Analysis And Testing Patents (Class 204/400)
  • Patent number: 8940143
    Abstract: An embodiment of the invention relates to a biochip comprising at least two measurement electrodes, a synthesis electrode, a ground electrode, a gap between the at least two measurement electrodes, a porous dielectric isolation layer and a gel comprising a probe in the gap, wherein the porous dielectric isolation layer is between the synthesis electrode and the gel. Yet other embodiments relate to the method of manufacturing the biochip and using the biochip for electrical detection of bio-species.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Nikolay Suetin
  • Publication number: 20150021179
    Abstract: An electrochemical strip is disclosed. The electrochemical strip includes a substrate and an electrode deposited on the substrate. The electrode includes a conductive paste layer, a first metal layer, a second metal layer, a third metal layer, and a fourth metal layer. The conductive paste is made of a material selected from the group consisting of copper paste, nickel paste, silver paste, and silver-carbon paste. The first metal layer is made of a group VIII metal. The second metal layer is made of nickel. The third metal layer is made of a group VIII metal. The fourth metal layer is made of a material selected from the group consisting of palladium, gold, and platinum.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 22, 2015
    Inventor: Chuan-Hsing HUANG
  • Publication number: 20150014161
    Abstract: A concentration measuring device having a spot-application region, and a configuration capable of measuring the concentration of an object component in the sample liquid dropped on the spot-application region, the concentration measuring device including: a light irradiation device, which is provided on a side below the spot-application region, for emitting an irradiation light having a wavelength absorbable by a coloring matter in the dropped sample liquid. The irradiation light passes through the spot-application region, thereby the sample liquid dropped on the spot-application region is irradiated with the irradiation light from the side below the spot-application region. As a result, a non-covered region in the spot-application region can be easily found by visual observation. The spot-application region is composed of, for example, a through hole formed on the supporting film and a separation membrane that blocks the through hole.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Tomoyuki Murata, Takao Minai, Takaaki Yada
  • Patent number: 8926822
    Abstract: An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: January 6, 2015
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Nongjian Tao, Erica Forzani
  • Publication number: 20150007371
    Abstract: A device is presented having reversibly changeable and optically readable optical properties. The device comprises a substrate having an electrically conductive surface and carrying a redox-active layer structure. The redox-active layer structure may be a monolayer or a multi-layer structure and is configured to have at least one predetermined electronic property including at least one of electrodensity and oxidation state. The electronic property of the layer structure defines an optical property of the structure thereby determining an optical response of the structure to certain incident light. This at least one electronic property is changeable by subjecting the redox-active layer structure to an electric field or to a redox-active material. The device thus enables effecting a change in said electronic property that results in a detectable change in the optical response of the layer structure.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: Milko E. VAN DER BOOM, Atindra D. SHUKLA, David ROSENBLATT, Tarkeshwar GUPTA
  • Publication number: 20150004680
    Abstract: The present invention relates to a cartridge for sensor for detecting the concentrations of one or more components in a sample. The cartridge for sensor for detecting one or more components in a sample of the present invention not only enables quantitative measurement of one or more components in a sample by one time sample injection but also facilitates mass-production with low cost owing to the simple structure and easiness in preparation and carry. Therefore, the cartridge of the present invention can be effectively used as the biosensor cartridge for field measurement.
    Type: Application
    Filed: November 23, 2012
    Publication date: January 1, 2015
    Inventors: Kyujeong Song, Seung Hyun Jung, Moon Hee Choi, In Seok Jeong, Junhee Han, Geun Sig Cha
  • Patent number: 8920718
    Abstract: The invention describes novel chemiluminescence electrode devices and their novel properties to enable achieving luminescence signal by electrical excitation by cathodic or bipolar pulses in aqueous electrolyte solutions. These devices form a significant improvement in construction of cheap and reliable means for especially diagnosis of health conditions in point-of-need purposes.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: December 30, 2014
    Assignee: Labmaster Oy
    Inventors: Sakari Kulmala, Timo Kalevi Korpela, Jarkko Uolevi Eskola, Teppo Tapani Laaksonen
  • Patent number: 8916035
    Abstract: An arrangement and a method measures cell vitalities with a sensor array. The sensor array is formed on a surface of a semiconductor chip. The semiconductor chip has integrated circuits and an integrated circuit is associated with each sensor of the sensor array, for processing the measurement signals of the respective sensor. The integrated circuits are formed in the semiconductor chip spatially in each case below the associated sensor and neighboring sensors of the sensor array have a center-to-center in the range of micrometers. The pH and/or pO2 can be measured in the environment of a living cell.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 23, 2014
    Assignee: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Alexander Frey, Walter Gumbrecht, Peter Paulicka, Meinrad Schienle, Daniel Sickert, Manfred Stanzel
  • Publication number: 20140367277
    Abstract: An electrochemical sensor incorporates a ferrocenophane which is a compound with at least one bridging group covalently attached to and connecting the two cyclopentadiene rings associated with the same iron atom. This bridging group maybe tetramethylene. As compared to an equivalent sensor with ferrocene, the tolerance of elevated temperature is improved and so is the working life at ambient temperature.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 18, 2014
    Inventors: Lynne Crawford, Andrew Meredith, Nathan Lawrence, Timothy Jones
  • Publication number: 20140360890
    Abstract: Cantilever Sensors made of piezoelectric material may be structured with various configurations of asymmetric anchors as well as asymmetric electrodes. Such asymmetry enables measurement of resonant properties of the cantilever that are otherwise unmeasurable electrically, resulting in significant advantages for ease of measurement. In addition the asymmetry enables expression of torsional and/or lateral modes that are otherwise absent, and these modes also exhibit excellent mass-change sensitivity. The asymmetries may enable resonant mode impedance-coupling.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 11, 2014
    Applicant: Drexel University
    Inventors: Rajakkannu Mutharasan, Blake N. Johnson, Harsh Sharma
  • Publication number: 20140353175
    Abstract: A process for derivatization of an elemental carbon surface comprising exposing the carbon surface to a reaction mixture containing a thiol and a free radical initiator, and inducing decomposition of the initiator to free radicals so that moieties from the thiol become covalently attached to the carbon surface. The process can derivatize carbon with a redox active compound having a functional group which can be converted electrochemically between reduced and oxidized forms. Such derivatized carbon may be used in an electrode of an electrochemical sensor.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 4, 2014
    Inventors: Lynne Crawford, Nathan Lawrence, Timothy Jones
  • Patent number: 8900429
    Abstract: There is provided a sample preparation device and method for preparing a sample of liquid for detection of impurities. First (40) and second (38) electrodes are provided, located for immersion in a liquid under test. A semipermeable membrane (42) is positioned to protect the first electrode (40) from a body of liquid under test (32). The semipermeable membrane allows the liquid under test to pass therethrough to reach the first electrode, while preventing solids carried in the liquid from reaching the first electrode, the first electrode being positioned to affect the liquid under test in the vicinity of a sensor (36). Particular embodiments feature a hydrophilic membrane to protect the electrodes from suspended solids in the sample, a thin electrode assembly to achieve a faster response and the addition of a heater for temperature control to achieve consistent detection conditions and improved anti-fouling properties.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 2, 2014
    Inventor: David Robert Vincent
  • Patent number: 8900441
    Abstract: An ionic probe is provided according to the invention. The ionic probe includes an active electrode configured to generate a measurement signal for an external test fluid, a first reference electrode configured to generate a first reference signal, and an at least second reference electrode configured to generate at least a second reference signal. The measurement signal is compared to the first reference signal and the at least second reference signal in order to determine an ionic measurement of the external test fluid.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: December 2, 2014
    Assignee: Hach Company
    Inventors: John Robert Woodward, Pierre Antione Robert Livrozet, Jean-Francois Maurice Rene Schvan, Russell Martin Young, Kevin James West
  • Patent number: 8900434
    Abstract: A dielectrophoresis method for separating particles from a sample, including a dielectrophoresis channel, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa parallel to said first mesa; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode, and pumping a recovery fluid through said gap between said first electrode and into said space between at least one of said first mesa and said second side or said s
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: December 2, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Dietrich A. Dehlinger, Klint A. Rose, Maxim Shusteff, Christopher G. Bailey, Raymond P. Mariella, Jr.
  • Patent number: 8888971
    Abstract: A synergistic improvement of a precious metal assaying device with its associated electronic decoding algorithms further employing a precise feed of an electrolyte from a disposable flexing cartridge and through porous media for conveying electrolyte to create a reproducible electrochemical contact by a wetting action between a reference electrode in the assaying device and an external specimen under test where the electrolyte is passed through a novel slit diaphragm permitting efflux of electrolyte and reflux of unused electrolyte that results in a self-cleaning flush of the assaying device. The synergistic slit diaphragm permits the flow of electrolyte from the flexing cartridge in response to the positive pressure and the cleansing return of unused electrolyte on negative pressure of the cartridge, thereby solving a contamination problem which was a major shortcoming in such assaying devices.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: November 18, 2014
    Inventors: Leonid Radomyshelsky, Boris Loginov
  • Patent number: 8888970
    Abstract: Generally, embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of the sensing layer by inclusion of a high-boiling point solvent, where the sensing layer is disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Balasubrahmanya S. Bommakanti, Gary Sandhu, Udo Hoss, Geoffrey V. McGarraugh
  • Publication number: 20140332413
    Abstract: Derivatization of an elemental carbon surface is accomplished by exposing the carbon surface to an aprotic solvent containing a hydrazone molecule of formula (I) or the corresponding salt of formula (II) wherein R1 is an organic group, and R2 is an organic group or hydrogen and decomposing the hydrazone in the presence of elemental carbon to create a carbene moiety of formula (III): which attaches to the carbon surface. The attached groups may be redox active so that the derivatized carbon may be used in an electrochemical sensor.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 13, 2014
    Inventors: Lynne Crawford, Nathan Lawrence, Timothy Jones
  • Publication number: 20140332412
    Abstract: Chemical modification of the surface of elemental carbon comprises a first stage of attaching a compound with an azo group to the elemental carbon and then a second stage of decomposing the azo group in the presence of one or more compounds with an olefinic group so that decomposition of the azo group forms radicals attached to the carbon surface and a said radical forms a covalent bond to a said olefinic group. The second stage may proceed as a polymerization of a vinyl monomer with a redox active group such as ferrocene, anthracene or anthraquinone. The resulting polymer-modified carbon may be used in an electrochemical sensor.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 13, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY COPORATION
    Inventors: Kay McGuinness, Nathan Lawrence
  • Publication number: 20140326616
    Abstract: The presence of oxygen or red blood cells in a sample applied to an electrochemical test strip that makes use of a reduced mediator is corrected for by an additive correction factor that is determined as a function of the temperature of the sample and a measurement that reflects the oxygen carrying capacity of the sample. The measured oxygen carrying capacity can also be used to determine hematocrit and to distinguish between blood samples and control solutions applied to a test strip.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 6, 2014
    Applicant: AgaMatrix, Inc.
    Inventors: Ian Harding, Richard Williams, Sridhar Iyengar
  • Patent number: 8877022
    Abstract: Embodiments of the present disclosure set forth a biosensor for detecting a target. One example sensor includes a first electrode. The first electrode includes a first electron conducting molecule and a first probe. The first probe includes a second electron conducting molecule. The first probe is configured to bind to the target of interest in solution. The first and second electron conducting molecules are different.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 4, 2014
    Assignee: National Taiwan University
    Inventors: Shiming Lin, Bor-Ching Sheu, Luan-Yin Chang, Chih-Chen Lin
  • Patent number: 8877033
    Abstract: The presence of a select analyte in the sample is evaluated in an electrochemical system using a conduction cell-type apparatus. A potential or current is generated between the two electrodes of the cell sufficient to bring about oxidation or reduction of the analyte or of a mediator in an analyte-detection redox system, thereby forming a chemical potential gradient of the analyte or mediator between the two electrodes After the gradient is established, the applied potential or current is discontinued and an analyte-independent signal is obtained from the relaxation of the chemical potential gradient. The analyte-independent signal is used to correct the analyte-dependent signal obtained during application of the potential or current.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 4, 2014
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar G. Iyengar, Ian Harding
  • Publication number: 20140318957
    Abstract: A well is formed in a body of dielectric material and has a chamfered edge about a top side of the well. A top electrode layer is on a top face of the body and on the chamfered edge of the well. A bottom electrode is on a floor of the well.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: James Elmer Abbott, Greg Scott Long, Michael A. Delos-Reyes
  • Patent number: 8871067
    Abstract: The present invention relates to a sensor for detecting hydrogen peroxide, comprising: (a) a gold (Au) nanoparticle conjugated with a conducting oxide substrate comprising a conduction oxide; (b) a cytochrome c immobilized on the gold nanoparticle. In the performance of the present sensor, current values are increased in parallel with increased hydrogen peroxide concentration. Such performance enables to easily analyze the presence or concentration of hydrogen peroxide.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: October 28, 2014
    Assignee: Industry-University Cooperation Foundation Sogang University
    Inventors: Jeong Woo Choi, Ajay Kumar Yagati, Taek Lee, Jun Hong Min
  • Publication number: 20140311903
    Abstract: The invention provides electrochemical-based modules useful for the determination of an analyte in a bodily fluid sample. The modules of the invention provide opposed electrodes, but the contact areas for making electrical contact between the electrodes and the analyte measurement device are coplanar.
    Type: Application
    Filed: September 7, 2012
    Publication date: October 23, 2014
    Inventors: Steven John Setford, Scott J. Sloss
  • Patent number: 8858767
    Abstract: This invention is directed to a polyamic acid represented by the following formula (I), and an electrode having an active layer made from the polyamic acid of formula (I).
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 14, 2014
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Yaw-Terng Chern, Hsiao-Chien Chen, Rung-Ywan Tsai
  • Publication number: 20140291166
    Abstract: A method for electrochemically detecting an analyte contained in a sample using a working electrode and a counter electrode, comprising: allowing an electrolyte solution which contains a solution prepared by dissolving an imidazolium iodide compound in a protic solvent to be into contact with the working electrode and the counter electrode; and electrochemically detecting the analyte contained in the sample in the presence of the electrolyte solution is disclosed. A kit to be used for the method for electrochemically detecting an analyte is also disclosed.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Applicant: SYSMEX CORPORATION
    Inventors: Fumiya FUTAMATSU, Hiroya KIRIMURA, Shigeki IWANAGA, Seigo SUZUKI, Nobuyasu HORI, Yuichi YASUDA
  • Publication number: 20140291160
    Abstract: The present invention refers to a sensor (10) having a layer arrangement (12), wherein the layer arrangement (12) comprises at least a base layer (14), a middle layer (16) and an outer layer (18), wherein the middle layer (16) is arranged at least partly upon and in contact with the base layer (14) and wherein the outer layer (18) is arranged at least partly upon and in contact with the middle layer (16), wherein the base layer (14) comprises a metal, wherein the middle layer (16) comprises a metal oxide, and wherein the outer layer (18) is porous and comprises a material selected from the group comprising electrically conductive carbon compounds such as, more particularly, graphite or carbon nanotubes (CNTs), organic electrical conductors and base metals, and wherein electrical contacts can be formed with the base layer (14) and outer layer (18) for a conductivity measurement and/or a resistance measurement.
    Type: Application
    Filed: October 10, 2012
    Publication date: October 2, 2014
    Inventors: Klaus Schierbaum, Mhamed El Achhab, Christiane Schüle
  • Patent number: 8840765
    Abstract: The present invention concerns an electrochemical sensor for determining oxygen dissolved in an aqueous measuring medium, a process for its production as well as a method for determining oxygen dissolved in an aqueous measuring medium using the electrochemical sensor.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: September 23, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Helmut Offenbacher
  • Patent number: 8840774
    Abstract: Described herein is an apparatus comprising an electrochemical cell that employs a capacitive counter electrode and a faradaic working electrode. The capacitive counter electrode reduces the amount of redox products generated at the counter electrode while enabling the working electrode to generate redox products. The electrochemical cell is useful for controlling the redox products generated and/or the timing of the redox product generation. The electrochemical cell is useful in assay methods, including those using electrochemiluminescence. The electrochemical cell can be combined with additional hardware to form instrumentation for assay methods.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 23, 2014
    Assignee: Board of Regents of the University of Texas System
    Inventors: Allen J. Bard, Chong-Yang Liu
  • Publication number: 20140262833
    Abstract: A sensor having a bifurcated flow path and method for using the same is disclosed. In some embodiments, the sensor has two flow channels into which sample flow is induced by capillary action, wherein the flow channels are in contact with electrodes configured to generate an electrochemical reaction in the flow channels which can be measured and correlated to the level of an analyte in the sample. In some embodiments, the levels of more than one analyte can be measured using a single sensor.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: MAGELLAN DIAGNOSTICS, INC.
    Inventors: Matthew K. Musho, Mohammad Hossein Maleknia
  • Publication number: 20140262771
    Abstract: A test cell for analyzing residue on the surface of a microelectronic component includes a cleaning tip with an opening at one end for passing cleaning fluid into the chamber and for passing used cleaning fluid out of the chamber, and an opening at the other end to access a test area in which cleaning fluid may contact the surface of a component to be tested. A third opening for venting the cleaning tip chamber to the atmosphere may also be provided. A common cleaning/aspiration passageway communicates with the cleaning tip chamber through the first opening. A cleaning passageway provides fresh cleaning fluid to the cleaning/aspiration passageway. An aspiration passageway removes used cleaning fluid from the cleaning/aspiration passageway. An analysis chamber in fluid communication with the aspiration passageway has electrodes effective for qualitatively and/or quantitatively measuring residue removed from the microelectronic surface by the cleaning fluid.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventor: Terry L. Munson
  • Publication number: 20140262770
    Abstract: Disclosed is a system for fabricating an electrochemical cell that includes switchable components for combinatorial evaluation of materials, solvents, membranes, separators and the like for electrochemical applications. The system includes at least one cell block and at least one electrode plate.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Theodore J. Kramer, Emily B. Cole, Kyle Teamey
  • Publication number: 20140251825
    Abstract: A method of determining the charge of at least one test particle, comprising: applying one of an electric current or a voltage across an aperture connecting two chambers, whereby the chambers are at least partially filled with electrolyte and whereby the at least one test particle is suspended in the electrolyte of at least one of the chambers; measuring the other of the electric current or voltage across the aperture; varying a pressure differential between the two chambers; and determining the charge based on the measurements of the electric current or voltage.
    Type: Application
    Filed: August 2, 2012
    Publication date: September 11, 2014
    Applicant: IZON SCIENCE LIMITED
    Inventors: Johannes Adrianus Van Der Voorn, Robert Vogel, Benjamin Mark Glossop
  • Patent number: 8828208
    Abstract: An apparatus for sensing of an interaction of a molecular entity with a membrane protein in a lipid bilayer comprises an array of sensor elements (21) arranged to output an electrical signal that is dependant on occurrences of the interaction. A detection circuit (3) comprised detection channels (30) capable of amplifying an electrical signal from a sensor element. More sensor elements (21) are provided than detection channels (30), and detection channels (30) are selectively connected to sensor elements (21) that have acceptable quality of performance in that a lipid bilayer is formed and that an acceptable number of membrane proteins are inserted, on the basis of the amplified electrical signals that are output from the detection channels. This improves the efficiency of utilization of the detection channels, due to inefficiency in the utilization of the sensor elements, resulting in a reduction in the cost of the apparatus and the ability to perform sensing using relatively small samples.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Oxford Nanopore Technologies Limited
    Inventors: Antonio Canas, Simon Adrian Wells
  • Patent number: 8828207
    Abstract: Systems and methods are provided for a deep sea pH sensor. In one embodiment, a method for manufacturing a pH sensor comprises forming a sensor electrode in a working surface of a die wherein the sensor electrode is able to sense the pH of a liquid and forming at least one isolation groove around the sensor electrode on the working surface of the die, wherein the die has a wide street around the sensor electrode and the at least one isolation groove. The method further comprises mounting the die onto a base and securing a seal on the working surface in the wide street, wherein the seal surrounds the isolation groove, the seal sealing the liquid within the portion of the working surface of the die containing the sensor electrode and the isolation groove, when the pH sensor is subjected to high pressure.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventor: Gregory C. Brown
  • Patent number: 8827924
    Abstract: A diagnostic method and apparatus for detecting at least one change in a urinary parameter indicative of a body malfunction, the method comprising at least semi-continuously monitoring in real time at least one of a sodium level, an oxygen level, a potassium level, and combinations thereof in the urine of a catheterized patient; whereby at least one parameter is monitored so as to detect one or more changes in the at least one parameter to reflect at least one of a fluid state, an electrolyte balance, a kidney state, a kidney perfusion and an organ perfusion in the patient, indicative of the body malfunction in the patient, in which the monitoring is preferably performed through electrodes that are arranged perpendicularly to the flow of urine through a patient's catheter system.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 9, 2014
    Assignee: FlowSense Ltd.
    Inventors: Ilan Paz, Stanley Chimes, Martin Clive Henry Jackson
  • Publication number: 20140238854
    Abstract: The present disclosure relates to an electrode strip, a sensor strip and a system thereof. The electrode strip includes a substrate, an electrode layer, an insulation layer and a cover. The electrode layer is disposed on the substrate. The electrode layer includes a first electrode set and a second electrode set. The insulation layer includes a groove, a first protrusion and a second protrusion. The first protrusion and the second protrusion divide the groove into two reactive areas such as a first reactive area and a second reactive area. The cover includes a vent-hole connecting to the groove, and the cover is disposed on the insulation layer.
    Type: Application
    Filed: December 20, 2013
    Publication date: August 28, 2014
    Applicant: APEX BIOTECHNOLOGY CORP.
    Inventor: SZ HAU CHEN
  • Patent number: 8808530
    Abstract: The present invention includes methods and compositions having at least one nanoparticle for analyzing a chemical analyte. The device includes an electrochemical cell connected to a measuring apparatus, wherein the electrochemical cell comprises a container and at least one electrode comprising a surface modification; a solution within the container comprising one or more chemical analytes and one or more metal nanoparticles in the solution, wherein one or more electrocatalytic properties are generated by the one or more metal nanoparticles at the at least one electrode and the contact of individual nanoparticles can be measured.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: August 19, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Hongjun Zhou, Allen J. Bard, Fu-Ren F. Fan
  • Patent number: 8808516
    Abstract: Nanoscale probes for forming stable, non-destructive seals with cell membranes. The probes, systems including these probes, and methods of fabricating and using the probes described herein may be used to sense from, stimulate, modify, or otherwise effect individual cells or groups of cells. In particular, described herein are nanoscale cellular probes that may be used to span the lipid membrane of a cell to provide stable and long lasting access to the internal cellular structures. Thus, the probes described herein may be used as part of a system, method or device that would benefit from stable, non-destructive access across a cell membrane. In some variations the nanoscale probe devices or systems described herein may be used as part of a drug screening procedure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 19, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nicholas Alexander Melosh, Piyush Verma, Benjamin David Almquist
  • Patent number: 8808518
    Abstract: A method of microbial identification is disclosed. The method includes the steps of assembling dielectrophoretic particles modified with specific DNA probes on a surface thereof in a continuous fluid at a predetermined location in a microchannel to form a particle assembly by a negative dielectrophoretic force and a hydrodynamic force provided by the continuous fluid, narrowing gaps between the dielectrophoretic particles of the particle assembly to enhance the electric field in the gaps between the dielectrophoretic particles, injecting a fluid containing target DNAs of a target microbe into the microchannel at a predetermined flow rate to move the target DNAs toward the particle assembly and generating a positive dielectrophoretic force by the enhanced electric field to attract the target DNAs toward the dielectrophoretic particles of the particle assembly for hybridization with the DNA probes. The present invention also discloses a method of manipulation of nanoscale biomolecules.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 19, 2014
    Assignee: National Cheng Kung University
    Inventors: I-Fang Cheng, Hsien-Chang Chang, Cheng-Che Chung
  • Publication number: 20140227798
    Abstract: The method and apparatus for detecting a chemical substance of the present invention perform the detection of a chemical substance by capturing the chemical substance with a capturing body prepared by utilizing a molecular template. The present invention provides a chemical sensor easy to use for general consumers at home as well as for medical personnel (medical doctors, medical technicians and nurses). In particular, an object of the present invention is to diagnose the symptom of stress disorder by detecting, with high sensitivity, a steroid hormone such as cortisol closely related to stress disorder, and to herewith contribute to the prevention and early treatment of stress disorder. The present invention provides a molecular template for a steroid hormone, including a polymer to interact with the steroid hormone. The polymer preferably includes, in the polymerization unit thereof, two or more functional groups to interact with the steroid hormone.
    Type: Application
    Filed: June 20, 2012
    Publication date: August 14, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Toshifumi Takeuchi, Shinichi Taniguchi, Naotoshi Akamatsu
  • Publication number: 20140224652
    Abstract: Device comprising a substrate (1), an electrode (2), a track (4) and a recess (3), wherein the substrate extends over a first thickness, between a first face and a second face, wherein the electrode is printed on the first face, wherein the track is printed on the second face, wherein the substrate is electrically insulated, wherein the electrode is conductive to electricity essentially through carbon particles, wherein the track is conductive to electricity and contains particles of silver, wherein the recess is conductive to electricity and is made of an ink which comprises a binary mixture of carbon and silver in proportions where the quantity of silver divided by the sum of the quantities of carbon and silver present in the binary mixture is comprised within a 0 to 1 interval, wherein the recess extends within the substrate from the first face to the second face, wherein the recess is in electrical contact with the electrode at the level of a first junction located on the first face, wherein the recess is
    Type: Application
    Filed: August 3, 2012
    Publication date: August 14, 2014
    Applicant: EASY LIFE SCIENCE
    Inventor: Manuel Antonio Raymond Gallardo
  • Patent number: 8801907
    Abstract: The present invention relates to electrochemical cells including a first working electrode 32, a first counter electrode 34, a second working electrode 36, and a second counter electrode 38, wherein the electrodes are spaced such that reaction products from the first counter electrode 34 arrive at the first working electrode 32, and reaction products from the first and second counter electrodes 34, 38 do not reach the second working electrode 36. Also provided is a method of using such electrochemical cells for determining the concentration of a reduced or oxidized form of a redox species with greater accuracy than can be obtained using an electrochemical cell having a single working and counter electrode.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 12, 2014
    Assignee: LifeScan, Inc.
    Inventor: Alastair M. Hodges
  • Publication number: 20140209475
    Abstract: There is provided a nanohair structure with the nanowires exposed on a nanotemplate; the method thereof; and a three-dimensional nanostructure-based sensor with ultra-sensitivity and greatly increased three-dimensional surface-to-volume ratio which immobilizes bio-nanoparticles to the nanohair structure and arranges antibodies to the nano surface with the controlled orientation by physical interaction.
    Type: Application
    Filed: February 25, 2014
    Publication date: July 31, 2014
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Young Keun KIM, Jee-Won LEE, Jin-Seung PARK, Moon Kyu CHO, Eun Jung LEE
  • Publication number: 20140209486
    Abstract: A detecting device and method applying an electrochemical detecting strip are disclosed. The detecting device is used to detect by applying an electrochemical detecting strip having at least one cavity on the upper surface thereof with the cavity being coated with reaction reagent. The detecting device is provided with an electrode assembly consisting of a plurality of electrode bodies. A working electrode and a counter electrode are disposed on the surface of each electrode body. Moreover, each electrode body is provided with an arm to be joined as a coupling port at the center of the electrode assembly such that all of the electrode bodies surround the coupling port.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Applicant: ACTHERM INC
    Inventor: Min-Ying CHEN
  • Publication number: 20140209485
    Abstract: There is provided a sensor head which includes a mounting surface having insulation property. A first electrode and a second electrode are arranged on the mounting surface in a spaced-apart manner from each other. A liquid retaining material is arranged on the mounting surface in a state where the liquid retaining material covers the first electrode and the second electrode integrally. The liquid retaining material is impregnated with a standard liquid which is used as a reference in the electrochemical measurement.
    Type: Application
    Filed: April 25, 2012
    Publication date: July 31, 2014
    Applicant: OMRON HEALTHCARE CO., LTD.
    Inventors: Naoto Ohgami, Hideyuki Yamashita, Yutaro Okuno
  • Patent number: 8790501
    Abstract: A sensor includes a housing, at least two electrodes within the housing, an electrolyte providing ionic conductivity between the electrodes and a vent member including a first section including a portion extending through a passage in the housing. The vent member also includes at least one extending member connected to the first section that extends through at least a portion of an interior of the housing. The first section of the vent member is porous so that gas can diffuse from the interior of the housing to an exterior of the housing via the vent member.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 29, 2014
    Assignee: MSA Technology, LLC
    Inventors: Michael Alvin Brown, Towner Bennett Scheffler
  • Patent number: 8785211
    Abstract: The invention relates to a method of identifying an individual nucleotide, comprising (a) contacting the nucleotide with a transmembrane protein pore so that the nucleotide interacts with the pore and (b) measuring the current passing through the pore during the interaction and thereby determining the identity of the nucleotide. The invention also relates to a method of sequencing nucleic acid sequences and kits related thereto.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Isis Innovation Limited
    Inventors: Hagan Bayley, Yann Astier, Orit Braha
  • Publication number: 20140196180
    Abstract: A device is presented having reversibly changeable and optically readable optical properties. The device comprises a substrate having an electrically conductive surface and carrying a redox-active layer structure. The redox-active layer structure may be a monolayer or a multi-layer structure and is configured to have at least one predetermined electronic property including at least one of electrodensity and oxidation state. The electronic property of the layer structure defines an optical property of the structure thereby determining an optical response of the structure to certain incident light. This at least one electronic property is changeable by subjecting the redox-active layer structure to an electric field or to a redox-active material. The device thus enables effecting a change in said electronic property that results in a detectable change in the optical response of the layer structure.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 10, 2014
    Applicant: YEDA RESEARCH & DEVELOPMENT COMPANY LTD.
    Inventors: Milko E. VAN DER BOOM, Atindra D. Shukla, David Rosenblatt, Tarkeshwar Gupta
  • Publication number: 20140191109
    Abstract: Apparatuses, systems, method, reagents, and kits for conducting assays as well as process for their preparation are described. They are particularly well suited for conducting automated analysis in a multi-well plate assay format.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Inventors: Ian Chamberlin, Charles M. Clinton, Eli N. Glezer, Bandele Jeffrey-Coker, Manish Kochar, Sandor Kovacs, D.T. Le, Aaron Leimkuehler, George Sigal, Leo Tabakin, Jon Willoughby