Coating Formed From Vaporous Or Gaseous Phase Reaction Mixture (e.g., Chemical Vapor Deposition, Cvd, Etc.) Patents (Class 427/255.28)
  • Publication number: 20140322527
    Abstract: A multilayer encapsulation thin-film and a method and apparatus for preparing a multilayer encapsulation thin-film are provided. The multilayer encapsulation thin-film includes an inorganic thin film that includes a metal oxide, and an organic thin film that includes a polymer and is formed on the inorganic thin film, where the inorganic thin film and the organic thin film are alternately stacked in multiple layers.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Sungmin Cho, Ho Kyoon Chung, Heeyeop Chae, Sang Joon Seo, Seung Woo Seo
  • Publication number: 20140322455
    Abstract: The present invention relates to a method of preparing a material having a superhydrophobic region and a hydrophobic region, and more particularly to a method of preparing a material having a superhydrophobic region and a hydrophobic region by preparing a superhydrophobic surface body and hydrolyzing one surface of the prepared superhydrophobic surface body using a strong base. The preparation method according to the invention is simpler than conventional preparation methods and is capable of preparing a material having opposite surface characteristics at low costs.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Sung Gap IM, Jae Bem YOU, Youngmin YOO, Myung Seok OH
  • Patent number: 8858666
    Abstract: A coating for a cutting tool, which includes a plurality of mutually superposed layers, characterized in that the coating has an outer cover layer with a first layer portion of metallic aluminium or an aluminium alloy and a second layer portion arranged thereover of aluminium oxide or a mixed oxide which contains aluminium and at least one further metal.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 8859046
    Abstract: A substrate processing apparatus according to the present invention comprises a plurality of processing chambers, discharge systems each provided in conjunction with one of the processing chambers and a common discharge system connected with the discharge systems of at least two processing chambers among the discharge systems provided in conjunction with the individual processing chambers. The common discharge allows a switch-over between a scrubbing common discharge system that discharges discharge gas from each processing chamber after scrubbing the discharge gas at a scrubbing means and a non-scrubbing common discharge system that directly discharges the discharge gas from the discharge system of the processing chamber without scrubbing at the scrubbing means.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: October 14, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Nakamura, Toshiyuki Kobayashi, Shinichiro Hayasaka, Seiichi Kaise
  • Patent number: 8859042
    Abstract: Embodiments of the invention generally relate to methods for chemical vapor deposition (CVD) processes. In one embodiment, a method for heating a substrate or a substrate susceptor within a vapor deposition reactor system includes exposing a lower surface of a substrate susceptor, such as a wafer carrier, to energy emitted from a heating lamp assembly, and heating the substrate susceptor to a predetermined temperature. The heating lamp assembly generally contains a lamp housing disposed on an upper surface of a support base and contains at least one lamp holder, a plurality of lamps extending from the lamp holder, and a reflector disposed on the upper surface of the support base, next to the lamp holder, and below the lamps. The plurality of lamps may have split filament lamps and/or non-split filament lamps for heating inner and outer portions of the substrate susceptor.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Alta Devices, Inc.
    Inventors: Gang He, Gregg Higashi, Khurshed Sorabji, Roger Hamamjy, Andreas Hegedus
  • Publication number: 20140302330
    Abstract: A glass substrate for chemical strengthening is formed by a float process. The glass substrate includes at least one layer of a film formed of an inorganic material that contains H atoms in a concentration of 1.0×1015 to 1.0×1019 atom/mm3. The at least one layer is formed on at least one surface of the glass substrate.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Applicant: Asahi Glass Company, Limited
    Inventors: Naoki OKAHATA, Koji Nakagawa, Yuichi Kuwahara, Daisuke Kobayashi
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Publication number: 20140295105
    Abstract: The invention relates to a method and a device for depositing silicon on a substrate using a focused beam of charged particles. A precursor containing silicon is provided, said precursor being dissociated by the beam in the immediate vicinity of the substrate. The aim of the invention is to allow the deposition of silicon on a substrate in a particularly effective way, material-protecting and precise manner. For this purpose, polysilane is used as the precursor.
    Type: Application
    Filed: December 23, 2011
    Publication date: October 2, 2014
    Inventors: Michael Huth, Andreas Terfort
  • Publication number: 20140295081
    Abstract: The content of phosphorus in polycrystalline silicon prepared by the Siemens process is reduced by treating phosphorus-containing steel surfaces with an ?-amino-functional alkoxysilane. The treated surface exhibits less corrosion in an atmosphere of moist hydrogen chloride, and less loss of phosphorus as a result.
    Type: Application
    Filed: October 17, 2012
    Publication date: October 2, 2014
    Inventors: Laszlo Fabry, Barbara Mueller, Michael Stepp
  • Publication number: 20140295084
    Abstract: The present invention relates to a tris(dialkylamide)aluminum compound, and a method for producing an aluminum-containing thin film using the aluminum compound, the tris(dialkylamide)aluminum compound being represented by the formula (1): wherein R represents a linear alkyl group having 1 to 6 carbon atoms; and R1, R2 and R3 may be the same as, or different from each other, and each independently represents hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms, or R1, R2 and R3 may be joined together to form a ring, with the proviso that the compounds in which two or more of R1, R2 and R3 are hydrogen atoms are excluded, and three dialkylamide ligands may be the same as, or different from each other.
    Type: Application
    Filed: November 1, 2012
    Publication date: October 2, 2014
    Inventors: Masashi Shirai, Chihiro Hasegawa, Hiroshi Nihei
  • Publication number: 20140295083
    Abstract: There is provided a film forming apparatus including gas supply paths, retaining units, valves, a purge gas supply unit and a control unit. The control unit is configured to implements a film forming process for sequentially performing operations of actuating the valves such that reaction gases are retained in the retaining units, the internal pressures of the retaining units are increased and then the reaction gases are supplied from the retaining units into the process chamber, and a purging process for subsequently repeating, a plurality number of times, operations of actuating the valves such that the purge gas is retained in the retaining units, the internal pressures of the retaining units are increased to a pressure higher than the internal pressures of the retaining units which is increased in the film forming process, and then the purge gas is supplied from the retaining units into the process chamber.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 2, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masayuki NASU, Masaki SANO, Yu NUNOSHIGE
  • Patent number: 8845941
    Abstract: The present invention provides apparatus and methods for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom. In some embodiments, an interior-flow substrate includes a porous surface and one or more interior passages that provide reactant gas to an interior portion of a densely packed nanotube forest as it is growing. In some embodiments, a continuous-growth furnace is provided that includes an access port for removing nanotube forests without cooling the furnace substantially. In other embodiments, a nanotube film can be pulled from the nanotube forest without removing the forest from the furnace. A nanotube film loom is described. An apparatus for building layers of nanotube films on a continuous web is described.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 30, 2014
    Assignee: GrandNano, LLC
    Inventors: Alexander B. Lemaire, Charles A. Lemaire, Leif T. Stordal, Dale J. Thomforde
  • Patent number: 8846148
    Abstract: A composition for chemical vapor deposition film-formation comprising a borazine compound represented by the Chemical Formula 1 satisfying at least one of a condition that content of each halogen atom in the composition is 100 ppb or less or a condition that content of each metal element in the composition is 100 ppb or less. In the Chemical Formula 1, R1 may be the same or different, and is hydrogen atom, alkyl group, alkenyl group or alkynyl group, and at least one thereof is hydrogen atom; R2 may be the same or different, and is hydrogen atom, alkyl group, alkenyl group or alkynyl group, and at least one thereof is alkyl group, alkenyl group or alkynyl group.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: September 30, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Teruhiko Kumada, Hideharu Nobutoki, Naoki Yasuda, Tetsuya Yamamoto, Yasutaka Nakatani, Takuya Kamiyama
  • Publication number: 20140287142
    Abstract: The invention relates to a CVD reactor, with a process chamber (4) which is arranged therein and into which a process gas can be fed by means of a gas inlet member (2), with a substrate holder (3) which, on the upper side (3?) thereof facing the process chamber (4), has one or more pockets (5) which are designed in such a manner that one substrate (7) in each case rests only on selected, raised support regions (6), and with a heating system (9) which is arranged below the substrate holder (3) and is spaced apart from the lower side (3?) of the substrate holder (3), wherein the lower side (3?) of the substrate holder (3) is configured differently in a central region (b) with respect to the heat transmission from the heating system (9) to the substrate holder (3), which central region is located under a central zone of the pocket (5), than in a surrounding region (a) which surrounds the central region (a) and is located below a zone close to the edge of the pocket (5).
    Type: Application
    Filed: November 2, 2012
    Publication date: September 25, 2014
    Inventors: Adam Boyd, Daniel Claessens, Hugo Silva
  • Publication number: 20140287249
    Abstract: The invention relates to a method for coating, by means of a chemical vapour deposition (CVD) technique, a part with a coating (PAO) for protecting against oxidation. The method enables the preparation of a refractory coating for protecting against oxidation, having a three-dimensional microstructure, which ensures the protection against oxidation at a high temperature, generally at a temperature above 1200° C., for materials that are sensitive to oxidation, such as composite materials, and in particular carbon/carbon composite materials.
    Type: Application
    Filed: November 23, 2012
    Publication date: September 25, 2014
    Inventors: Alexandre Allemand, Olivier Szwedek, Jean-Francois Epherre, Yann Le Petitcorps
  • Publication number: 20140272194
    Abstract: Described herein are organoaminosilane precursors which can be used to deposit silicon containing films which contain silicon and methods for making these precursors. Also disclosed herein are deposition methods for making silicon-containing films or silicon containing films using the organoaminosilane precursors described herein. Also disclosed herein are the vessels that comprise the organoaminosilane precursors or a composition thereof that can be used, for example, to deliver the precursor to a reactor in order to deposit a silicon-containing film.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Manchao Xiao, Xinjian Lei, Bing Han, Mark Leonard O'Neill, Ronald Martin Pearlstein, Richard Ho, Haripin Chandra, Agnes Derecskei-Kovacs
  • Publication number: 20140261084
    Abstract: A pigment is disclosed wherein the pigment includes a platy substrate or uniform platy substrate coated with an odd number of layers of alternating layers of high or low refractive index material, wherein each layer has a refractive index that differs from adjacent layers by at least 0.2; and the pigment has from about 40 to about 100% reflectance of light having a wavelength of 280 nm to 400 nm. Processes for making and using the pigments are also disclosed. These pigments can find application in paints, plastics, cosmetics, glass, printing inks, and glazes.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Steven Jones, Markus Rueckel, Thomas Servay, Stefan Dahmen, Geoffrey Johnson
  • Patent number: 8828490
    Abstract: A vapor deposition apparatus, which is capable of performing a thin film deposition process and improving characteristics of a formed thin film, includes: a chamber having an exhaust opening; a stage disposed in the chamber, and comprising a mounting surface on which the substrate may be mounted; an injection unit having at least one injection opening for injecting a gas into the chamber in a direction parallel with a surface of the substrate, on which the thin film is to be formed; a guide member facing the substrate to provide a set or predetermined space between the substrate and the guide member; and a driving unit conveying the stage and the guide member.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sang-Joon Seo, Seung-Yong Song, Seung-Hun Kim, Jin-Kwang Kim
  • Publication number: 20140246429
    Abstract: The present invention relates to a food container made of a plastic material and having a nano-structured hydrophobic surface, including: a plurality of nano-structures formed on a surface of the food container; and a first hydrophobic thin film coated on an upper side of the surface, on which the nano-structures are formed, and a manufacturing method thereof. According to the present invention, it is possible to provide the food container having the nano-structured hydrophobic surface capable of having excellent gas blocking performance, as well as hydrophobicity, and the manufacturing method thereof.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 4, 2014
    Inventors: Eun Kyung Song, Kyoung Sik Jo, Jin Hwan Lee, Tae Kyung Yun, Kwang Ryeol Lee, Myoung Woon Moom, Seong Jin Kim
  • Publication number: 20140245956
    Abstract: A masking portion (recessed portion) 20 is provided at the center of a rear surface of a carbonaceous substrate 10. The masking portion 20 includes a first bore portion 20a and a second bore portion 20b. The first bore portion 20a has an inner wall in which a female screw portion 21 is formed. A male screw portion 7a of a masking jig 7 is screw-fitted to the female screw portion 21. The masking jig 7 is fixed to a film forming jig 2. The carbonaceous substrate is thus supported in a standing posture, and the carbonaceous substrate is provided, on a surface, with a firm such as a SiC film or a TaC film except for the recessed portion by introducing gas into the apparatus in this supported state.
    Type: Application
    Filed: October 12, 2012
    Publication date: September 4, 2014
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Masaaki Kita, Takeshi Kubota, Hiroyuki Hirano
  • Patent number: 8821987
    Abstract: Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber, a remote plasma source, and a showerhead. Inert gas ports within the showerhead assembly can be used to alter the concentration and energy of reactive radical or reactive neutral species generated by the remote plasma source in different regions of the showerhead. This allows the showerhead to be used to apply a surface treatment to different regions of the surface of a substrate. Varying parameters such as the remote plasma parameters, the inert gas flows, pressure, and the like allow different regions of the substrate to be treated in a combinatorial manner.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony P. Chiang, Chi-I Lang, Sandip Niyogi
  • Publication number: 20140242298
    Abstract: Disclosed are homoleptic diazabutadiene nickel precursors used for the vapor deposition of nickel-containing films. The precursors have the general formula Ni(R-DAD)2, wherein R-DAD stands for substituted 1,4-diazabuta-1,3-diene ligands. The sole presence of the Ni—N bonds was also considered to avoid too high intrusion of other elements, such as carbon, into the nickel-containing films. The flexibility of the Ni—N bond in terms of film deposition also allows using the molecules for nickel, nickel-nitride, nickel-carbonitride, nickel oxide or any other type of nickel-containing films. The nickel-containing film depositions can be carried out by thermal and/or plasma-enhanced CVD, ALD, and pulse CVD or any other type of depositions methods.
    Type: Application
    Filed: September 27, 2012
    Publication date: August 28, 2014
    Inventors: Clément Lansalot-Matras, Julien Gatineau, Benjamin J. Jurcik
  • Publication number: 20140242783
    Abstract: The invention provides a reactor for the manufacture of silicon by chemical vapour deposition (CVD), the reactor comprises a reactor body that can rotate around an axis with the help of a rotation device operatively arranged to the reactor, at least one sidewall that surrounds the reactor body, at least one inlet for reaction gas, at least one outlet for residual gas and at least one heat appliance operatively arranged to the reactor. The reactor is characterised in that during operation for the manufacture of silicon by CVD, the reactor comprises a layer of particles on the inside of at least, one sidewall.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 28, 2014
    Applicant: Dynatec Engineering AS
    Inventors: Werner O. Filtvedt, Josef Filtvedt
  • Patent number: 8815343
    Abstract: The invention relates to a process for the synthesis of conducting polymer films by vapor phase polymerization. The invention relates particularly to the synthesis of polymerized thiophene films, for example poly(3,4-ethylenedioxythiophene) (PEDOT) films.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: August 26, 2014
    Assignee: Imperial Innovation Limited
    Inventors: Lichun Chen, Donal Donat Conor Bradley
  • Patent number: 8815344
    Abstract: Method for selectively depositing an atomic layer deposition film on a substrate having two different surfaces are generally described. More specifically, methods for depositing TaN selectively onto one or more of a dielectric or metal versus the other of a dielectric of metal.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 26, 2014
    Assignee: Applied Materials, Inc.
    Inventor: Paul F. Ma
  • Patent number: 8808786
    Abstract: Medicinal inhalation devices and components having a non-metal coating and a fluorine-containing coating bonded to the non-metal coating wherein the fluorine-containing coating comprises an at least partially fluorinated compound comprising at least one functional group which shares at least one covalent bond with the non-metal coating are provided. In some embodiments, the partially fluorinated compound comprises a polyfluoropolyether silane of Formula Ia: Rf[Q-[C(R)2—Si(Y)3-x(R1a)x]y]z??Ia wherein: Rf is a monovalent or multivalent polyfluoropolyether segment; Q is an organic divalent or trivalent linking group; each R is independently hydrogen or a C1-4 alkyl group; each Y is independently a hydrolysable group; R1a is a C1-8 alkyl or phenyl group; x is 0 or 1 or 2; y is 1 or 2; and z is 1, 2, 3, or 4. Methods of making the devices and components are also provided.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 19, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Philip A. Jinks, Moses M. David, Rudolf J. Dams
  • Patent number: 8802193
    Abstract: A coating method is disclosed. The coating method comprises placing a substrate and a biomolecule in a chamber and applying a vapor deposition process within the chamber so as to form a solid deposition of the biomolecule on at least a portion of a surface of the substrate.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 12, 2014
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Ehud Gazit, Lihi Adler-Abramovich, Daniel Aronov, Gil Rosenman
  • Publication number: 20140219905
    Abstract: A vapor deposition reactor and a method for forming a thin film. The vapor deposition reactor includes at least one first injection portion for injecting a reacting material to a recess in a first portion of the vapor deposition reactor. A second portion is connected to the first space and has a recess connected to the recess of the first portion. The recess of the second portion is maintained to have pressure lower than the pressure in the first space. A third portion is connected to the second space, and an exhaust portion is connected to the third space.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: Veeco ALD Inc.
    Inventor: Sang In Lee
  • Publication number: 20140212583
    Abstract: The invention relates to a method for continuous coating of substrates, in which the substrates are transported continuously through a deposition chamber and, at the same time, measures are adopted for reducing parasitic deposits as well as possible. Likewise, the invention relates to a corresponding device for continuous coating of substrates.
    Type: Application
    Filed: July 9, 2012
    Publication date: July 31, 2014
    Applicant: Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan Reber, Norbert Schillinger, David Pocza, Martin Arnold
  • Publication number: 20140193579
    Abstract: The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor fed is split in to two paths from a precursor source. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 10, 2014
    Applicant: ASM INTERNATIONAL N.V.
    Inventor: Tom E. Blomberg
  • Patent number: 8771525
    Abstract: In one embodiment, a rotary device includes a multiwall nanotube that extends substantially perpendicularly from a substrate. A rotor may be coupled to an outer wall of the multiwall nanotube, be spaced apart from the substrate, and be free to rotate around an elongate axis of the multiwall nanotube.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 8, 2014
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: David J. Carter, Marc S. Weinberg, Eugene Cook, Peter Miraglia
  • Patent number: 8765223
    Abstract: This invention discloses the synthesis of metal chalcogenides using chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, or wet solution process. Ligand exchange reactions of organosilyltellurium or organosilylselenium with a series of metal compounds having neucleophilic substituents generate metal chalcogenides. This chemistry is used to deposit germanium-antimony-tellurium (GeSbTe) and germanium-antimony-selenium (GeSbSe) films or other tellurium and selenium based metal compounds for phase change memory and photovoltaic devices.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 1, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Manchao Xiao, Liu Yang
  • Patent number: 8765221
    Abstract: A film forming method includes a step of arranging a wafer, on which an insulating film is formed, in a processing chamber of a film forming apparatus and a surface modification step of supplying a compound gas containing silicon atoms and an OH group-donating gas into the processing chamber so that Si—OH groups are formed on the surface of the insulating film. The film forming method further includes a film forming step of supplying a film forming gas containing a manganese-containing material into the processing chamber so that a manganese-containing film is formed on the surface of the insulating film on which the Si—OH groups have been formed through a CVD method.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hidenori Miyoshi, Hitoshi Itoh, Hiroshi Sato
  • Patent number: 8764907
    Abstract: A method for servicing a plasma processing system. The plasma processing system may include a plasma chamber. The plasma chamber may include a top piece and a bottom piece, wherein the top piece may be disposed above the bottom piece. The method may include using a robot device to control a lift mechanism to lift the top piece from the bottom piece. The method may also include extending a first member of the robot device into the top piece to perform a first set of tasks according to a first set of service procedures. The method may also include extending a second member of the robot device into the bottom piece to perform a second set of tasks according to a second set of service procedures.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 1, 2014
    Assignee: Lam Research Corporation
    Inventor: Andrew D. Bailey, III
  • Publication number: 20140168224
    Abstract: This disclosure provides systems, methods and apparatus for providing multiple dielectric coatings for a shutter assembly. The multiple dielectric coatings include an outer dielectric coating and one or more inner dielectric coatings. The outer dielectric coating has an electrical trap density that is lower than electrical trap densities of the one or more inner dielectric coatings. The lower electrical trap density reduces the amount of charge buildup over various surfaces of the shutter assembly. This reduction in charge buildup also reduces electrostatic forces that may cause incorrect operation of the shutter assembly.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: Pixtronix, Inc.
    Inventors: Cait Ni Chleirigh, Susan Oakley, Aleksander Franz, Joyce H. Wu
  • Publication number: 20140158580
    Abstract: Described herein are alkoxysilylamine precursors having the following Formulae A and B: wherein R1 and R4 are independently selected from a linear or branched C1 to C10 alkyl group, a C3 to C12 alkenyl group, a C3 to C12 alkynyl group, a C4 to C10 cyclic alkyl group, and a C6 to C10 aryl group and wherein R2, R3, R4, R5, and R6 are independently selected from the group consisting of hydrogen, a linear or branched C1 to C10 alkyl group, a C2 to C12 alkenyl group, a C2 to C12 alkynyl group, a C4 to C10 cyclic alkyl, a C6 to C10 aryl group, and a linear or branched C1 to C10 alkoxy group. Also described herein are deposition processes using at least one precursor have Formulae A and/or B described herein.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 12, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Manchao Xiao, Ronald Martin Pearlstein, Richard Ho, Daniel P. Spence, Xinjian Lei
  • Patent number: 8747948
    Abstract: A deposition apparatus configured to form a thin film on a substrate includes: a reactor wall; a substrate support positioned under the reactor wall; and a showerhead plate positioned above the substrate support. The showerhead plate defines a reaction space together with the substrate support. The apparatus also includes one or more gas conduits configured to open to a periphery of the reaction space at least while an inert gas is supplied therethrough. The one or more gas conduits are configured to supply the inert gas inwardly toward the periphery of the substrate support around the reaction space. This configuration prevents reactant gases from flowing between a substrate and the substrate support during a deposition process, thereby preventing deposition of an undesired thin film and impurity particles on the back side of the substrate.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: June 10, 2014
    Assignee: ASM Genitech Korea Ltd.
    Inventors: Hyung Sang Park, Seung Woo Choi, Jong Su Kim, Dong Rak Jung, Jeong Ho Lee, Chun Soo Lee
  • Publication number: 20140154417
    Abstract: According to an embodiment of the present invention, provided is a method of synthesizing nanowires that includes the following steps of: disposing a covering inside a reaction furnace such that the covering is spaced apart by a predetermined gap from a substrate which is provided for synthesis of nanowires; heating the reaction furnace; and synthesizing nanowires by allowing a source gas to be deposited on the substrate while flowing through the gap between the substrate and the covering.
    Type: Application
    Filed: November 12, 2013
    Publication date: June 5, 2014
    Applicant: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Doo Jin Choi, YooYoul Choi
  • Patent number: 8741385
    Abstract: The present invention relates to the field of semiconductor processing and provides methods that improve chemical vapor deposition (CVD) of semiconductor materials by promoting more efficient thermalization of precursor gases prior to their reaction. In preferred embodiments, the method provides heat transfer structures and their arrangement within a CVD reactor so as to promote heat transfer to flowing process gases. In certain preferred embodiments applicable to CVD reactors transparent to radiation from heat lamps, the invention provides radiation-absorbent surfaces placed to intercept radiation from the heat lamps and to transfer it to flowing process gases.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 3, 2014
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow
  • Patent number: 8741800
    Abstract: A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: June 3, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Christopher L. Marshall, Joseph A. Libera, James A. Dumesic, Yomaira J. Pagan-Torres
  • Publication number: 20140147592
    Abstract: A nanosynthesis apparatus includes an outer tube and an inner tube with surfaces that oppose each other across a gap as part of a reaction chamber. A deposition fluid flows along the reaction chamber to grow nanostructures such as graphene or carbon nanotubes on a substrate in the reaction chamber. The reaction chamber may have an annular cross-section, and the growth substrate may wrap around the inner tube in a helical manner. This configuration can allow a flexible film substrate to travel through the reaction chamber along a path that is significantly longer than the length of the reaction chamber while maintaining a uniform gap between the substrate and the reaction chamber wall, which can facilitate a uniform temperature distribution and fluid composition across the width of the substrate.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 29, 2014
    Inventors: Anastasios John Hart, Erik Polsen
  • Publication number: 20140147591
    Abstract: A film deposition method includes rotating a rotary table by a first angle while supplying a separation gas from a separation gas supplying part and a first reaction gas from a first gas supplying part; supplying a second reaction gas from a second gas supplying part and rotating the rotary table by a second angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; rotating the rotary table by a third angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; and supplying a third reaction gas from the second gas supplying part and rotating the rotary table by a fourth angle while supplying the separation gas and the first reaction gas.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 29, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Hiroaki IKEGAWA, Masahiko Kaminishi, Kosuke Takahashi, Yu Sasaki, Jun Ogawa
  • Patent number: 8734903
    Abstract: A chemical vapor deposition process for the deposition of a silica layer on a glass substrate is provided. The process includes providing a glass substrate. The process also includes forming a gaseous precursor mixture comprising a silane compound, oxygen, water vapor, and a radical scavenger and directing the precursor mixture toward and along the glass substrate. The mixture reacts over the glass substrate to form a silica coating thereon.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 27, 2014
    Assignee: Pilkington Group Limited
    Inventor: Douglas M. Nelson
  • Publication number: 20140130710
    Abstract: A method for producing a superhydrophobic surface, which includes cellulosic material. The cellulosic material includes nanocellulose particles and the method includes adding the nanocellulose particles to a surface and hydrophobizing the nanocellulose particles with a modifier before, during and/or after the addition of the particles. The invention further relates to a hydrophobic coating.
    Type: Application
    Filed: May 4, 2012
    Publication date: May 15, 2014
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Henrikki Mertaniemi, Olli Ikkala, Jan-Erik Teirfolk, Antti Laukkanen, Robin Ras
  • Publication number: 20140120257
    Abstract: Methods and apparatus for selective gas injection and extraction for use in a substrate processing chamber are provided herein. In some embodiments, a gas injection and extraction apparatus includes a plate having a plurality of apertures through a thickness of the plate, each aperture of the plurality of apertures having an aperture wall; a plurality of tubes, each tube partially disposed within one of the plurality of apertures, wherein a disposed portion of each of the tubes is spaced apart from at least a portion of the aperture wall of the aperture in which it is disposed, thereby forming an interstice between at least a portion of the aperture wall and the disposed portion of the tube; a gas supply fluidly coupled to each of the tubes; and a vacuum source fluidly coupled to each of the interstices.
    Type: Application
    Filed: October 11, 2013
    Publication date: May 1, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventor: MARTIN J. RIPLEY
  • Publication number: 20140119977
    Abstract: Methods and compositions for depositing a metal containing film on a substrate are disclosed. A reactor and at least one substrate disposed in the reactor are provided. A metal containing precursor is provided and introduced into the reactor, which is maintained at a temperature of at least 100° C. A metal is deposited on to the substrate through a deposition process to form a thin film on the substrate.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude
    Inventors: Julien GATINEAU, Kazutaka Yanagita, Shingo Okubo
  • Patent number: 8709540
    Abstract: This invention provides a new film forming method in which, on the occasion that pressure is decreased by pressure decreasing means which was connected to a film forming chamber, and a film is formed by evaporating an organic compound material from a deposition source in the film forming chamber, minute amounts of gas (silane series gas) which comprises smaller particles than particles of the organic compound material, i.e., a material with a smaller atomic radius are flowed, and the material with a small atomic radius is made to be included in an organic compound film.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8709863
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: April 29, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Publication number: 20140113074
    Abstract: Improved methods for synthesizing large area thin films are disclosed, which result in films of enhanced width. The methods comprise providing a separator material which is rolled or wound up, along with the metallic foil substrate on which the thin film is to be deposited, to form a coiled composite which is then subjected to conventional chemical vapor deposition. Optionally, a winding tool may be used to aid in the rolling process. The methods enable a many-fold increase in the effective width of the substrate to be achieved.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: BLUESTONE GLOBAL TECH LTD.
    Inventors: Xuesong LI, Jia-Hung WU
  • Patent number: 8703245
    Abstract: A coated metal substrate has at least one layer of titanium based hard material alloyed with at least one alloying element selected from the list of chromium, vanadium and silicon. The total quantity of alloying elements is between 1% and 50% of the metal content, the layer having a general formula of: (Ti100-a-b-cCraVbSic)CxNyOz.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 22, 2014
    Assignees: Iscar, Ltd., Ionbond AG
    Inventors: Albir Layyous, Yehezkeal Landau, Hristo Strakov, Renato Bonetti