD are provided herein. The organometallic complexes are (alkyl-substituted ?3-allyl)(carbonyl)metal complexes.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Applicant: Sigma-Aldrich Co. LLC
    Inventors: Rajesh Odedra, Neil Boag, Jeff Anthis, Ravi Kanjolia, Mark Saly
  • Publication number: 20130037090
    Abstract: Techniques for fabrication of kesterite Cu—Zn—Sn—(Se,S) films and improved photovoltaic devices based on these films are provided. In one aspect, a method of fabricating a kesterite film having a formula Cu2?xZn1+ySn(S1?zSez)4+q, wherein 0?x?1; 0?y?1; 0?z?1; and ?1?q?1 is provided. The method includes the following steps. A substrate is provided. A bulk precursor layer is formed on the substrate, the bulk precursor layer comprising Cu, Zn, Sn and at least one of S and Se. A capping layer is formed on the bulk precursor layer, the capping layer comprising at least one of Sn, S and Se. The bulk precursor layer and the capping layer are annealed under conditions sufficient to produce the kesterite film having values of x, y, z and q for any given part of the film that deviate from average values of x, y, z and q throughout the film by less than 20 percent.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Santanu Bag, David Aaron Randolph Barkhouse, David Brian Mitzi, Teodor Krassimirov Todorov
  • Publication number: 20130040056
    Abstract: The present invention provides a process for the deposition of a iridium containing film on a substrate, the process comprising the steps of providing at least one substrate in a reactor; introducing into the reactor at least one iridium containing precursor having the formula: XIrYA, wherein A is equal to 1 or 2 and i) when A is 1, X is a dienyl ligand and Y is a diene ligand; ii) when A is 2, a) X is a dienyl ligand and Y is selected from CO and an ethylene ligand, b) X is a ligand selected from H, alkyl, alkylamides, alkoxides, alkylsilyls, alkylsilylamides, alkylamino, and fluoroalkyl and each Y is a diene ligand, and c) X is a dienyl ligand and Y is a diene ligand; reacting the at least one iridium containing precursor in the reactor at a temperature equal to or greater than 100° C.; and depositing an iridium containing film formed from the reaction of the at least one iridium containing precursor onto the at least one substrate.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 14, 2013
    Applicants: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: American Air Liquide, Inc., L'Air Liquide, Societe Anonyme pour 'Etude et l'Ex
  • Publication number: 20130039843
    Abstract: A film forming apparatus (100) according to one embodiment of the present invention includes a first solution container (5A), a second solution container (5B), a reaction chamber (1), a first path (L1), and a second path (L2). The first solution container (5A) stores a source solution (10) containing metal. The second solution container (5B) stores hydrogen peroxide. A substrate (2) is disposed in the reaction chamber (1), and the reaction chamber (1) includes a heating unit (3) that heats the substrate. The first path (L1) supplies a source solution (11) from the first solution container (5A) to the reaction chamber (1). The second path (L2) supplies hydrogen peroxide from the second solution container (5B) to the reaction chamber (1).
    Type: Application
    Filed: June 1, 2010
    Publication date: February 14, 2013
    Applicants: Kyoto University, Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Takahiro Shirahata, Hiroyuki Orita, Akio Yoshida, Shizuo Fujita, Toshiyuki Kawaharamura
  • Publication number: 20130039987
    Abstract: The invention provides a method for increasing the solubility of nevirapine, including the steps of rendering nevirapine in a gaseous phase; and rendering the gaseous phase in a relatively more soluble solid particulate form. The invention further provides for a crystalline Form-VI (36) of nevirapine having an X-ray diffraction pattern of (2-theta values in degrees) 9.2953, 11.2023, 12.7019, 12.9796, 13.5273, 15.4670, 17.2597, 19.1038, 19.7267, 21.1303, 22.9381, 25.5589, 26.4913, 27.2150, 27.7283, 29.7134, and 33.8343 degrees two theta. The invention further provides for the preparation of microspherical and/or nanospherical Form-V (34) and crystalline Form-VI (36) of nevirapine as well as novel dosage forms including parenteral-, inhalant-, transdermal- and oral dosage forms.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 14, 2013
    Applicant: North-West University
    Inventors: Wilna Liebenberg, Nicole Stieger
  • Publication number: 20130040054
    Abstract: A device for treating a substrate (12) includes a conveying device (13) for loading and unloading substrates or masks (10, 10?, 10?, 10??) into and from a process chamber (1) through loading openings (6, 7). A shielding plate (11), used to shield the substrate (12) or the mask (10) from the influence of heat is moved between a shielding position and a storage position during the substrate treatment and, after the substrate (12) is treated, from the storage position back into the shielding position. In the storage position, the shielding plate (11) is situated inside a storage chamber (2, 3).
    Type: Application
    Filed: February 8, 2011
    Publication date: February 14, 2013
    Applicant: AIXTRON SE
    Inventors: Gerhard Karl Strauch, Walter Franken, Marcel Kollberg, Florenz Kittel, Markus Gersdorff, Johannes Käppeler
  • Patent number: 8372481
    Abstract: The invention includes methods of forming material on a substrate and methods of forming a field effect transistor gate oxide. In one implementation, a first species monolayer is chemisorbed onto a substrate within a chamber from a gaseous first precursor. The first species monolayer is discontinuously formed over the substrate. The substrate having the discontinuous first species monolayer is exposed to a gaseous second precursor different from the first precursor effective to react with the first species to form a second species monolayer, and effective to form a reaction product of the second precursor with substrate material not covered by the first species monolayer. The substrate having the second species monolayer and the reaction product is exposed to a third gaseous substance different from the first and second precursors effective to selectively remove the reaction product from the substrate relative to the second species monolayer. Other implementations are contemplated.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: February 12, 2013
    Inventor: Gurtej S. Sandhu
  • Publication number: 20130034667
    Abstract: An inorganic nanolayer surface coated polymer film product is disclosed with enhancements such as improved metallization capability, low cost, low polymer additives and modifiers, improved recyclability, and good web properties. Also method for priming a flexible film substrate to enhance the reactivity or wettability of the substrate for metallization is disclosed. A substrate film is coated with one or more nanolayers of a metal or metal oxide applied by CCVD and/or PECVD at open atmosphere. The deposited coating acts to enhance the surface energy of the film substrate and to and reduce the surface gauge variation of the substrate or supporting film, thereby enhancing the wettability of the film substrate for metallization and/or to improve the anti-block characteristics of the film. The deposited coatings may also act as a barrier layer for lowering the permeability of light, gas and vapor transmission through the substrate.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Inventors: Andrew HUNT, Yongdong JIANG, Anthony Robert KNOERZER, Kenneth Scott LAVERDURE
  • Patent number: 8367866
    Abstract: A single-source precursor composition includes R3B.NX3, where B is boron, N is nitrogen, and the R groups and the X groups are selected from hydrogen, alkyl groups, and aryl groups. At least one of the R groups is an alkyl group or an aryl group.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventor: Wayde R. Schmidt
  • Publication number: 20130029042
    Abstract: The invention relates to methods and apparatus in which a plurality of ALD reactors are placed in a pattern in relation to each other, each ALD reactor being configured to receive a batch of substrates for ALD processing, and each ALD reactor comprising a reaction chamber accessible from the top. A plurality of loading sequences is performed with a loading robot. Each loading sequence comprises picking up a substrate holder carrying a batch of substrates in a storage area or shelf, and moving said substrate holder with said batch of substrates into the reaction chamber of the ALD reactor in question.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 31, 2013
    Applicant: Picosun Oy
    Inventor: Picosun Oy
  • Patent number: 8361548
    Abstract: A process for the coating of substrates comprising insertion of a substrate into a process oven, plasma cleaning of the substrate, rehydration of the substrate, dehydration of the substrate, withdrawal of a metered amount of one or more chemicals from one or more chemical reservoirs, vaporizing the withdrawn chemicals in one or more vapor chambers, and transfer of the vaporized chemicals into a process oven, thereby reacting with the substrate. An apparatus for the coating of substrates comprising a process oven, a gas plasma generator, a metered chemical withdrawal subsystem, and a vaporization subsystem.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 29, 2013
    Assignee: Yield Engineering Systems, Inc.
    Inventors: William A. Moffat, Kenneth M. Sautter
  • Patent number: 8361549
    Abstract: A method for preventing particle contamination within a processing chamber is disclosed. Preheating the substrate within the processing chamber may cause a thermophoresis effect so that particles within the chamber that are not adhered to a surface may not come to rest on the substrate. One method to increase the substrate temperature is to plasma load the substrate. Plasma loading comprises providing an inert gas plasma to the substrate to heat the substrate. Another method to increase the substrate temperature is high pressure loading the substrate. High pressure loading comprises heating the substrate while increasing the chamber pressure to between about 1 Torr and about 10 Torr. By rapidly increasing the substrate temperature within the processing chamber prior to substrate processing, particle contamination is less likely to occur.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dong-Kil Yim, John M. White, Soo Young Choi, Han Byoul Kim, Jin Man Ha, Beom Soo Park
  • Patent number: 8361545
    Abstract: A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 29, 2013
    Assignees: IUCF-HYU Industry-University Cooperation Foundation, Hanyang University, Iowa State University Research Foundation, Inc.
    Inventors: In Sung Park, Tae Ho Lee, Jin Ho Ahn, Rana Biswas, Kristen P. Constant, Kai-Ming Ho, Jae-Hwang Lee
  • Publication number: 20130023172
    Abstract: Embodiments relate to depositing on one or more layers of materials on a fiber or fiber containing material using atomic layer deposition (ALD) to provide or enhance functionalities of the fibers or fiber containing material. Such functionalities include, for example, higher rigidity, higher strength, addition of resistance to bending, addition of resistance to impact or addition of resistance to tensile force of a fiber or fiber containing material. A layer of material is deposited coated on the fibers or the fiber containing material and then the surface of the material is oxidized, nitrified or carbonized to increase the volume of the material. By increasing the volume of the material, the material is subject to compressive stress. The compressive stress renders the fibers or the fiber containing material more rigid, stronger and more resistant against bending force, impact or tensile force.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 24, 2013
    Applicant: SYNOS TECHNOLOGY, INC.
    Inventor: Sang In LEE
  • Publication number: 20130022743
    Abstract: A vapor growth apparatus according to an aspect of the present invention includes a reaction chamber into which a wafer is loaded, a first valve which is connected to the reaction chamber and controls a flow rate of a first exhaust gas discharged from the reaction chamber, a first pump which is provided on a downstream side of the first valve and discharges the first exhaust gas, a first pressure gauge which detects a first pressure that is a pressure of the reaction chamber, a first pressure control unit which controls the first valve based on the first pressure, a second pressure gauge which detects a second pressure that is a pressure between the first valve and the first pump, and a second pressure control unit which controls an operation volume of the first pump based on the first pressure and the second pressure.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 24, 2013
    Inventors: Yoshikazu MORIYAMA, Yuusuke Sato
  • Publication number: 20130022745
    Abstract: Disclosed are non-pyrophoric mixtures of silicon compounds and solvents. Also disclosed are methods of stabilizing the pyrophoric silicon compounds (precursors). The non-pyrophoric mixtures may be used to deposit silicon-containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
    Type: Application
    Filed: August 13, 2010
    Publication date: January 24, 2013
    Applicant: AMERICAN AIR LIQUIDE, INC.
    Inventors: Christian Dussarrat, Vincent M. Omarjee, Venkateswara R. Pallem
  • Publication number: 20130022761
    Abstract: The present invention relates to a silver complex obtained by reacting at least one silver compound represented by the formula 2 below with at least one ammonium carbamate compound or ammonium carbonate compound represented by the formula 3, 4 or 5 below:
    Type: Application
    Filed: May 11, 2012
    Publication date: January 24, 2013
    Applicant: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Myoung-Seon Gong, Yi-Sup Han, Jeong-Bin Park, Dong-Hun Nam, Seong-Yong Uhm, Young-Kwan Seo
  • Publication number: 20130022813
    Abstract: A method for growing a graphene nanoribbon on an insulating substrate having a cleavage plane with atomic level flatness is provided, and belongs to the field of low-dimensional materials and new materials. The method includes the following steps. Step 1: Cleave an insulating substrate to obtain a cleavage plane with atomic level flatness, and prepare a single atomic layer step. Step 2: Directly grow a graphene nanoribbon on the insulating substrate having regular single atomic steps. In the method, a characteristic that nucleation energy of graphene on the atomic step is different from that on the flat cleavage plane is used, and conditions, such as the temperature, intensity of pressure and supersaturation degree of activated carbon atoms, are adjusted, so that the graphene grows only along a step edge into a graphene nanoribbon of an adjustable size. The method is mainly applied to the field of new-type graphene optoelectronic devices.
    Type: Application
    Filed: August 5, 2011
    Publication date: January 24, 2013
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Shujie Tang, Guqiao Ding, Xiaoming Xie, Ji Chen, Chen Wang, Mianheng Jiang
  • Publication number: 20130023669
    Abstract: Disclosed are precursors having a pyrrolecarbaldiminates ligand and methods of synthesizing the same. The pyrrolecarbaldiminates ligand may be substituted.
    Type: Application
    Filed: December 30, 2011
    Publication date: January 24, 2013
    Applicants: American Air Liquide, Inc., L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Andrey V. Korolev, Clément Lansalot-Matras