Electrophoresis Or Electro-osmosis Processes And Electrolyte Compositions Therefor When Not Provided For Elsewhere Patents (Class 204/450)
  • Publication number: 20140314947
    Abstract: The present disclosure provides, among other things, scale-coated surfaces, vessels with controlled deposits of scale, and associated methods for enhanced boiling heat transfer. It is presently found that creating and/or maintaining a scale deposit at a controlled thickness actually enhances a type of boiling called nucleate boiling, which improves heat transfer.
    Type: Application
    Filed: August 22, 2013
    Publication date: October 23, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Kripa K. Varanasi, Christopher Jameson Love
  • Patent number: 8859211
    Abstract: The disclosure teaches a method for the analysis of a sample by electrophoresis, making use of a binding partner for a target compound or group of target compounds which may be present in the sample. The disclosure further teaches a kit for use in an electrophoretic analysis, to a modified antibody or fragment thereof, and to specific uses of the kit or modified antibody or fragment thereof.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 14, 2014
    Assignee: Helena Laboratories (UK) Ltd.
    Inventors: Ben Chaffey, Joanne Baxter, Kevin Waltham, Beverly Askew
  • Publication number: 20140302554
    Abstract: A compound may generally comprise the formula: wherein R1 is independently selected from C2-C10 alkyl or substituted alkyl, R2 is independently selected from the group consisting of —H and C1-C6 alkyl or substituted alkyl, X is selected from the group consisting of —NH— and —O—, Y is a carbohydrate, and m is an integer from 1 to 8. The compound may comprise a non-ionic acid labile surfactant. The compound may be used to facilitate solubilization of proteins and other molecules in an aqueous environment.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Matthew Jacob Powell, Trust T. Razunguzwa, Miaosheng Li
  • Publication number: 20140291152
    Abstract: A microreactor includes: a substrate (2; 102; 202) made of semiconductor material; a plurality of wells (5; 105; 205) separated by walls (6; 106; 206) in the substrate (2; 102; 202); a dielectric structure (7; 107; 207a, 207b) coating at least the top of the walls (6; 106; 206); a cap (3; 103; 203), bonded to the substrate (2; 102; 202) and defining a chamber (10; 110; 210) above the wells (5; 105; 205); and a biasing structure (2, 8, 13; 102, 108, 113; 202, 208a, 208b, 213), configured for setting up a voltage (VB) between the substrate (2; 102; 202) and the chamber (10; 110; 210).
    Type: Application
    Filed: March 20, 2014
    Publication date: October 2, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Sabrina CONOCI, Maria Eloisa Castagna, Massimo Orazio Spata
  • Patent number: 8846314
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 pg/?L of nucleic acid).
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 30, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Patent number: 8845872
    Abstract: Sample processing droplet actuators, systems and methods are provided. According to one embodiment, a stamping device including a droplet microactuator is provided and includes: (a) a first plate including a path or network of control electrodes for transporting droplets on a surface thereof; (b) a second plate mounted in a substantially parallel orientation with respect to the first plate providing an interior volume between the plates, the second plate including one or more stamping ports for transporting some portion or all of a droplet from the interior volume to an exterior location; (c) a port for introducing fluid into the interior volume between the plates; and (d) a path or network of reference electrodes corresponding to the path or network of control electrodes. Associated systems and methods including the stamping device are also provided.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 30, 2014
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan
  • Publication number: 20140262782
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relics on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: February 14, 2014
    Publication date: September 18, 2014
    Applicant: Bioarray Solutions, Ltd
    Inventor: Michael Seul
  • Publication number: 20140274777
    Abstract: The application relates to apparatuses, methods and kits for detecting and quantifying oil content in algal samples.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Board of Trustees of Michigan State University
    Inventors: Christoph Benning, Eric R. Moellering, Chia-Hong Tsai
  • Publication number: 20140262747
    Abstract: Process and apparatus for functionalizing and/or separating graphene particles and other nanomaterials in which graphene and other nanoparticles are placed in a pile on one of two opposing conductive surfaces that are charged with a high D.C. voltage so that material of a certain character is attracted to the other conducting surface. This process takes place in an enclosed chamber that has been flooded with a designated gas at ambient pressure, with the material attracted to the second conducting surface passing through the designated gas. The high energy field creates a condition such that the material remaining on the first conductive surface takes on atoms of the designated gas and material the going to the second surface is further exposed to and characterized by the designated gas.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Graphene Technologies, Inc.
    Inventors: Robert Wayne Dickinson, Donald Brookshire, JR., Lawrence Joseph Musetti, Theodore Joseph Musetti
  • Patent number: 8834695
    Abstract: A method of manipulating droplet in a programmable EWOD microelectrode array comprising multiple microelectrodes, comprising: constructing a bottom plate with multiple microelectrodes on a top surface of a substrate covered by a dielectric layer; the microelectrode coupled to at least one grounding elements of a grounding mechanism, a hydrophobic layer on the top of the dielectric layer and the grounding elements; manipulating the multiple microelectrodes to configure a group of configured-electrodes to generate microfluidic components and layouts with selected shapes and sizes, comprising: a first configured-electrode with multiple microelectrodes arranged in array, and at least one second adjacent configured-electrode adjacent to the first configured-electrode, the droplet disposed on the top of the first configured-electrode and overlapped with a portion of the second adjacent-configured-electrode; and manipulating one or more droplets among multiple configured-electrodes by sequentially activating and de-
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: September 16, 2014
    Assignee: Sparkle Power Inc.
    Inventors: Gary Chorng-Jyh Wang, Ching Yen Ho, Wen Jang Hwang, Wilson Wen-Fu Wang
  • Patent number: 8834694
    Abstract: The invention provides dry compositions for preparing and loading a sample on a gel for electrophoretic separation. The dry compositions preferably include a tracking dye and a sedimenting agent selected from a five-carbon polyol (e.g., ribitol, arabitol, or xylitol),iso-erythritol, maltitol, and saccharine. Methods for making and using, as well as kits comprising the disclosed compositions, are also provided.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: September 16, 2014
    Assignee: Mo Bio Laboratories, Inc.
    Inventors: Mark N. Brolaski, Vince Moroney, Suzanne Kennedy
  • Patent number: 8834807
    Abstract: The invention provides devices and methods for isolating one or more sample components of a sample material following separation of the sample material into a plurality of sample components. A device includes a separation channel having a sample loading well. A low-conductivity buffer is disposed in the loading well, the buffer having a conductivity<0.2 mS/cm. In a method, a buffer is loaded into a loading well in fluid communication with a separation channel of a device. A sample material having a conductivity higher than that of the buffer is then loaded into the loading well such that the sample material is disposed beneath the buffer, the buffer disposed over and covering the sample material. The sample material is separated into a plurality of separated components in the separation channel, and a separated component is collected from a collection well disposed in a collection leg of the device.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: September 16, 2014
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Josh Molho, Hui Xu
  • Publication number: 20140251807
    Abstract: A series of microactuators for manipulating small quantities of liquids, and methods of using these for manipulating liquids, are disclosed. The microactuators are based on the phenomenon of electrowetting and contain no moving parts. The force acting on the liquid is a potential-dependent gradient of adhesion energy between the liquid and a solid insulating surface.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventor: Alexander Shenderov
  • Publication number: 20140251806
    Abstract: A water processing arrangement (18) for steam assisted oil production, having a water softening system (30) configured to remove silica from a stream of producer well water (64, 66) using a caustic (70), and an electrodeionization-based water deionization system (36) downstream of the water softening system configured to deionize the stream of water (66) A byproduct of the electrodeionization is caustic NaOH which is recycled to the softening system
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: Siemens Energy, Inc.
    Inventors: Andrea J. Larson, Chad L. Felch
  • Patent number: 8828208
    Abstract: An apparatus for sensing of an interaction of a molecular entity with a membrane protein in a lipid bilayer comprises an array of sensor elements (21) arranged to output an electrical signal that is dependant on occurrences of the interaction. A detection circuit (3) comprised detection channels (30) capable of amplifying an electrical signal from a sensor element. More sensor elements (21) are provided than detection channels (30), and detection channels (30) are selectively connected to sensor elements (21) that have acceptable quality of performance in that a lipid bilayer is formed and that an acceptable number of membrane proteins are inserted, on the basis of the amplified electrical signals that are output from the detection channels. This improves the efficiency of utilization of the detection channels, due to inefficiency in the utilization of the sensor elements, resulting in a reduction in the cost of the apparatus and the ability to perform sensing using relatively small samples.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Oxford Nanopore Technologies Limited
    Inventors: Antonio Canas, Simon Adrian Wells
  • Patent number: 8821705
    Abstract: A digital microfluidics system manipulates samples in liquid droplets within disposable cartridges and has disposable cartridges each with a bottom layer, a top layer and a gap therebetween. A base unit with cartridge accommodation sites and at least one electrode array with electrodes works with a cover plate at the sites and a control unit for controlling selection of the electrodes and for providing them with voltage pulses for manipulating liquid droplets within the cartridges by electrowetting. The cover plate has an electrically conductive material that extends parallel to the array. A selection of disposable cartridges and a method for manipulating samples in liquid droplets that adhere to a hydrophobic surface can be used with the system.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: September 2, 2014
    Assignee: Tecan Trading AG
    Inventors: Torleif Ove Bjornson, Marc Nathan Feiglin, Michael Benjamin Franklin, Anne R. Kopf-Sill, Travis Lee, Kailiang Wang
  • Patent number: 8808516
    Abstract: Nanoscale probes for forming stable, non-destructive seals with cell membranes. The probes, systems including these probes, and methods of fabricating and using the probes described herein may be used to sense from, stimulate, modify, or otherwise effect individual cells or groups of cells. In particular, described herein are nanoscale cellular probes that may be used to span the lipid membrane of a cell to provide stable and long lasting access to the internal cellular structures. Thus, the probes described herein may be used as part of a system, method or device that would benefit from stable, non-destructive access across a cell membrane. In some variations the nanoscale probe devices or systems described herein may be used as part of a drug screening procedure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 19, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nicholas Alexander Melosh, Piyush Verma, Benjamin David Almquist
  • Publication number: 20140216932
    Abstract: The invention provides a droplet actuator. The droplet actuator may include a base substrate and a top substrate separated to form a gap. The base substrate may include electrodes configured for conducting droplet operations in the gap; and the top substrate may include a glass substrate portion coupled to a non-glass portion, where the non-glass portion may include one or more openings establishing a fluid path extending from an exterior of the droplet actuator and into the gap. The invention also provides related methods of manufacturing the droplet actuator, methods of using the droplet actuator, and methods of loading the droplet actuator.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventors: Vijay Srinivasan, Michael G. Pollack, Alexander Shenderov, Zhishan Hua, Arjun Sudarsan
  • Patent number: 8794450
    Abstract: Disclosed is a channel filter for separating microparticles, and more particularly to a channel filter which can easily separate a sample having various sized microparticles by using a surface topology. In the disclosed channel filter, a topology having an upward/downward reference height from a sample inlet to an outlet is continuously or discontinuously formed, and thus it is possible to efficiently separate microparticles from a sample liquid.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 5, 2014
    Assignee: Nanoentek, Inc.
    Inventors: Dae-Sung Hur, Jun-Ha Park, Chan-Il Chung, Jun-Keun Chang
  • Patent number: 8795493
    Abstract: A flow controller which uses a combination of hydrostatic pressure and electroosmotic flow to control the flow of a fluid. A driving fluid (1204) whose flow rate is dependent on both hydrostatic pressures and electroosmotic flow can be used (a) directly as a working fluid in an operable device, for example a chromatograph, or (b) to displace a working fluid (1203) from a storage container (625) into an operable device (1301), or both (a) and (b). The driving fluid (1204) can be composed of one or more fluids. Part or all the driving fluid (1204) is passed through an electroosmotic device (100) so as to increase or decrease the flow rate induced by hydrostatic pressure.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 5, 2014
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: David W. Neyer, Phillip H. Paul, Don Wesley Arnold, Christopher G. Bailey
  • Patent number: 8795494
    Abstract: The invention relates to a method and apparatus for carrier-free deflection electrophoresis, in which a separating media and a sample to be examined flow through a separating chamber between a pair of electrodes in a series of reversing bulk fluid flow along the direction of the electrodes, thereby separating the sample into zones which are to be collected into fractions for analysis or further processing. Among other things, the apparatus and method enable high-resolution separation of particles that can be performed in miniaturized chambers in electrophoresis modes including isoelectric focusing, zone electrophoresis, and isotachophoresis.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Becton, Dickinson and Company
    Inventor: Gerhard Weber
  • Publication number: 20140209461
    Abstract: The invention relates generally to polymers and copolymers comprising N-vinylamide-type monomers, their preparation, and compositions, such as electrophoresis separation media, containing the same; to supports, such as capillaries, containing these polymers; and methods for separating a mixture of biomolecules, especially polynucleotides, using capillary electrophoresis. Separation media comprising such polymers yield advantageous performance in the analysis and separation of biomolecules by capillary electrophoresis.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 31, 2014
    Applicant: Applied Biosystems, LLC
    Inventor: Aldrich N.K. LAU
  • Publication number: 20140209464
    Abstract: Among other things, for use in directional motion of chiral objects in a mixture, a field is applied across the chamber and is rotating relative to the chamber to cause rotation of the chiral objects. The rotation of the objects causes them to move directionally based on their chirality. The method applies to sugars, proteins, and peptides, among other things, and can be used in a wide variety of applications.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: Dynamic Connections, LLC
    Inventors: Osman Kibar, Mirianas Chachisvilis, Eugene Tu, Thomas H. Marsilje
  • Publication number: 20140202861
    Abstract: A device and process are disclosed for the separate removal of oppositely charged ions from electrolyte solutions and recombining them to form new chemical compositions. The invention provides the ability to create multiple ion flow channels and then form new chemical compositions therefrom. The process is accomplished by selectively combining oppositely charged ions of choice from different electrolyte solutions via the capacitive behavior of high electrical capacitance electrodes confined in insulated containers.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Inventor: Azaroghly YAZDANBOD
  • Patent number: 8783466
    Abstract: This invention provides a method and an apparatus for quickly continuously fractionating biomolecules, such as DNAs, proteins and carbohydrates by taking advantage of differential bidirectional transport of biomolecules with varying physico-chemical characteristics, for example size, charge, hydrophobicity, or combinations thereof, through periodic arrays of microfabricated nanofilters. The passage of biomolecules through the nanofilter is a function of both steric and electrostatic interactions between charged macromolecules and charged nanofilter walls, Continuous-flow separation through the devices of this invention are applicable for molecules varying in terms of any molecular properties (e.g., size, charge density or hydrophobicity) that can lead to differential transport across the nanofilters.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 22, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Jongyoon Han, Jianping Fu
  • Publication number: 20140197028
    Abstract: A method of droplet manipulation utilizing a droplet manipulation device includes activating elements of the device to bring a first droplet into proximity of a second droplet, controlling the elements of the device to alter the shape of at least one of the first and second droplets, and further controlling the elements of the device to move at least one of the first or second droplets until the droplets are in contact about an aggregate area. The elements are controlled in a manner so as to control the area of contact and the degree of mixing of the fluid between the first and second droplets. The method may be employed to move particles of a particulate suspension from the first droplet to the second droplet.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Adrian Marc Simon Jacobs, Jason Roderick Hector, Hywel Morgan
  • Patent number: 8778685
    Abstract: The present invention provides dual labeled protein standards useful for the simultaneous determination of the molecular weight of a subject protein as well as the relative mass (i.e., amount) of the subject protein present in an electrophoresis lane. The invention is also directed to methods suitable for the preparation of such dual labeled protein standards and to methods of using such dual labeled proteins to simultaneously determine the molecular weight and the relative amount of a subject protein. Further embodiments are directed to the use dual labeled protein standards to make a more accurate determination of the amount of a protein present in an electrophoresis lane. Yet further embodiments are directed to kits containing the presently described dual protein standards. Dual labeled protein standards made and used in accordance with the embodiments set forth herein may be used to simultaneously determine the molecular weight and the relative amount of a subject protein in real time.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: July 15, 2014
    Assignee: Life Technologies Corporation
    Inventors: Thomas Diller, Timothy Updyke
  • Patent number: 8778154
    Abstract: To provide a system by which evaluation of circumstances of contamination by microparticles having nucleic acid can be performed rapidly and accurately. The theme is achieved by a system for measuring microparticles that includes: (1) a microparticle adhesion step of adhering the microparticles having nucleic acid to a microparticle adhesion member; (2) a membrane breakage step of breaking membranes of the adhered microparticles by electrical discharge; (3) an electrophoresis step of electrophoresing the microparticles in a thickness direction of a gel to make the nucleic acid in the microparticles migrate from a negative electrode side toward a positive electrode side and adhere the nucleic acid on a surface of a nucleic acid detection member; and (4) a nucleic acid measurement step of fluorescently staining the surface of the nucleic acid detection member to measure a concentration of the nucleic acid.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 15, 2014
    Assignee: Toyohashi University of Technology
    Inventors: Akira Mizuno, Kazunori Takashima, Hachiro Yasuda, Masudur Rahman
  • Patent number: 8778160
    Abstract: Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 15, 2014
    Assignee: CFD Research Corporation
    Inventors: Kapil Pant, Yi Wang, Ketan Bhatt, Balabhasker Prabhakarpandian
  • Patent number: 8771938
    Abstract: Disclosed are example methods and devices for detecting one or more targets. An example method includes placing a sample including a first target with in a microfluidic device and hybridizing a plurality of copies of the first target with a plurality of nanostructures. The example method includes applying an electric current to the plurality of nanostructures and using an electric field created by the electric current to move the plurality of nanostructures. In addition, the plurality of nanostructures are sorted and evaluated to determine at least one of a presence, an absence, or a quantity of the first target.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 8, 2014
    Assignee: University of Notre Dame du Lac
    Inventors: Hsueh-Chia Chang, Jason Gordon, Satyajyoti Senpati, Zachary Gagnon, Sagnik Basuray
  • Patent number: 8771492
    Abstract: The present invention relates to a method and device for the electrochemical treatment of at least one component, which has a treatment chamber and at least one feed unit for an electrolyte to the treatment chamber, and at least one way for setting the pH value of the electrolyte being provided before the treatment chamber.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 8, 2014
    Assignee: Kennametal Inc.
    Inventors: Rainer Huss, Patrick Matt, Rene Wodrich, Ulrich Franz Burmester
  • Publication number: 20140186822
    Abstract: Methods for the detection of biologically relevant molecules that comprise concentrating such molecules into microscopic holes in a sheet of chemically inert material, restricting the openings, and measuring the electric current through the holes or the fluorescence near the hole openings. The electric current or fluorescence will change as the molecules diffuse out of the holes, providing a measure of the diffusion rate and thereby detecting the presence and characteristics of the molecules. For molecules that interact, the diffusion rate will be slower than for molecules that do not interact, yielding a determination of the molecular interaction. Capping the population of holes and inserting into a mass spectrometer allows identification of the molecules.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Inventor: Christopher Gordon ATWOOD
  • Publication number: 20140183040
    Abstract: The present invention provides a method and apparatus for controlling the moving speed of a substance, both of which can adjust the moving speed of a substance to a desired speed. The control method and control apparatus cause a substance to pass through an internal space, in which an electro-osmotic flow is generated, of a surround electrode formed so as to surround part of the moving path of the substance, whereby the control method and control apparatus change the moving speed of the substance.
    Type: Application
    Filed: August 26, 2013
    Publication date: July 3, 2014
    Inventors: Tomoji Kawai, Soh Ryuzaki, Masateru Taniguchi
  • Patent number: 8768517
    Abstract: The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: July 1, 2014
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Karthik Ganesan, Sundaresh N. Brahmasandra
  • Patent number: 8764956
    Abstract: A microfluidic device for electrochemically regulating the pH of a fluid includes: an ion-exchange material; an anode chamber having a surface defined by a surface of the ion-exchange material and an anode electrode disposed along an edge of the surface of the anode chamber; and a cathode chamber having a surface defined by an opposite surface of the ion-exchange material and a cathode electrode disposed along an edge of the surface of the cathode chamber.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun-joo Lee, Joon-ho Kim, Chin-sung Park, Jung-im Han, Seung-yeon Yang, Shin-i Yoo
  • Publication number: 20140166485
    Abstract: Electroadsorption and charged based biomolecule separation, concentration and detection with porous biosensors. In preferred embodiments, a potential is applied to a porous electrode to separate and concentrate molecules from solution. The bimolecular analytes are captured by the porous electrode itself, the same electrode that is used to generate the electric field for electroadsorption. In additional preferred embodiments, pH of the solution is adjusted to separate and concentrate biomolecules. Setting the pH equal to the protein isoelectric point was determined by the inventors to maximize concentration of biomolecules into the porous biosensor. The methods include simultaneously optically detecting charged molecules captured by the porous electrode. Methods of the invention are benign to biomolecules of interest, which are demonstrated to retain a high percentage of their activity after being released from the biosensor. Methods of the invention provide label-free detection.
    Type: Application
    Filed: May 2, 2012
    Publication date: June 19, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael J. Sailor, Michelle Y. Chen
  • Patent number: 8753496
    Abstract: A device for separating and purifying useful quantities of particles comprises: (a) an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; (b) a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; (c) a power supply connected to the anode and to the cathode; (d) a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; (e) a light source; (f) a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; (g) a photo detector; (h) a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and (i) an ion-exchange membrane in the anolyte reservoir.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: June 17, 2014
    Assignee: Board of Regents, University of Houston
    Inventors: George William Jackson, Richard Coale Willson, George Edward Fox
  • Patent number: 8753868
    Abstract: Embodiments of the present techniques provide systems and methods for isolating particular classes of biological molecules, for example, proteins or nucleic acids, from mixtures of biological components. The methods use solutions that react with the biological molecules to enhance their adsorption by substrates, allowing contaminants to be washed away from the targeted molecules. Embodiments include automated systems that can be used to implement the technique with no or minimal intervention. Other embodiments include separation column technologies that may be used in the techniques.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Robert Scott Duthie, Wei-Cheng Tian, Tarun Khurana
  • Patent number: 8753498
    Abstract: An open optoelectrowetting (o-OEW) device for liquid droplet manipulations. The o-OEW device is realized by coplanar electrodes and a photoconductor. The local switching effect for electrowetting resulting from illumination is based on the tunable impedance of the photoconductor. Dynamic virtual electrodes are created using projected images, leading to free planar movements of droplets.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: June 17, 2014
    Assignee: Purdue Research Foundation
    Inventors: Han-Sheng Chuang, Aloke Kumar, Steven T. Wereley
  • Patent number: 8753497
    Abstract: Methods are provided for concentrating particles on the surface of a drop or bubble in a continuous phase, for separating different types of particles, and for removing particles from the surface of the drop or bubble. The methods also facilitate separation of two types of particles on a drop or bubble, optionally followed by solidification of the drop and/or the continuous phase, for example to produce a particle for which the surface properties vary, such as a Janus particle. The methods can be also used to destabilize emulsions and foams by re-distributing or removing particles on the surface of the drop or bubble, facilitating coalescence of the particle-free drops or bubbles.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Carnegie Mellon University
    Inventors: Nadine N. Aubry, Muhammad M. Janjua, Sai C. Nudurupati, Pushpendra Singh
  • Patent number: 8747637
    Abstract: The invention relates to compositions and methods of using electrophoresis separation matrices. The invention provides nano-particle comprising separation matrices having increased conductivity at low voltage.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 10, 2014
    Inventors: Shantanu Bhattacharya, Shubhra Gangopadhyay, Keshab Gangopedhyay, Nripen Chanda, Paul Sharp
  • Patent number: 8734628
    Abstract: Technologies are generally described for microfluidic channel devices. Some example devices may include a substrate having a substrate surface, with an array of drive electrode assemblies disposed upon the substrate surface. The drive electrode assemblies may be arranged along a path. Each drive electrode assembly may include one or more of a drive electrode layer, a dielectric layer and/or a stationary phase layer. The device may further include a plate including a plate surface. The device may further include a reference electrode configured on the plate surface to face the stationary phase layer of the drive electrode assemblies and separated from the substrate surface by a distance. The device may further include a voltage source effective to output a voltage potential, the voltage source configured in communication with the drive electrode assembly and the reference electrode. The device may further include an electrode selector effective to control the voltage source.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: May 27, 2014
    Assignee: Empire Technology Development, LLC
    Inventor: Vincenzo Casasanta, III
  • Patent number: 8734629
    Abstract: A series of microactuators for manipulating small quantities of liquids, and methods of using these for manipulating liquids, are disclosed. The microactuators are based on the phenomenon of electrowetting and contain no moving parts. The force acting on the liquid is a potential-dependent gradient of adhesion energy between the liquid and a solid insulating surface.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 27, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventor: Alexander Shenderov
  • Publication number: 20140127731
    Abstract: The invention provides a method and system for developing and using diagnoses of cancer and sepsis in canine subjects using Thymidine kinase (TK), c-reactive protein (CRP), and C-type natriuretic peptide (CNP) as biomarkers. The level of each biomarker may be measured and an index may be computed using a two- or a three-biomarker method. The invention provides a predefined scale for the index where each range of the index matches a health condition. The latter allows a practitioner, through computing an index value of a patient, to determine the health status of the patient by comparing the index value to the predefined scale.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: VETERINARY DIAGNOSTICS INSTITUTE, INC.
    Inventor: Veterinary Diagnostics Institute, Inc.
  • Patent number: 8715476
    Abstract: Electrotransfer is performed in an instrument that receives electroblotting cassettes and that contains an integrated power supply, controls, and a display that allows the user to monitor and control each of a plurality of cassettes individually through electrical contacts within the housing that mate with corresponding electrical contacts on the cassettes.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Matthew Latham, William Strong, Nikolas Chmiel, Jeff Xu, Robert Iovanni
  • Patent number: 8715480
    Abstract: An electrokinetic pump achieves high and low flow rates without producing significant gaseous byproducts and without significant evolution of the pump fluid. A first feature of the pump is that the electrodes in the pump are capacitive with a capacitance of at least 10?4 Farads/cm2. A second feature of the pump is that it is configured to maximize the potential across the porous dielectric material. The pump can have either or both features.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: May 6, 2014
    Assignee: Eksigent Technologies, LLC
    Inventors: Deon S. Anex, Phillip H. Paul, David W. Neyer
  • Patent number: 8709789
    Abstract: A method is provided for detecting multiple analytes via their interactions with reagents. The analytes are immobilized on an analyte support and are divided into subdivisions by a blotting apparatus. Reagents are applied, each to a specific subdivision of the analyte support and binds to the analytes there.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: April 29, 2014
    Assignee: Hypromatrix, Inc.
    Inventor: Yingjian Wang
  • Patent number: 8709224
    Abstract: Methods for the detection of biologically relevant molecules that comprise concentrating such molecules into microscopic holes in a sheet of chemically inert material, restricting the openings, and measuring the electric current through the holes or the fluorescence near the hole openings. The electric current or fluorescence will change as the molecules diffuse out of the holes, providing a measure of the diffusion rate and thereby detecting the presence and characteristics of the molecules. For molecules that interact, the diffusion rate will be slower than for molecules that do not interact, yielding a determination of the molecular interaction. Capping the population of holes and inserting into a mass spectrometer allows identification of the molecules.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: April 29, 2014
    Inventor: Christopher Gordon Atwood
  • Patent number: 8702940
    Abstract: A mechanism for capturing molecules is provided. A nanopore through a membrane separates a first chamber from a second chamber, and the nanopore, the first chamber, and the second chamber are filled with ionic buffer. A narrowed neck is at a middle area of the first chamber, and the narrowed neck is aligned to an entrance of the nanopore. The narrowed neck has a high intensity electric field compared to other areas of the first chamber having low intensity electric fields. The narrowed neck having the high intensity electric field concentrates the molecules at the middle area aligned to the entrance of the nanopore. Voltage applied between the first chamber and the second chamber drives the molecules, concentrated at the entrance of the nanopore, through the nanopore.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 8702942
    Abstract: In one general aspect, an electrophoretic measurement method is disclosed that includes providing a vessel that holds a dispersant, providing a first electrode immersed in the dispersant, and providing a second electrode immersed in the dispersant. A sample is placed at a location within the dispersant between the first and second electrodes with the sample being separated from the electrodes, an alternating electric field is applied across the electrodes, and the sample is illuminated with temporally coherent light. A frequency shift is detected in light from the step of illuminating that has interacted with the sample during the step of applying an alternating electric field, and a property of the sample is derived based on results of the step of detecting.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 22, 2014
    Assignee: Malvern Instruments, Ltd.
    Inventors: Jason Cecil William Corbett, Malcolm Connah, Kevin Mattison