Electrophoresis Or Electro-osmosis Processes And Electrolyte Compositions Therefor When Not Provided For Elsewhere Patents (Class 204/450)
  • Patent number: 8702948
    Abstract: Disclosed are a method and apparatus that use an electric field for improved biological assays. The electric field is applied across a device having wells, which receive reactants, which carry a charge. The device thus uses a controllable voltage source between the first and second electrodes, which is controllable to provide a positive charge and a negative charge to a given electrode. By controlled use of the electric field charged species in a fluid in a fluid channel are directed into or out of the well by an electric field between the electrodes. The present method involves the transport of fluids, as in a microfluidic device, and the electric field-induced movement of reactive species according to various assay procedures, such as DNA sequencing, synthesis or the like.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mostafa Ronaghi, Tarun Khurana, Juan G. Santiago
  • Patent number: 8702938
    Abstract: The invention provides a droplet actuator comprising a base substrate and a top substrate separated to form a gap, wherein: (a) the base substrate comprises electrodes configured for conducting droplet operations in the gap; and (b) the top substrate comprises a first portion coupled to second portion, where the second portion comprises one or more openings establishing a fluid path extending from an exterior of the droplet actuator and into the gap. The invention also provides related methods of manufacturing the droplet actuator, methods of using the droplet actuator, and methods of loading the droplet actuator.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: April 22, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Vijay Srinivasan, Michael G. Pollack, Alexander Shenderov, Zhishan Hua, Arjun Sudarsan
  • Patent number: 8702941
    Abstract: A method for analyzing hemoglobin by electrophoresis, capable of analyzing hemoglobin A1c (HbA1c) and modified hemoglobin with improved accuracy in a shortened analysis time is provided. The method for analyzing hemoglobin by electrophoresis includes performing electrophoresis under conditions in which an acidic substance having two or more carboxyl groups is present in an electrophoresis solution. At least two of the carboxyl groups of the acidic substance each have an acid dissociation constant (pKa) lower than the pH of the electrophoresis solution at the time of analysis.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: April 22, 2014
    Assignee: ARKARY, Inc.
    Inventors: Yusuke Nakayama, Satoshi Yonehara
  • Patent number: 8702950
    Abstract: A device for electrophoresis applies a voltage to a medium in contact with a plurality of electric conductors so that a potential of adjacent conductors is within a certain range. This allows preventing decline in electrophoresis speed. A device for electrophoresis and transfer includes an electrode having a plurality of electrode regions being insulated one another and arranged in a specific direction. This allows providing a practical and easy-to-use device for electrophoresis and transfer. A device for transfer alters an applied voltage or applied voltage duration to a certain position to another position. This allows improving transfer efficiency.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: April 22, 2014
    Assignees: Sharp Kabushiki Kaisha, Toppan Printing Co., Ltd.
    Inventors: Yuji Maruo, Yutaka Unuma, Atsunori Hiratsuka, Hideki Kinoshita, Kenji Yokoyama, Koji Sakairi, Satonari Akutsu
  • Patent number: 8702939
    Abstract: A method of controlling nematode response in a microfluidic environment is provided comprising exposing the nematode to an electric field that induces a nematode response. In one embodiment, a method of sorting a group of nematodes based on a selected parameter is provided comprising the step of exposing the nematodes to an electric field that induces a differential response among the nematodes based on the selected parameter, wherein the differential response functions to separate the nematodes based on the selected parameter. Devices useful to achieve these methods are also provided.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 22, 2014
    Assignee: McMaster University
    Inventors: Ravi (Ponnambalam) Selvaganapathy, Bhagwati Gupta, Pouya Rezai
  • Publication number: 20140106338
    Abstract: Example apparatus, systems and methods to desalt a sample are disclosed. An example apparatus includes a substrate and a sensor disposed on the substrate. The sensor has a surface functionalized with a binding agent to interact with an analyte in a liquid sample when the liquid sample is in contact with the sensor surface. The example apparatus further includes an electrode disposed on the substrate to create an electric potential and move ions in the sample away from the surface of the sensor.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Inventor: Andrew Fischer
  • Patent number: 8697004
    Abstract: The present teachings provide a device including a memory. According to various embodiments, the memory is readable, writable, and rewritable. The present teachings further provide processing stations, e.g., for carrying out electrophoresis, per, genetic analysis, sample preparation, and/or sample cleanup, etc., that are capable of reading from and/or writing/rewriting to such memory.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 15, 2014
    Assignee: Applied Biosystems, LLC
    Inventor: Jeffery D. Frazier
  • Patent number: 8690543
    Abstract: An apparatus includes a device including a pair of electrodes and a channel producing an electro-osmotic flow or electrophoretic flow of a liquid by applying a voltage between the pair of electrodes, and an impedance connected to the pair of electrodes, wherein a voltage resulting from thermal noise is applied to the pair of electrodes by giving a temperature difference between the channel and the impedance, and thermal energy corresponding to the temperature difference is converted into a flow of the liquid, the flow of the liquid being mechanical energy.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: April 8, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hideyuki Sugioka
  • Patent number: 8693081
    Abstract: A device and method of making and using the same. The device includes first and second substrates that are spaced to define a fluid space. Polar and non-polar fluids occupy the fluid space. A first electrode, with a dielectric layer, is positioned on the first substrate and electrically coupled to at least one voltage source, which is configured to supply an electrical bias to the first electrode. The fluid space includes at least one fluid splitting structure that is configured to facilitate the movement of the non-polar fluid into a portion of the polar fluid. Fluid splitting structure assisted movement of the non-polar fluid splits the polar fluid.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 8, 2014
    Assignee: University of Cincinnati
    Inventors: Jason Heikenfeld, Matthew Hagedon, Kenneth Dean Andrew
  • Patent number: 8685255
    Abstract: A method of operating a capacitive deionization cell using a regeneration cycle to increase pure flow rate and efficiency of the cell.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 1, 2014
    Assignee: Voltea B.V.
    Inventors: Sean Knapp, Marshall L. Leffew, II
  • Publication number: 20140083856
    Abstract: A device comprises an electric field applying assembly adapted to generate an electric field having a discrete electric field profile; a conducting volume and an electrical interface region provided between the conducting volume and the electric field applying assembly such that the discrete electric field is applied to the material by the electric field applying assembly at a location spaced from the conducting volume, wherein the electrical interface region comprises at least an ionically conductive material arranged adjacent to an in contact with the conducting volume; such that the discrete electric field applied by the electric field applying assembly is smoothed by the electrical interface region so that the electric field profile established within the conducting volume is substantially continuous.
    Type: Application
    Filed: May 4, 2012
    Publication date: March 27, 2014
    Applicant: GENETIC MICRODEVICES LIMITED
    Inventors: Dimitrios Sideris, Alex Iles, Richard Jackson
  • Patent number: 8679423
    Abstract: A microfluidic device, including a microfluidic network, including: a) two parallel plates each including one or more electrodes, b) at least one channel, arranged between the two plates, made from a material obtained by solidification or hardening of a material of a first fluid, and c) a mechanism varying a physical parameter of the material constituting walls of the channel so as to cause the material to pass at least from the liquid state to the solid state.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 25, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Yves Fouillet
  • Patent number: 8663730
    Abstract: Methods to manufacture a three-dimensional battery are disclosed and claimed. A structural layer may be provided. A plurality of electrodes may be fabricated, each electrode protruding from the structural layer. A porous dielectric material may be deposited on the plurality of electrodes.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: March 4, 2014
    Assignee: Enovix Corporation
    Inventors: Ashok Lahiri, Murali Ramasubramanian, Robert Spotnitz
  • Patent number: 8658111
    Abstract: The present invention provides droplet actuators, modified fluids and methods relating to droplet operations. An aspect includes a droplet actuator including a droplet operations substrate; an oil based filler fluid on the droplet operations substrate comprising an oil soluble additive in the filler fluid; and a droplet in contact with the oil based filler fluid. Still other aspects are provided.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Vijay Srinivasan, Vamsee Pamula, Ramakrishna Sista, Arjun Sudarsan, Prasanna Thwar
  • Patent number: 8641880
    Abstract: Method and apparatus for the manipulation and/or control of the position of particles using time-variable fields of force; the fields of force can be of dielectrophoresis (positive or negative), electrophoresis, electrohydrodynamic or electrowetting on dielectric, possessing a set of stable points of equilibrium for the particles.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: February 4, 2014
    Assignee: Silicon Biosystems S.p.A.
    Inventors: Gianni Medoro, Nicoló Manaresi
  • Publication number: 20140027282
    Abstract: [Object] To provide a method for electrophoresing nucleic acids, which enables highly efficiently concentrating and purifying nucleic acids quickly by simple operation. [Solving Means] A method of electrophoresis includes electrophoresing a nucleic acid in which an intercalator having an anionic functional group has been inserted. The method includes mixing a sample containing a nucleic acid, a compound having a functional group which undergoes dehydration condensation reaction with carboxyl groups included in substances contained in the sample and a condensing agent of dehydration condensation reaction; and electrophoresing the nucleic acid. The method of concentrating and recovering nucleic acids, by increasing the negative charge of the nucleic acid bound with the intercalator, can increase electrophoretic velocity of nucleic acids.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 30, 2014
    Applicant: Sony Corporation
    Inventor: Tomohiko Nakamura
  • Patent number: 8637242
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi
  • Patent number: 8632670
    Abstract: Apparatus and methods for controllably wetting a microstructured surface.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: January 21, 2014
    Assignee: Purdue Research Foundation
    Inventors: Suresh V. Garimella, Hemanth Kumar Dhavaleswarapu, Niru Kumari
  • Patent number: 8632669
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 21, 2014
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Publication number: 20140014514
    Abstract: The present invention relates to an aqueous transfer buffer that provides superior efficiency in transferring polypeptides of a broad range of molecular weight from a matrix used in electrophoresis to another immobilized surface. Also disclosed are electrophoretic methods and devices in which the aqueous transfer solution of this invention is used.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Nickolas Chmiel, Cory Panattoni
  • Patent number: 8628648
    Abstract: In one embodiment, a system for manipulation of a micro component includes a gripper subsystem for lifting, holding, and releasing a micro component. The gripper subsystem includes a base substrate having a work side and an opposing side, a positive electrode secured to the work side of the base substrate, a negative electrode suitably spaced from the positive electrode and secured to the work side of the base substrate, a dielectric layer formed over the work side of the base substrate and the positive and negative electrodes, and a hydrophobic layer comprising a hydrophobic material with predictable electrowetting behavior formed over the dielectric layer such that the dielectric layer is between the work side of the base substrate and the hydrophobic layer. A method for manipulation of a micro component is also provided as well as a method of manufacturing the system for manipulation of a micro component.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: January 14, 2014
    Assignee: The University of Akron
    Inventors: Jiang Zhe, Abhay Vasudev
  • Patent number: 8628975
    Abstract: Extended rhodamine compounds exhibiting favorable fluorescence characteristics having the structure are disclosed. In addition, novel intermediates for synthesis of these dyes are disclosed, such intermediates having the structure In addition, methods of making and using the dyes as fluorescent labels are disclosed.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 14, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Joe Y. L. Lam, Scott C. Benson, Steven M. Menchen
  • Publication number: 20140008222
    Abstract: A method of loading a droplet actuator is provided. In one embodiment, the method may include, providing: a droplet actuator loaded with a filler fluid; a reservoir comprising a droplet fluid; and a fluid path extending from the reservoir into the droplet actuator; and forcing filler fluid from one locus in the droplet actuator to another locus in the droplet actuator; or out of the droplet actuator; thereby causing droplet fluid to flow through the fluid path and into the droplet actuator.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 9, 2014
    Applicant: Advanced Liquid Logic, Inc.
    Inventors: Vijay Srinivasan, Michael G. Pollack, Zhishan Hua, Arjun Sudarsan, Allen E. Eckhardt
  • Patent number: 8623192
    Abstract: Exemplary embodiments provide systems and methods for concentrating, focusing and/or separating proteins using nanofluidic channels and/or their arrays. In embodiments, low-abundance proteins can be focused and separated with high resolution using separation techniques including isoelectric focusing (IEF), and/or dynamic field gradient focusing (DFGF) in combination with nanofluidic channels and/or multi-gate nanofluidic field-effect-transistors (FETs).
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: January 7, 2014
    Assignee: STC.UNM
    Inventors: Sang M. Han, Youn-Jin Oh, Cornelius Ivory
  • Patent number: 8623191
    Abstract: A device and method for displaying grey levels on electronic paper is provided. According to various embodiments, a system for electronic paper can include an electret substrate embedded with at least one first capsule containing a first plurality of charged pigment particles and at least one second capsule containing a second plurality of charged pigment particles. The system can further include a first electrode interfacing with one side of the electret substrate and a second electrode interfacing with a second side of the electret substrate. The first plurality of charged pigment particles can move in the direction of one of the first and second electrodes having a polarity that is opposite to that of the first plurality of the charged pigment particles in response to a voltage applied to the first and second electrodes that is greater than a first threshold.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: January 7, 2014
    Assignee: Honeywell International Inc.
    Inventor: Andrei Cernasov
  • Patent number: 8610999
    Abstract: A display element, a display apparatus and a fabricating method of a display element are provided. The display apparatus includes a first substrate, a second substrate and a display medium layer. The display medium layer is disposed between a first electrode layer of the first substrate and a second electrode layer of the second substrate. The display medium layer has a plurality of display elements. Each display element includes a colorized capsule, a fluid and a plurality of particles. The fluid and the particles are disposed in the colorized capsule, and the particles are charged. The fabricating method of a display element is coloring a capsule of a display element with dye to form a colorized capsule.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 17, 2013
    Assignee: Chimei InnoLux Corporation
    Inventors: Chia-Ming Hsieh, Jui-Jen Yueh, Sheng-Chang Chen, Sheng-Tien Cho, Wei-Lun Liao
  • Patent number: 8609837
    Abstract: A compound in the form of a metallized tetrpyrollic photosensizer linked to a fluorescent dye where the photosensitizer (PS), is linked by a structure that does not have detrimental radiation emmitance or absorbing characteristics, to a fluorophore, usually a cyanine dye (CD). The photosensitizer in accordance the invention is a metallized analog of porphyrins, chlorins, purpurinimides, bacterio pupurinimides, phthalocyanines, expanded porphyrins, benzoporphyrin derivatives and purpurins. The fluorophore is usually a cyanine dye with variable substituents. And, A method for determining effectiveness of PDT by comparing proportion of STAT-3 monomer with crosslinked STAT-3 dimer after PDT where the relative proportion of STAT-3 monomer to crosslinked STAT-3 directly correlates to efficacy of the PDT.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 17, 2013
    Assignee: Health Research, Inc.
    Inventors: Ravindra K. Pandey, Heinz Baumann, Yihui Chen, Penny Joshi, Nayan Patel
  • Patent number: 8603312
    Abstract: A particle transporter based on travelling-wave dielectrophoresis is provided. The particle transporter includes a plurality of turn-around electrodes. The turn-around electrodes are disposed on a substrate and arranged in a fan shape. The turn-around electrodes provide an arc channel for transporting a plurality of particles. Wherein, the turn-around electrodes are not connected to each other, and neighboring sides of any two adjacent electrodes of the turn-around electrodes are approximately parallel.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jean-Fu Kiang, Tsung-Chi Kuo
  • Patent number: 8602532
    Abstract: A fluid-application mechanism is to cause fluid to be applied onto media. An electrowetting mechanism is to generate an electric field to affect the fluid applied onto the media.
    Type: Grant
    Filed: April 30, 2011
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dustin W. Blair, Steven W. Steinfield, Stephen W. Bauer, Dennis M. Huff
  • Publication number: 20130323737
    Abstract: A method and system for analysing a sample are provided, wherein one or more process steps and/or sample processors are provided separately from the instrument, for instance a sample receiving step and sample preparation step and sample extraction step and sample retention step and/or purification step and washing step and elution step, and one or more process steps and/or sample processors provided by the instrument as an integrated set, the one or more process steps and/or sample processors provided by the instrument including a sample receiving step and amplification step and denaturing step and investigation step and detection step and results analysis step and results output step. Other combinations of the split in location of the steps are possible. The optimisation of the split allows the accurate processing by a cartridge based instrument of the sample, whilst fully interfacing with a variety of sample collection and/or preparation approaches.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 5, 2013
    Applicant: BIOACCEL
    Inventors: Frederic Zenhausern, Alan Nordquist, Ralf Lenigk, Cedric Hurth, Jianing Yang, Xiaojia Chen, Matthew Estes, John Lee-Edghill, Nina Moran, Andrew Hopwood, Pieris Koumi
  • Publication number: 20130319859
    Abstract: A polymeric article includes an electrorheological (ER) fluid in a polymer medium. In some applications, the polymer medium forms a body ply of a tire. The ER fluid can be incorporated into the polymeric article in a number of particular ways. The ER fluid may simply fill a pocket in the polymeric article or may be part of an electrorheological composite or electrorheological microsphere. The ER fluid is responsive to the application of an electric field to change the apparent viscosity or elastic modulus of the polymeric article.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Applicant: The University of Akron
    Inventor: Shing-Chung Wong
  • Patent number: 8597486
    Abstract: The present invention refers to a droplet-based miniaturized device with on-demand droplet-trapping, -fusion, and -releasing. The device makes use of different electrical fields for directing droplets into microwells and releasing them from the same. In another aspect, the present invention refers to a system comprising such a microfluidic device and a method of operating it.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Nanyang Technological University
    Inventors: Changming Li, Wei Wang
  • Patent number: 8597513
    Abstract: The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: December 3, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Abhijeet P. Borole, Constantino Tsouris
  • Publication number: 20130313112
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Application
    Filed: August 8, 2013
    Publication date: November 28, 2013
    Applicant: President and Fellows of Harvard College
    Inventors: Timothy J. DENISON, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Publication number: 20130313114
    Abstract: A method of operating a portable biochemical testing apparatus is disclosed. The portable biochemical testing apparatus includes a light source module, a sample module, a photoconductive material layer, a touch module, and a control module. At least one sample is disposed in the sample module. The photoconductive material layer is disposed between the sample module and the light source module. The touch module generates a driving signal according to a touch action of the user to drive the light source module to emit a light. When the light is emitted to the photoconductive material layer, the photoconductive material layer will generate a photoelectric driving effect. The at least one sample is affected by the photoelectric driving effect and generates a change corresponding to the touch action.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 28, 2013
    Inventors: Chung-Cheng CHOU, William Wang
  • Patent number: 8585881
    Abstract: A device for creating microgradients in solution is disclosed. The device contains a microfluidic channel with openings at each end and two or more small apertures to a bath. Electrodes are placed in the openings at either end of the channel and an electrical power supply is connected to the electrodes. Several distinct current paths exist from one end of the channel to the other. For example current may flow from one electrode, through a portion of the channel, through an aperture into the bath, back through another aperture into the channel, and along another portion of the channel to the other electrode. Current flows along all possible connected paths when an electric field is applied along the channel and induces fluid flow into and out of the apertures in the channel. Fluid flow through the apertures results in the formation of microgradients in solution near the microfluidic channel device.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: November 19, 2013
    Assignee: Onda Via, Inc.
    Inventors: Mark C. Peterman, David M. Bloom
  • Patent number: 8581899
    Abstract: A display medium includes a pair of substrates, a dispersion medium sealed between the pair of substrates, a migrating particle group dispersed in the dispersion medium, and a surface layer provided on at least one of the facing surfaces of the pair of substrates and including a polymer compound that is a copolymer containing the following constitutional unit (A) and constitutional unit (B), X represents a group containing a silicone chain, Ra1 and Ra2 each independently represent a hydrogen atom or a methyl group, Rb2 represents an organic group containing a substituted or unsubstituted phenyl group, n1 and n2 each represent mol % of the constitutional unit relative to the whole copolymer and satisfy 0<n1<50 and 0<n2<80, respectively, and n represents a natural number of 1 or more and 3 or less.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: November 12, 2013
    Assignee: Fuji Serox Co., Ltd.
    Inventors: Hiroaki Moriyama, Yasuo Yamamoto, Yoshinori Machida, Ryota Mizutani
  • Patent number: 8580161
    Abstract: Photochromic materials that are useful for a variety of applications, including for making various unit functions of fluidic devices, particularly microfluidic devices, such as microchannels, valves and gates, using spiropyran materials, such as a polymeric composition comprising a spiropyran. In certain disclosed embodiments the spiropyran is admixed with a polymeric material. For example, the spiropyran may be intercalated into a polyalkylene or polyalkylene phthalate. The spiropyran also may be polymerized with at least one additional monomer to form a heteropolymer, such as by polymerization with styrene, styrene derivatives, acrylate and acrylate derivatives. The spiropyran compositions can be used to make, for example, a photoactuatable valve, a fluidic channel, etc. The valve may be associated with a microchannel, including photochromic microchannel. In certain disclosed embodiments, the valve, at least one microchannel, or both, are re-patternable by light exposure.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: November 12, 2013
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Vincent Thomas Remcho, Jintana Nammoonnoy, Myra Koesdjojo
  • Patent number: 8580533
    Abstract: The present invention provides methods for enhancing chemical reactions of molecules, e.g., biomolecules, with destructible surfactants. The chemical reactions may involve and/or be associate with analysis, e.g., solubilizing, separating, purifying and/or characterizing the molecules. In one aspect, the anionic surfactants of the present invention may be selectively broken up at relatively low pH. The resulting breakdown products of the surfactants may be removed from the molecule/sample with relative ease. The invention has applicability in a variety of analytical techniques.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 12, 2013
    Assignee: Waters Technologies Corporation
    Inventors: Edouard S. P. Bouvier, Bruce J. Compton, John C. Gebler, Martin Gilar, Ying-Qing Yu, Peter Jeng-Jong Lee, Elizabeth K. Brown
  • Publication number: 20130269866
    Abstract: Domain segregation of polymer blends or block copolymers in the presence of thermal conducting high aspect ratio nanocrystals leads to preferential placement of conductive filler either inside one domain, which promote the self-assembly of a thermal and/or electrical conducting pathway composed of high aspect ratio filler. The self-assembly of such thermal and/or electrical conducting pathway effectively enhances the thermal and/or electrical conductivity of the composite with significantly less amount of filler.
    Type: Application
    Filed: November 21, 2012
    Publication date: October 17, 2013
    Applicant: PIXELLIGENT TECHNOLOGIES, LLC
    Inventors: Wei Xu, Jun Xu, Zehra Serpil Gonen-Williams, Gregory D. Cooper
  • Patent number: 8557097
    Abstract: A technique for embedding a nanotube in a nanopore is provided. A membrane separates a reservoir into a first reservoir part and a second reservoir part, and the nanopore is formed through the membrane for connecting the first and second reservoir parts. An ionic fluid fills the nanopore, the first reservoir part, and the second reservoir part. A first electrode is dipped in the first reservoir part, and a second electrode is dipped in the second reservoir part. Driving the nanotube into the nanopore causes an inner surface of the nanopore to form a covalent bond to an outer surface of the nanotube via an organic coating so that the inner surface of the nanotube will be the new nanopore with a super smooth surface for studying bio-molecules while they translocate through the nanotube.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Binquan Luan, Hongbo Peng
  • Patent number: 8557609
    Abstract: A method employing gel electrophoresis and optical imaging techniques to measure the amount of biomaterial that attaches to specified locations on a detector slide such as a bioarray or biochip.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: October 15, 2013
    Assignee: Maven Biotechnologies, LLC
    Inventors: Shane Dultz, David Ralin, William Rassman
  • Publication number: 20130251637
    Abstract: Compounds used as labels with properties comparable to known fluorescent compounds. The compounds can be conjugated to proteins and nucleic acids for biological imaging and analysis. Synthesis of the compounds, formation and use of the conjugated compounds, and specific non-limiting examples of each are provided.
    Type: Application
    Filed: December 20, 2011
    Publication date: September 26, 2013
    Applicants: DYOMICS GMBH, PIERCE BIOTECHNOLOGY, INC.
    Inventors: Greg Hermanson, Peter T. Czerney, Surbhi Desai, Matthias S. Wenzel, Boguslawa Dworecki, Frank G. Lehmann
  • Patent number: 8540859
    Abstract: A technical measure for gel electrophoresis shaping that can make the gel electrophoresis generate no bubbles including in the gel, and can make a gradient gel being more accurate and more stable in quality. When liquid gel enters a collecting trough under continuous driving of a roller in the collecting trough to be injected into a carrier sheet set from a gel output port and a narrow seam, former injected liquid gel can be pushed upwards by latter injected liquid gel, and an accomplished product of gel can be obtained. If the collecting trough is input with two liquid basic materials, the liquid gel continuously output into the carrier sheet set can have a gradient.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: September 24, 2013
    Assignee: Wealtec Bioscience Co., Ltd.
    Inventor: Hui-Wan Chen
  • Patent number: 8535500
    Abstract: Provided herein is a surface acoustic wave (“SAW”) sensor device including an isolation component of a target biomolecule. A sample containing the target biomolecule is separated by its size using electrophoresis, and sequentially reacts with a SAW sensor. In other words, the device is capable of detecting the target biomolecule by separating biomolecules using electrophoresis, and applying the separated biomolecules to the SAW sensor.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 17, 2013
    Assignees: Samsung Electronics Co., Ltd., Ajou University Industry-Academic Cooperation Foundation
    Inventors: Hun Joo Lee, Soo Suk Lee, Mi Jeong Song, Kyung Yeon Han, Jae Ho Kim
  • Patent number: 8529743
    Abstract: An apparatus and method fox micropumping is disclosed. The apparatus includes a virtual or physical microchannel and at least two hydrophobic electrode patches on a surface or two electrode patches disposed underneath a dielectric film proximate to the channel. Each of the electrode patches modifies a surface property between hydrophobic and hydrophilic states in response to an electrical potential applied between the liquid and the electrode, and the electrical potential is provided to digitize the liquid, drive the liquid segments, and mix different liquids.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: September 10, 2013
    Assignee: The Regents of the University of California
    Inventors: Chang-Jin Kim, Junghoon Lee
  • Patent number: 8524506
    Abstract: Methods for sampling a liquid flow are provided. The method includes supplying a continuous liquid flow from a continuous flow fluid input source to a surface along a first flow path. The method additionally includes sampling the continuous liquid flow by performing an electric field-based technique to split off a sample droplet from a portion of the liquid flow, whereby the sample droplet is distinct from the liquid flow and controllable independently of the liquid flow, wherein the electric field-based technique is performed by providing a set of electrodes on the surface and selectively biasing the set of electrodes, whereby the sample droplet is formed on one of the set of electrodes.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: September 3, 2013
    Assignee: Duke University
    Inventors: Vamsee K. Pamula, Michael G. Pollack, Richard B. Fair
  • Patent number: 8524059
    Abstract: A pH adjusting apparatus includes an electrolytic chip receiving a solution, an electrolytic chip loading station receiving the electrolytic chip, an input unit inputting electrolysis conditions, a control unit receiving the electrolysis conditions and controlling electrolysis performed in the electrolytic chip, and a display unit displaying the electrolysis conditions and a progress of the electrolysis. Thus, the pH of a solution can be adjusted easily and accurately, by precisely controlling a constant current, a constant voltage, and current and voltage application times, thereby enabling useful application in various biological assays such as cell lysis. Furthermore, the pH adjusting apparatus has small size and weight and can be operated for a long time after charging once due to low power consumption.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun joo Lee, Jin tae Kim, Sung-young Jeong, Joon-ho Kim, Hee-kyun Lim
  • Publication number: 20130220809
    Abstract: The present invention provides a new and improved oligonucleotide detection method based on the nanopore technology with a probe containing a complementary sequence to the target oligonucleotide and a terminal extension at the probe's 3? terminus, 5? terminus, or both termini. The improved nanopore sensor with the probe enables sensitive, selective, and direct detection, differentiation and quantification of target oligonucleotides such as miRNAs. The inventive detection method may also be employed as a non-invasive and cost-effective diagnostic method for cancer detection based on miRNA levels in the patient's blood sample.
    Type: Application
    Filed: July 14, 2011
    Publication date: August 29, 2013
    Inventors: Li-Qun Gu, Yong Wang, Kai Tian
  • Patent number: 8518226
    Abstract: The present invention provides for a novel method of supercoiled DNA isolation using a microfluidic device. In a preferred embodiment, the supercoiled DNA is a plasmid present in combination with chromosomal DNA. The present invention also provides for a novel method of mitochondrial DNA isolation using a microfluidic device.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: August 27, 2013
    Inventors: Christopher Backhouse, Dammika Manage, Iveta Sosova, Moira Glerum