Analysis And Testing Patents (Class 204/400)
  • Publication number: 20130277236
    Abstract: Process and device for measuring the conversion of mercaptans to disulfides, in which the progress of the reaction for producing disulfides is monitored by measuring the redox potential.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 24, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Christophe Hein, Alain Houlier
  • Publication number: 20130277215
    Abstract: The present invention relates to diagnostic devices incorporating electrode modules and fluidics for performing chemical analyses. The invented devices consist of at least one component sensor formed on an electrode module, the sensor being contained within a fluidic housing. The electrode module is a laminate of a perforated epoxy foil and a photo-formed metal foil with sensor membranes deposited into the perforations. The fluidic housing is a diagnostic card consisting of a plastic card-like body, the at least one component sensor, a sealed chamber defined in the card body for containing a fluid, a fluid conduit for fluidically connecting the chamber with the sensor region, a valve for fluidically connecting the chamber to the fluid conduit, and a delivery structure separate and distinct from the valve for forcing fluid from the chamber and into the fluid conduit.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 24, 2013
    Inventors: Imants LAUKS, Andrzej MACZUSZENKO
  • Publication number: 20130270112
    Abstract: This invention is directed to a polyamic acid represented by the following formula (I), and an electrode having an active layer made from the polyamic acid of formula (I).
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: Chang Gun University
    Inventors: Mu-Yi Hua, Yaw-Terng Chern, Hsiao-Chien Chen, Rung-Ywan Tsai
  • Publication number: 20130270113
    Abstract: An electrochemical strip is disclosed. The electrochemical strip includes a substrate and an electrode deposited on the substrate. The electrode includes a conductive paste layer, a first metal layer, a second metal layer, a third metal layer, and a fourth metal layer. The conductive paste is made of a material selected from the group consisting of copper paste, nickel paste, silver paste, and silver-carbon paste. The first metal layer is made of a group VIII metal. The second metal layer is made of nickel. The third metal layer is made of a group VIII metal. The fourth metal layer is made of a material selected from the group consisting of palladium, gold, and platinum.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Inventor: Chuan-Hsing HUANG
  • Patent number: 8557609
    Abstract: A method employing gel electrophoresis and optical imaging techniques to measure the amount of biomaterial that attaches to specified locations on a detector slide such as a bioarray or biochip.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: October 15, 2013
    Assignee: Maven Biotechnologies, LLC
    Inventors: Shane Dultz, David Ralin, William Rassman
  • Patent number: 8557095
    Abstract: A pushpen electrode is provided for electrophysiology measurements. The pushpen operation is used to impale a cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. The pushpen electrode has advantages over the conventional patch clamp electrode in reducing tip series resistance, increasing signal bandwidth, permitting longer-term recordings and reducing diffusion between the cytosol and the electrode solution.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: October 15, 2013
    Assignee: Northwestern University
    Inventors: John B. Troy, Samsoon Inayat, Donald R. Cantrell, Yan Zhao, Dmitriy A. Dikin
  • Publication number: 20130264202
    Abstract: A working electrode for cyclic voltammetry experiments and the like provides an electrode carrier releasably attaching to replaceable tips each holding a solid working electrode material that may be polished for receipt of a reactant material and which electrically connects to an electrode in the electrode carrier when the tip and carrier are connected.
    Type: Application
    Filed: February 5, 2013
    Publication date: October 10, 2013
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Sundaram Gunasekaran, Jiang Yang
  • Patent number: 8551311
    Abstract: An ionic probe is provided according to the invention. The ionic probe includes an active electrode configured to generate a measurement signal for an external test fluid, a first reference electrode configured to generate a first reference signal, and an at least second reference electrode configured to generate at least a second reference signal. The measurement signal is compared to the first reference signal and the at least second reference signal in order to determine an ionic measurement of the external test fluid.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: October 8, 2013
    Assignee: Hach Company
    Inventors: John Robert Woodward, Pierre Antoine Robert Livrozet, Jean-Francois Maurice Rene Schvan, Russell Martin Young, Kevin James West
  • Patent number: 8545693
    Abstract: Described and illustrated herein are systems and exemplary methods of operating a multianalyte measurement system having a meter and a test strip. In one embodiment, the method may be achieved by applying a test voltage between a reference electrode and a first working electrode; measuring a first test current, a second test current and a third test current at the working electrode with the meter after a blood sample containing an analyte is applied to the test strip; estimating a hematocrit-corrected analyte concentration from the first, second and third test currents; and displaying the hematocrit-corrected analyte concentration.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 1, 2013
    Inventors: David McColl, Adam Craggs, Stephen MacKintosh, Steve Blythe, Marco Cardosi
  • Publication number: 20130248378
    Abstract: Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
    Type: Application
    Filed: December 6, 2011
    Publication date: September 26, 2013
    Inventors: Hiroshi Kanemoto, Haruo Akahoshi, So Oguchi, Kenta Imai, Taku Sakazume, Hiroshi Yoshida
  • Patent number: 8540935
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 24, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Patent number: 8529740
    Abstract: Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: September 10, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Andrew M Dattelbaum, Gautam Gupta, David E Morris
  • Publication number: 20130228475
    Abstract: An analytical test strip with inert carrier substrate for use with a test meter includes an analytical test strip module and an electrochemically and electrically inert carrier substrate. The analytical test strip module has a first electrode portion, a second electrode portion in an opposing relationship to the first electrode portion, and first and second electrical contact pads configured in a stacked unidirectional configuration. The electrochemically and electrically inert carrier substrate has an upper surface and an outer edge. Moreover, the analytical test strip module is attached to the upper surface of the electrochemically and electrically inert carrier substrate such that the first and second electrical contact pads extend beyond the outer edge of the electrochemically and electrically inert carrier substrate and such that the electrochemically and electrically inert carrier substrate extends beyond the analytical test strip module.
    Type: Application
    Filed: August 14, 2012
    Publication date: September 5, 2013
    Inventors: Steven John Setford, Scott John Sloss, Lawrence Julian Ritchie
  • Publication number: 20130228474
    Abstract: An analytical test strip (“ATT”) for use with a test meter includes a first insulating layer, with a first insulating layer upper surface, and a first electrically conductive layer (“ECL”) disposed thereon. The first ECL includes a first electrode portion (“EP”) and an electrical contact pad in electrical communication with the first EP. The ATT also includes a patterned spacer layer disposed above the first ECL that includes (i) a distal portion defining a bodily fluid sample-receiving chamber therein that overlies the first EP and (ii) an insulating proximal portion with an upper surface having a second ECL disposed thereon. The second ECL includes an interlayer contact portion and an electrical contact pad. A third ECL of the ATT includes a second EP and a proximal portion that overlies the interlayer contact portion. The second EP is disposed overlying and exposed to the sample-receiving chamber in an opposing relationship to the first EP.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Inventors: Scott SLOSS, Russell BAIN, Graeme WEBSTER
  • Patent number: 8524058
    Abstract: An amperometric probe suitable for monitoring chlorine levels in water is described. The probe has low power consumption and maintenance requirements rendering it particularly suitable for long periods of operation in remote locations with portable power supplies.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: September 3, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Michael Brooks
  • Patent number: 8524064
    Abstract: A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Dietrich A. Dehlinger, Klint A. Rose, Maxim Shusteff, Christopher G. Bailey, Raymond P. Mariella, Jr.
  • Publication number: 20130220832
    Abstract: The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 29, 2013
    Applicant: Osmetch Technology Inc.
    Inventor: Osmetech Technology Inc.
  • Patent number: 8512532
    Abstract: The present invention relates to a reaction film formulation used in the preparation of a non-enzymatic whole blood uric acid detecting electrode strip, which comprises an electron mediator, a water-soluble polymer carrier, and a volatile organic solvent, and to whole blood biosensor systems.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 20, 2013
    Assignee: Apex Biotechnology Corporation
    Inventors: Yueh-Hui Lin, Thomas Y. S. Shen
  • Patent number: 8506908
    Abstract: An electrochemical detection system having a disposable cartridge capable of performing a plurality of assay protocols is disclosed. The cartridge includes a blister pack for the long-term storage and controlled release of multiple reagents. The blister pack is bonded to and operatively associated with a fluidic backbone for providing the fluid pathways, storage capacity, and fluid control functions for performing multiple assay protocols. The cartridge further includes a plurality of sensors having a multiple electrode arrangement in operative association with a respective flow cell defined by the fluidic backbone. After the user has transferred a sample into the cartridge and engaged the cartridge to the reader, the reader operatively interfaces with the cartridge such that different assay protocols may be simultaneously performed in isolation from one another inside the cartridge. The reader may be one of many readers that operatively communicate data to a remote server for processing.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 13, 2013
    Assignee: Vantix Holdings Limited
    Inventors: Jim Benn, Bruce Carvalho, Andy Gover, Roger Morris
  • Patent number: 8506779
    Abstract: Described herein are substrates, sensors and systems related to measuring the concentration of an analyte such as hydrogen ion in a sample. Redox active moieties whose reduction and/or oxidation potentials are sensitive to the presence of an analyte are immobilized onto a surface of an electrode. Immobilized redox active moieties whose reduction and/or oxidation potential are insensitive to the analyte can be used for reference. Voltammetric measurements made using such modified surfaces can accurately determine the presence and/or concentrations of analytes in a sample of interest. The electrochemical sensors of the invention are robust and can be made so as not to require calibration or recalibration.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 13, 2013
    Assignee: Sensor Innovations, Inc.
    Inventors: Carolyn R. Kahn, Elicia Wong, Vern Norviel
  • Publication number: 20130203178
    Abstract: The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Inventors: MOHAMMED ASHRAF GONDAL, QASEM AHMED QASEM DRMOSH, Z.H. YAMANI, TAWFIK ABDO SALEH
  • Publication number: 20130193003
    Abstract: A device for sensing a property of a fluid comprising a first substrate having formed thereon a sensor configured in use to come into contact with a fluid in order to sense a property of the fluid, and a wireless transmitter for transmitting data over a wireless data link and a second substrate having formed thereon a wireless receiver for receiving data transmitted over said wireless link by said wireless transmitter. The first substrate is fixed to or within said second substrate. Additionally or alternatively, the device comprises a first substrate defining one or more microfluidic structures for receiving a fluid to be sensed and a second substrate comprising or having attached thereto a multiplicity of fluid sensors, the number of sensors being greater than the number of microfluidic structures.
    Type: Application
    Filed: August 6, 2010
    Publication date: August 1, 2013
    Applicant: DNA Electronics Limited
    Inventors: Sam Reed, Pantelakis Georgiou, Timothy G. Constandinou
  • Publication number: 20130189586
    Abstract: The present invention concerns a method for preparing a composite material comprising electrically conductive or semiconductive nano-objects of elongate shape and an electrically conductive polymer matrix, said method comprising a step consisting in electrochemically deposing said matrix on said nano-objects using a pulsed galvanostatic technique. The present invention also concerns the composite material thus obtained and uses thereof.
    Type: Application
    Filed: July 6, 2011
    Publication date: July 25, 2013
    Applicants: UNIVERSITE FRANCOIS RABELAIS, Commissariat A L'Energie Atomique Et Aux Engeries Alternatives, UNIVERSITE DE CERGY PONTOISE
    Inventors: Christian Sarrazin, Sebastien Lagoutte, Mathieu Pinault, Francois Tran Van, Claude Chevrot, Pierre Henry Aubert
  • Patent number: 8491765
    Abstract: A microlectrode comprising a diamond layer formed from electrically non-conducting diamond and containing one or more pins or projections of electrically conducting diamond extending at least partially through the layer of non-conducting diamond presenting areas of electrically conducting diamond.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Element Six Limited
    Inventors: Charles Simon James Pickles, Clive Edward Hall, Li Jiang, Neil Perkins, Richard Antonius Kleijhorst
  • Publication number: 20130180852
    Abstract: A working electrode includes a conducting layer, a carbon nanotube layer electrophoretically deposited on the conducting layer; and a gold nanoparticle layer sputter-deposited on the carbon nanotube layer. A sensor chip having the working electrode and a method of fabricating the working electrode are also disclosed.
    Type: Application
    Filed: September 14, 2012
    Publication date: July 18, 2013
    Inventors: Chien-Chong Hong, Hong-Ren Jian, Kuo-Ti Peng, I-Ming Chu
  • Patent number: 8486244
    Abstract: Described herein is an electrochemical enzymatic analyte test strip and method for making the test strip. The test strip utilizes isolated conductive areas inside the electrodes to define electrode whiskers. The method utilizes laser ablation to define electrode patterns.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 16, 2013
    Assignee: LifeScan Scotland Limited
    Inventors: Marco F. Cardosi, Leanne Mills, Emma Vanessa Jayne Day, Richard Michael Day, Christopher Philip Leach
  • Patent number: 8486243
    Abstract: The present invention relates to electrochemical cells including a first working electrode 32, a first counter electrode 34, a second working electrode 36, and a second counter electrode 38, wherein the electrodes are spaced such that reaction products from the first counter electrode 34 arrive at the first working electrode 32, and reaction products from the first and second counter electrodes 34, 38 do not reach the second working electrode 36. Also provided is a method of using such electrochemical cells for determining the concentration of a reduced or oxidized form of a redox species with greater accuracy than can be obtained using an electrochemical cell having a single working and counter electrode.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: July 16, 2013
    Assignee: LifeScan, Inc.
    Inventor: Alastair M. Hodges
  • Publication number: 20130168266
    Abstract: The present invention describes a biosensing device and method. Specifically, binding of target analyte to a sensor strip provides for reduction of metal ions in solution. The reduced metal can perform catalytic reactions leading to the production of easily identifiable products such as gas bubbles or colored molecules.
    Type: Application
    Filed: January 1, 2012
    Publication date: July 4, 2013
    Inventor: ALAN JOSEPH BAUER
  • Patent number: 8475642
    Abstract: Methods and systems for monitoring electrolyte bath fluids are provided. The electrolyte bath fluids can be electroplating, electroless plating or etching solutions. The monitoring systems employ microfluidic devices, which have built in microfluidic channels and microfabricated thin-film electrodes. The devices are configured with fluid pumps to control the movement and mixing of test fluids through the microfluidic channels. The microfabricated thin-film electrodes are configured so that the plating or etching bath fluid composition can be characterized by electrochemical measurements. The monitoring methods and system provide faster measurement times, generate minimal waste, and occupy dramatically reduced physical space compared to conventional bath-monitor systems. The monitoring systems and method also provide low-cost system and methods for measuring or monitoring electroless plating bath rates.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: July 2, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Alan C. West, Mark J. Willey, Robert J. von Gutfeld
  • Publication number: 20130161191
    Abstract: A reference half-cell for application in an electrochemical sensor, comprising a housing, in which a chamber containing a reference electrolyte is formed, wherein the reference electrolyte (5, 105) is in contact with a medium surrounding the housing via a liquid junction arranged in a wall of the housing, wherein the liquid junction comprises a porous diaphragm, especially a porous ceramic diaphragm, and wherein the diaphragm has, at least partially, a coating, which comprises at least one metal.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. KG
    Inventor: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. KG
  • Patent number: 8465634
    Abstract: An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 18, 2013
    Assignee: Arizona Board of Regents
    Inventors: Nongiian Tao, Erica Forzani
  • Publication number: 20130146478
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 13, 2013
    Applicant: AgaMatrix, INC.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20130150689
    Abstract: The present invention relates to a device for sensing a target chemical. The device includes a flexible, non-planar substrate; a printed, solid-state sensing element comprising a chemical sensing material which produces an electrical signal upon interaction with the target chemical; a first printed electrode comprising a first conductive composition; and a second electrode comprising a second conductive composition. The first and second electrodes are electrically isolated from one another, and one or both of the first and second electrodes is in electrical contact with said sensing element. The first and second electrodes and the sensing element collectively form an electrochemical sensor which is coupled to the flexible, non-planar substrate. Medical devices comprising the device of the present invention and methods of making a device for sensing a target chemical are also disclosed.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Applicant: MICROPEN TECHNOLOGIES CORPORATION
    Inventor: Micropen Technologies Corporation
  • Patent number: 8459123
    Abstract: Micro-opto-mechanical chemical sensors and methods for simultaneously detecting and discriminating between a variety of vapor-phase analytes. One embodiment of the sensor is a photonic microharp chemical sensor with an array of closely spaced microbridges, each differing slightly in length and coated with a different sorbent polymer. The microbridges can be excited photothermally, and the microbridges can be optically interrogated using microcavity interferometry. Other actuation methods include piezoelectric, piezoresistive, electrothermal, and magnetic. Other read-out techniques include using a lever arm and other interferometric techniques.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: June 11, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Todd H. Stievater, William S Rabinovich, Nicolas A Papanicolaou, Robert Bass, Jennifer L Stepnowski, R Andrew McGill
  • Publication number: 20130144131
    Abstract: Techniques and systems are disclosed for implementing textile-based screen-printed amperometric or potentiometric sensors. The chemical sensor can include carbon based electrodes to detect at least one of NADH, hydrogen peroxide, potassium ferrocyanide, TNT or DNT, in liquid or vapor phase. In one application, underwater presence of chemicals such as heavy metals and explosives is detected using the textile-based sensors.
    Type: Application
    Filed: May 18, 2011
    Publication date: June 6, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Joseph Wang, Joshua Ray Windmiller
  • Patent number: 8454820
    Abstract: Constitute a molecular recognition probe comprising: an electrochemically active group; an activity suppression group that suppresses an electrochemical activity of the electrochemically active group; a receptor area where a molecule of a target substance is specifically recognized; and a molecule area where a steric structure is changed as a result of molecular recognition; wherein the electrochemically active group is suppressed of its activity by the activity suppression group before the molecule is recognized and restores its activity after the molecule is recognized; or constitute a molecular recognition sensor by providing an anchor area on the molecular recognition probe and fixing it on a surface of an electrode.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: June 4, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Aoki, Hiroaki Tao, Akiko Kitajima
  • Publication number: 20130129929
    Abstract: A sensor for registering a measurement variable of a medium, comprising a sensing body with a section of surface area, which is exposed to the medium to register the measurement variable, whereby a condition of the section of surface area affects the provided value of the measured measurement variable, whereby the section of surface area comprises a coating that comprises nanoparticles. The coating, which comprises the nanoparticles, comprises at least one nano polymer.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 23, 2013
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik + Co. KG
    Inventor: Endress + Hauser Conducta Gesellschaft fur Mes
  • Publication number: 20130130383
    Abstract: The present invention is directed to a hierarchical structure characterized by ultrahigh surface area comprising: a solid substrate; an intermediate layer; and at least one plurality of nanoscale attachments that are strongly bonded to the intermediate layer. Also disclosed is a method of fabricating a hierarchical structure comprising: selecting and preparing a parent substrate, wherein the preparing may optionally include cleaning or activation; modifying the substrate surface to form an intermediate layer; attaching at least one plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the intermediate layer; optionally attaching a second plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the first plurality of nanoscale attachments and intermediate layer.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Applicant: WRIGHT STATE UNIVERSITY
    Inventor: Wright State University
  • Patent number: 8444836
    Abstract: A device for forming at least one circulating flow, or vortex, at the surface of a drop of liquid, including at least two first electrodes forming a plane and having edges facing each other, such that the contact line of a drop, deposited on the device and fixed relatively to the device, has a tangent forming, when projected onto the plane of the electrodes, an angle between 0° and 90° with the edges facing each other of the electrodes.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: May 21, 2013
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Yves Fouillet, Laurent Davoust
  • Publication number: 20130109039
    Abstract: The invention relates to sensors configured to include compositions disposed in specific regions of the sensor in order to provide the sensors with enhanced functional properties, for example faster start-up times. These compositions include, for example, hygroscopic compositions, gas generating compositions and gas solvating compositions. While typical embodiments of the invention pertain to glucose sensors, the systems, methods and materials disclosed herein can be adapted for use with a wide variety of sensors known in the art.
    Type: Application
    Filed: May 23, 2012
    Publication date: May 2, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jesper Svenning Kristensen, Tri T. Dang, Katharine Knarreborg, Anubhuti Bansal
  • Publication number: 20130105312
    Abstract: A microelectrode for electrochemical analysis having an analysis surface which comprises one or more regions of electrically conductive diamond material surrounded by electrically insulating diamond-like carbon material, the diamond-like carbon material having, (a) a hardness lower than that of the electrically conductive diamond material and (b) a resistivity of at least 1×109 ohm·cm, and the microelectrode being provided with connection means (10) for electrically connecting the one or more regions to an external circuit.
    Type: Application
    Filed: April 14, 2011
    Publication date: May 2, 2013
    Applicant: Element Six Limited
    Inventors: Kevin John Oliver, Arnaldo Galbiati, Stephen Charles Lynn
  • Patent number: 8431001
    Abstract: An ion sensor includes: a conductive base structure including a substrate and an electrode film formed on the substrate; a plurality of ion-sensitive nanorods protruding from the electrode film; and an encapsulant enclosing the conductive base structure, surrounding the ion-sensitive nanorods, and formed with a window for exposing the ion-sensitive nanorods. Each of the ion-sensitive nanorods has a conductive core and an ion-sensitive layer formed on and enclosing the conductive core. The ion-sensitive material exhibits an ion selectivity of absorbing an ion of interest thereon for inducing a surface potential corresponding to concentration of the ion of interest.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 30, 2013
    Assignee: National Chiao Tung University
    Inventors: Peichen Yu, Bing-Mau Chen, Chia-Hua Chang, Min-Hsiang Hsu, Chan-Hung Huang, Chen-Hao Kuo
  • Publication number: 20130098780
    Abstract: A sensor system comprising a substrate and integrated onto the substrate an array (7) of sensor elements (1), each sensor element comprising one or more inductors (3), one or more electrochemical sensors (4), and one or more optical sensors (2). The system further comprising a controller configured in use to separately address each of the sensor elements (1) to drive the respective inductors and receive outputs of the respective sensors.
    Type: Application
    Filed: January 28, 2011
    Publication date: April 25, 2013
    Applicant: DNA Electronics Limited
    Inventors: Pantelis Georgiou, Themistoklis Prodromakis, Timothy G. Constandinou, Christofer Toumazou
  • Publication number: 20130092560
    Abstract: Disclosed is an electrode system capable of more accurately measuring properties of solutions using a porous platinum electrode.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8420043
    Abstract: A nano-crystal diamond film synthesized on a substrate and containing, as a major component, nano-crystal diamond having a grain diameter from 1 nm to less than 1000 nm. This nano-crystal diamond film can be formed on a substrate by means of a plasma CVD method using a raw material gas containing a hydrocarbon and hydrogen, allowing the formation of the nano-crystal diamond film to take place outside the plasma region. This nano-crystal diamond film is applicable to the manufacture of an electrochemical device, an electrochemical electrode, a DNA chip, an organic electroluminescent device, an organic photoelectric receiving device, an organic thin film transistor, a cold electron-emission device, a fuel cell and a catalyst.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 16, 2013
    Assignees: Toppan Printing Co., Ltd., National Institute for Materials Science
    Inventors: Hidenori Gamo, Toshihiro Ando
  • Patent number: 8419912
    Abstract: A water quality analyzer comprises: sensor electrodes 1a, 1b made of different metals from each other, the electrodes in a liquid of inspecting object generating a sense voltage in proportion to the liquid's impurities concentration; an operational amplifier OP1 amplifying the sense voltage without inverting to provide for a CPU 3; a resistor R0 whose one end is connected to the electrode 1a; and a voltage divider 2 applying a voltage obtained by dividing the sense voltage by a prescribed division ratio to R0's another end. The CPU 3 calculates input signal from OP1 to obtain chlorine concentration and displays the calculated result on a LCD 4 in a measurement mode, and sets the division ratio of the divider 2 so that sense voltage across electrodes 1a, 1b soaked in a liquid including prescribed concentration chloride approximately agrees with a reference voltage of prescribed concentration in a sense-voltage calibration mode.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 16, 2013
    Assignees: Tanita Corporation, FIS Inc.
    Inventors: Kiyoshi Sagawa, Shinichi Harima, Kazuo Onaga, Junko Yanagitani, Osamu Inazawa
  • Patent number: 8409410
    Abstract: Sensor device for ion channel recordings; liquid-liquid measurements and resistive pulse particle counting comprising; at least one sensor element; the element comprising a diamond thin film substrate and a pore which is a nanopore or a micropore included in the substrate. This device may be used in analysis, for instance the device may be used for single molecule detection of an apialyte (e.g. DNA), for the analysis of interactions between a sensor element and an analyte, for the detection of pore forming entities, or for the determination of ion transfer.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 2, 2013
    Assignees: University of Warwick, University of Utah Research Foundation
    Inventors: Julie Macpherson, Patrick Unwin, Mark Newton, Henry White
  • Publication number: 20130075275
    Abstract: An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Sayandev Chatterjee, Samuel Bryan, Cynthia Schroll, William Heineman
  • Patent number: 8398845
    Abstract: A measuring device for analyzing a sample liquid having at least one analyte is provided. A test field support housed in the device includes a number of individual test fields in communication with electrochemical measuring cells of the test field support. Reagents can be assigned to the electrochemical measuring cells which can react with a sample liquid. The reaction can lead to a measurable change of at least one quantity characteristic of the presence or concentration of an analyte in the sample. The measuring device includes evaluation electronics. The individual test fields on the test field support are accessible to the user after the measuring device has been opened.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 19, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Michael Marquant, Mihail-Onoriu Lungu
  • Patent number: 8398835
    Abstract: A unitary ionic probe is provided. The unitary ionic probe includes a substantially elongate body including a central axis (AA), a proximal end, and a distal end. The unitary ionic probe further includes an active ion sensitive region that is located on and bonded into an exterior of the elongate body in a region of the proximal end and an active electrode in ionic communication with the active ion sensitive region. The unitary ionic probe further includes a reference ion sensitive region that is located on and bonded into the exterior of the elongate body and is spaced-apart from the active ion sensitive region and a reference electrode in ionic communication with the reference ion sensitive region.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: March 19, 2013
    Assignee: Hach Company
    Inventors: John Robert Woodward, Pierre Antoine Robert Livrozet, Jean-Francois Maurice Rene Schvan, Russell Martin Young