Including Only Semiconductor Components Of A Single Kind, E.g., All Bipolar Transistors, All Diodes, Or All Cmos (epo) Patents (Class 257/E27.046)

  • Patent number: 7371650
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Patent number: 7361930
    Abstract: A method of forming a multiple layer passivation film on a semiconductor device surface comprises placing a semiconductor device in a chemical vapor deposition reactor, introducing a nitrogen source into the reactor, introducing a carbon source into the reactor, depositing a layer of carbon nitrogen on the semiconductor device surface, introducing a silicon source into the reactor after the carbon source, and depositing a layer of silicon carbon nitrogen on the carbon nitrogen layer. A semiconductor device incorporating the multiple layer passivation film is also described.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: April 22, 2008
    Assignee: Agilent Technologies, Inc.
    Inventor: Gary R. Trott
  • Patent number: 7358545
    Abstract: A bipolar junction transistor is provided. A p-type well region surrounds an n-type emitter and connects with the bottom of the emitter to serve as a base. A p-type base pick-up region connects with the base and surrounds the emitter. An n-type deep well, connected to the bottom of the base and the bottom of the n-type well, is used as a collector. The n-type well surrounds the base and connects with the n-type deep well. An n-type collector pick-up region connects with the n-type well and surrounds the base. An isolation structure is disposed between the emitter and the base and between a portion of the base and a portion of the n-type well. A buffer region is disposed under a portion of the isolation structure. Furthermore, the buffer region together with a portion of the isolation structure isolates the p-type base from the n-type well.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 15, 2008
    Assignee: United Microelectronics Corp.
    Inventor: Mingshang Tsai
  • Patent number: 7342289
    Abstract: A structure to improve carrier mobility of a MOS device in an integrated circuit. The structure comprises a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a conformal stress film covering the source region, the drain region, and the conductive gate. In addition, the structure may comprise a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a plurality of stress films covering the source region, the drain region, and the conductive gate.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: March 11, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chien-Chao Huang, Chung-Hu Ge, Wen-Chin Lee, Chenming Hu, Carlos H. Diaz, Fu-Liang Yang
  • Patent number: 7342284
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 11, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
  • Patent number: 7332433
    Abstract: Methods for fabricating two metal gate stacks with varying work functions for complementary metal oxide semiconductor (CMOS) devices are provided A first metal layer may be deposited onto a gate dielectric, followed by the deposition of a second metal layer, where the second metal layer modulated the work function of the first metal layer. The second metal layer and subsequently etch, exposing a portion of the first metal layer. A third metal layer may be deposited on the etched second metal layer and the exposed first metal layer, where the third metal layer may modulate the work function of the exposed first metal layer. Subsequent fabrication techniques may be used to define the gate stack.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: February 19, 2008
    Assignee: Sematech Inc.
    Inventors: Kisik Choi, Husam Alshareef, Prashant Majhi
  • Patent number: 7329940
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Publication number: 20080012018
    Abstract: An MOS device having enhanced mobility and a method for its fabrication are provided. The method comprises providing a P-type monocrystalline silicon germanium substrate having a first lattice constant and a channel region at the substrate surface, forming a gate insulator layer on the substrate, forming a gate electrode having a first sidewall and a second sidewall overlying the channel. First and second recesses are etched into the substrate in alignment with the first and the second gate electrode sidewalls, respectively. The recesses are filled by epitaxially growing a layer of embedded monocrystalline semiconductor material characterized by a second lattice constant less than the first lattice constant to impart a tensile strain on the channel region.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 17, 2008
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Andrew WAITE, Scott LUNING
  • Patent number: 7312500
    Abstract: An ideal step-profile in a channel region is realized easily and reliably, whereby suppression of the short-channel effect and prevention of mobility degradation are achieved together. A silicon substrate is amorphized to a predetermined depth from a semiconductor film, and impurities to become the source/drain are introduced in this state. Then the impurities are activated, and the amorphized portion is recrystallized, by low temperature solid-phase epitaxial regrowth. With the processing temperature required for the low temperature solid-phase epitaxial regrowth being within a range of 450° C.-650° C., thermal diffusion of the impurities into the semiconductor film is suppressed, thereby maintaining the initial steep step-profile.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: December 25, 2007
    Assignee: Fujitsu Limited
    Inventors: Toshihiko Miyashita, Kunihiro Suzuki
  • Patent number: 7309628
    Abstract: A semiconductor device is formed as part of an integrated circuit. The semiconductor device, which is formed in an active semiconductor layer, is surrounded by a guardian that provides a diffusion barrier against contaminants and also provides assistance in avoiding dishing above the semiconductor device during chemical mechanical polishing. The dielectric that is above the semiconductor device and inside the guardian is etched to form an opening that receives one of an optical fiber, an electromagnetic signal source, or an electromagnetic signal load. The remaining dielectric is in layers that are of substantially uniform thickness. The guardian is built up in layers that are part of a normal integrated circuit process. These include contact layers, via layers, and interconnect layers.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: December 18, 2007
    Inventors: Omar Zia, Hsiao-Hui Chen, Lawrence Cary Gunn, III
  • Patent number: 7285840
    Abstract: A deep n-well is formed beneath the area of an inductor coil. The use of a deep n-well lessens the parasitic capacitance by placing a diode in series with the interlayer dielectric cap. The deep n-well also reduces substrate noise. Once the n-well is implanted and annealed, a cross hatch of shallow trench isolation is patterned over the n-well. The shallow trench isolation reduces and confines the inductively coupled surface currents to small areas that are then isolated from the rest of the chip.
    Type: Grant
    Filed: December 12, 2004
    Date of Patent: October 23, 2007
    Assignee: LSI Corporation
    Inventors: Sean Christopher Erickson, Jason Dee Hudson
  • Patent number: 7279725
    Abstract: A method of making a vertical diode structure is provided, the vertical diode structure having associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer covers the interior surface of the diode opening and contacts the active region. The diode opening is initially filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that is heavily doped with a first type dopant and a bottom portion that is lightly doped with a second type dopant. The top portion is bounded by the bottom portion so as not to contact the titanium silicide layer. For one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung Tri Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 7279756
    Abstract: A process and apparatus for a semiconductor device is provided. A device comprises a first transistor having a first charge carrier type. The first transistor comprises a high-k gate dielectric and a first doped electrode. The first charge carrier type comprises one of p-type and n-type and the first doped electrode comprises the other of p-type and n-type. The device further comprises a second transistor having a charge carrier type opposite the first charge carrier type. The second transistor comprises the high-k gate dielectric, and a second doped electrode, wherein the second doped electrode comprises the other of p-type and n-type.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 9, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Ching-Wei Tsai, Chenming Hu
  • Publication number: 20070215951
    Abstract: The invention relates to a method for fabricating a semiconductor device having a semiconductor body that comprises a first semiconductor structure having a dielectric layer and a first conductor, and a second semiconductor structure having a dielectric layer and a second conductor, that part of the first conductor which adjoins the dielectric layer having a work function different from the work function of the corresponding part of the second conductor. In one embodiment of the invention, after the dielectric layer has been applied to the semiconductor body, a metal layer is applied to the said dielectric layer, and then a silicon layer is deposited on the metal layer and is brought into reaction with the metal layer at the location of the first semiconductor structure, forming a metal silicide.
    Type: Application
    Filed: May 18, 2007
    Publication date: September 20, 2007
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Tom Schram, Jacob Hooker, Marcus Henricus van Dal
  • Patent number: 7271454
    Abstract: A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 18, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Takashi Ipposhi, Shigeto Maegawa, Koji Nii
  • Patent number: 7227231
    Abstract: A semiconductor integrated circuit device has a first MOS transistor and a second MOS transistor. The first MOS transistor has a first source, a first gate electrode, and a first wiring metal connected to the first source and overlapping the first gate electrode. The second MOS transistor has a second source, a second gate electrode, and a second wiring metal connected to the second source. The first wiring metal of the first MOS transistor and the second wiring metal are positioned so that they do not overlap the second gate electrode.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: June 5, 2007
    Assignee: Seiko Instruments Inc.
    Inventor: Jun Osanai
  • Patent number: 7227229
    Abstract: The absolute value of the threshold voltage of a P-channel TFT is reduced by making its channel length shorter than that of an N-channel TFT by at least 20%, to thereby approximately equalize the threshold voltage absolute values of those TFTs.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: June 5, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Yasuhiko Takemura
  • Patent number: 7227240
    Abstract: A semiconductor device (10) includes a semiconductor die (20) and an inductor (30, 50) formed with a bonding wire (80) attached to a top surface (21) of the semiconductor die. The bonding wire is extended laterally a distance (L30, L150) greater than its height (H30, H50) to define an insulating core (31, 57). In one embodiment, the inductor is extended beyond an edge (35, 39) of the semiconductor die to reduce loading.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: June 5, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: James Knapp, Francis Carney, Harold Anderson, Yenting Wen, Cang Ngo
  • Patent number: 7217607
    Abstract: In a process of forming MISFETs that have gate insulating films that are mutually different in thickness on the same substrate, the formation of an undesirable natural oxide film at the interface between the semiconductor substrate and the gate insulating film is suppressed. A gate insulating film of MISFETs constituting an internal circuit is comprised of a silicon oxynitride film. Another gate insulating film of MISFETs constituting an I/O circuit is comprised of a laminated silicon oxynitride film and a high dielectric film. A process of forming the two types of gate insulating films on the substrate is continuously carried out in a treatment apparatus of a multi-chamber system. Accordingly, the substrate will not be exposed to air. Therefore, it is possible to suppress the inclusion of undesirable foreign matter and the formation of a natural oxide film at the interface between the substrate and the gate insulating films.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: May 15, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Ryoichi Furukawa, Satoshi Sakai, Satoshi Yamamoto
  • Patent number: 7214975
    Abstract: An aspect of the present invention provides a semiconductor device that includes a logic circuit including at least one transistor with a first channel type, a first transistor with a second channel type configured to provide the logic circuit with a first voltage at a specified timing, and a precharge control unit configured to turn on at least one first channel type transistor in the logic circuit during the time when the first transistor with the second channel type provides the logic circuit with the first voltage, the precharge control unit configured to precharge a node coupled to a transistor of the first channel type in the logic circuit.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: May 8, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masashi Hirano
  • Patent number: 7211847
    Abstract: A CMOS image sensor includes a photo sensing device for generating photo charges, a floating diffusion region for storing the photo charges generated by the photo sensing device therein, a transfer transistor connected between the photo sensing device and the floating diffusion region for transferring the photo charges generated by the photo sensing device to the floating diffusion region, a reset transistor connected between a supply voltage terminal and the floating diffusion region for discharging the charges stored in the floating diffusion region to reset the floating diffusion region, a drive transistor for acting as a source follower buffer amplifier in response to an output signal from the photo sensing device, a switching transistor connected to the drive transistor for performing an addressing operation, and a charge control device connected between the photo sensing device and the transfer transistor for controlling the amount of charges stored in the photo sensing device.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: May 1, 2007
    Assignee: DongbuAnam Semiconductor Inc.
    Inventor: Bum Sik Kim
  • Patent number: 7202535
    Abstract: The present invention provides a manufacturing method for an integrated semiconductor structure and a corresponding integrated semiconductor structure.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: April 10, 2007
    Assignee: Infineon Technologies AG
    Inventors: Matthias Goldbach, Dongping Wu
  • Patent number: 7170103
    Abstract: A method of making a vertical diode is provided, the vertical diode having associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer covers the interior surface of the diode opening and contacts the active region. The diode opening is initially filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that is heavily doped with a first type dopant and a bottom portion that is lightly doped with a second type dopant. The top portion is bounded by the bottom portion so as not to contact the titanium silicide layer. For one embodiment of the vertical diode, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: January 30, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung Tri Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Publication number: 20060226493
    Abstract: Discloses are CMOS circuit designs that combine MTCMOS and hybrid orientation technology to achieve the dual objectives of high performance and low standby leakage power. The invention utilizes novel combinations of a thick-oxide high-VTH PFET header with various gate- and body-biased schemes in HOT technology to significantly reduce the performance penalty associated with conventional PFET headers. A first embodiment of the invention provides a HOT-B high-VTH thick oxide bulk PFET header scheme. This header scheme can be expanded by application of a positive gate bias VPOS (VPOS>VDD) to the HOT-B PFET header during standby mode and a negative gate bias VNEG (VNEG<GND) in active mode. Another embodiment provides a HOT-A high-VTH thick oxide SOI PFET header scheme. A further embodiment provides a HOT-A body biased high-VTH thick oxide SOI PFET header scheme.
    Type: Application
    Filed: April 7, 2005
    Publication date: October 12, 2006
    Applicant: International Business Machines Corporation
    Inventors: Ching-Te Chuang, Koushik Das, Shih-Hsien Lo
  • Patent number: 7118925
    Abstract: A method of manufacturing an integrated circuit on a semiconductor wafer. The method comprising forming a bottom plate of a capacitor 50a and a bottom portion of an induction coil 50a, forming an etch stop layer 250?, forming a ferromagnetic capacitor top plate 20a and a ferromagnetic core 20b, forming a top portion of the induction coil 50b plus vias 50c that couple the top portion of the induction coil 50b to the bottom portion of the induction coil 50c.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Kenneth D. Brennan, Satyavolu S. Papa Rao
  • Publication number: 20060202278
    Abstract: A p-channel MOS transistor includes first and second SiGe mixed crystal regions formed epitaxially to a silicon substrate at respective outer sides of sidewall insulation films of a gate electrode so as to fill respective trenches formed in source and drain diffusion regions of p-type respectively, wherein the p-channel MOS transistor further includes a compressive stressor film covering the silicon substrate and the sidewall insulation films continuously.
    Type: Application
    Filed: May 27, 2005
    Publication date: September 14, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 6879234
    Abstract: Electrically conductive layers 1a and 2a connected to each other via a contact form one inductor, while electrically conductive layers 1b and 2b connected to each other via other contact form the other inductor. Since the areas defined by the loops forming these two inductors are equal to each other, the inductances of the inductors are also equal to each other. Between both the inductors, the lengths in the loop of the portions (the conductive layers 1a and 1b) formed on a lower interlayer insulating film are equal to each other, while the lengths in the loop of the portions (the conductive layers 2a and 2b) formed on an upper interlayer insulating film are also equal to each other. This allows external disturbances such as parasitic capacitance to affect both the inductors equally. Accordingly, a voltage controlled oscillator incorporating the invention can stably provide undistorted sinusoidal oscillation signals.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: April 12, 2005
    Assignee: NEC Electronics Corporation
    Inventors: Masayuki Furumiya, Ryota Yamamoto, Jun Kishi, Hiroaki Ohkubo, Yasutaka Nakashiba