Comprising Only Group Iii-v Compound (epo) Patents (Class 257/E33.023)
  • Publication number: 20100308323
    Abstract: A method for improving light extraction efficiency of a group-III nitride-based light emitting device is disclosed. The method includes the steps of: providing a group-III nitride-based light emitting device having a top surface; disposing a seed layer on the top surface for increasing adhesion of the group-III nitride-based light emitting device; and forming a patterned oxide layer, having a plurality of nanostructure particles, without absorption of visible light on the seed layer. The size and shape of the nanostructure particles are controlled by reaction concentration, time and temperature during the patterned oxide layer formation, thereby improving light extraction efficiency of the group-III nitride-based light emitting device without damaging the group-III nitride-based light emitting device.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: WALSIN LIHWA CORPORATION
    Inventors: Ching-hwa CHANG JEAN, Jangho CHEN
  • Publication number: 20100311195
    Abstract: A distributed Bragg reflector (DBR) includes a base substrate and a gain medium formed on the base substrate. A waveguide positioned above the base substrate in optical communication with the gain medium and defines a gap extending between the base substrate and the waveguide along a substantial portion of the length thereof. The waveguide may have a grating formed therein. A heating element is in thermal contact with the waveguide and electrically coupled to a controller configured to adjust optical properties of the waveguide by controlling power supplied to the heating element.
    Type: Application
    Filed: August 16, 2010
    Publication date: December 9, 2010
    Applicant: FINISAR CORPORATION
    Inventors: Yasuhiro Matsui, Kevin J. McCallion, Parviz Tayebati
  • Publication number: 20100301380
    Abstract: A method for manufacturing a light-emitting diode includes the steps of: growing a light-emitting diode structure-forming semiconductor layer of a compound semiconductor having a zincblende crystal structure on a first substrate formed of a compound semiconductor having a zincblende crystal structure and that has a principal surface tilted in a [110] direction with respect to a (001) plane; bonding the first substrate to a second substrate on the side of the semiconductor layer; removing the first substrate so as to expose the semiconductor layer; forming an etching mask on the exposed surface of the semiconductor layer in a rectangular planar shape so that a longer side extends in a [110] or [?1-10] direction, and that a shorter side extends in a [?110] or [1-10] direction; and patterning the semiconductor layer by wet etching using the etching mask.
    Type: Application
    Filed: May 7, 2010
    Publication date: December 2, 2010
    Applicant: SONY CORPORATION
    Inventor: Kensuke Kojima
  • Publication number: 20100301358
    Abstract: The present invention provides a method for producing a semiconductor substrate, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal.
    Type: Application
    Filed: March 15, 2007
    Publication date: December 2, 2010
    Inventors: Naoki Shibata, Koji Hirata, Shiro Yamazaki, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 7842531
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: November 30, 2010
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Patent number: 7842956
    Abstract: On a nitride semiconductor layered portion formed on a substrate, there are formed an insulating film and a p-side electrode in this order. Furthermore, an end portion electrode protection layer is formed above the p-side electrode, around a position where cleavage will take place.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 30, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Susumu Ohmi, Kunihiro Takatani, Fumio Yamashita, Mototaka Taneya
  • Publication number: 20100295017
    Abstract: The present invention discloses a light emitting diode (LED) element and a method for fabricating the same, which can promote light extraction efficiency of LED, wherein a substrate is etched to obtain basins with inclined natural crystal planes, and an LED epitaxial structure is selectively formed inside the basin. Thereby, an LED element having several inclines is obtained. Via the inclines, the probability of total internal reflection is reduced, and the light extraction efficiency of LED is promoted.
    Type: Application
    Filed: August 6, 2010
    Publication date: November 25, 2010
    Inventors: Hung-Cheng LIN, Chia-Ming Lee, Jen-Inn Chyi
  • Publication number: 20100295054
    Abstract: The semiconductor light-emitting element includes a group III nitride semiconductor multilayer structure having an active layer containing In as well as a p-type layer and an n-type layer stacked to hold the active layer therebetween. The group III nitride semiconductor multilayer structure is made of a group III nitride semiconductor having a major surface defined by a nonpolar plane whose offset angle in a c-axis direction is negative. A remarkable effect is attained when the emission wavelength of the active layer is not less than 450 nm. In the group III nitride semiconductor constituting the group III nitride semiconductor multilayer structure, the offset angle ? in the c-axis direction preferably satisfies ?1°<?<0°.
    Type: Application
    Filed: June 5, 2008
    Publication date: November 25, 2010
    Applicant: ROHM CO., LTD.
    Inventors: Kuniyoshi Okamoto, Hiroaki Ohta
  • Publication number: 20100295014
    Abstract: A method to improve the external light efficiency of light emitting diodes, the method comprising etching an external surface of an n-type layer of the light emitting diode to form surface texturing, the surface texturing reducing internal light reflection to increase light output. A corresponding light emitting diode is also disclosed.
    Type: Application
    Filed: August 16, 2007
    Publication date: November 25, 2010
    Inventors: Xuejun Kang, Zhen Chen, Tien Khee Ng, Jenny Lam, Shu Yuan
  • Publication number: 20100295084
    Abstract: A method of fabricating a photoelectric device of Group III nitride semiconductor comprises the steps of: forming a first Group III nitride semiconductor layer on a surface of an original substrate; forming a patterned epitaxial-blocking layer on the first Group III nitride semiconductor layer; forming a second Group III nitride semiconductor layer on the epitaxial-blocking layer and the first Group III nitride semiconductor layer not covered by the epitaxial-blocking layer and then removing the epitaxial-blocking layer; forming a third Group III nitride semiconductor layer on the second Group III nitride semiconductor layer; depositing or adhering a conductive layer on the third Group III nitride semiconductor layer; and releasing a combination of the third Group III nitride semiconductor layer and the conductive layer apart from the second Group III nitride semiconductor layer.
    Type: Application
    Filed: August 9, 2010
    Publication date: November 25, 2010
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY INC.
    Inventors: Po Min Tu, Shih Cheng Huang, Wen Yu Lin, Chih Peng Hsu, Shih Hsiung Chan
  • Publication number: 20100295086
    Abstract: The invention provides a compound semiconductor light-emitting element including: a substrate on which an n-type semiconductor layer (12), a light-emitting layer (13), and a p-type semiconductor layer (14) that are made of a compound semiconductor are stacked in this order; a positive electrode (15) made of a conductive translucent electrode; and a negative electrode (17) made of a conductive electrode, wherein the conductive translucent electrode of the positive electrode (15) is a transparent conductive film containing crystals composed of In2O3 having a hexagonal crystal structure.
    Type: Application
    Filed: January 23, 2009
    Publication date: November 25, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Hironao Shinohara, Naoki Fukunaga, Yasunori Yokoyama
  • Publication number: 20100289002
    Abstract: Provided is a nitride semiconductor light emitting device including: a first nitride semiconductor layer; an active layer formed above the first nitride semiconductor layer; and a delta doped second nitride semiconductor layer formed above the active layer. According to the present invention, the optical power of the nitride semiconductor light emitting device is enhanced, optical power down phenomenon is improved and reliability against ESD (electro static discharge) is enhanced.
    Type: Application
    Filed: August 3, 2010
    Publication date: November 18, 2010
    Inventor: Suk Hun Lee
  • Publication number: 20100289036
    Abstract: The present invention provides a Ill-nitride semiconductor light emitting device and a method for manufacturing the same including: a substrate; a plurality of Ill-nitride semiconductor layers formed on the substrate, and provided with an active layer generating light by recombination of electrons and holes; a boundary surface defined between the substrate and the plurality of Ill-nitride semiconductor layers; and a pair of slant surfaces formed from the boundary surface on the substrate and the plurality of Ill-nitride semiconductor layers so as to emit light generated in the active layer to the outside.
    Type: Application
    Filed: December 31, 2008
    Publication date: November 18, 2010
    Applicant: EPIVALLEY CO., LTD.
    Inventors: Chang Tae Kim, Tae Hee Lee
  • Publication number: 20100289050
    Abstract: Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a second electrode layer, a light emitting semiconductor layer including a second conductive semiconductor layer, an active layer, and a first conductive semiconductor layer on the second electrode layer, a reflective member spaced apart from the light emitting semiconductor layer on the second electrode layer, and a first electrode layer on the first conductive semiconductor layer.
    Type: Application
    Filed: May 8, 2009
    Publication date: November 18, 2010
    Inventor: Hyung Jo Park
  • Publication number: 20100289052
    Abstract: Disclosed are a semiconductor light emitting device and a method for manufacturing the same. The semiconductor light emitting device comprises a substrate, in which concave-convex patterns are in at least a portion of a backside of the substrate, and a light emitting structure on the substrate and comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Inventor: Ho Sang Yoon
  • Publication number: 20100276663
    Abstract: In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
    Type: Application
    Filed: June 18, 2010
    Publication date: November 4, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Masaki UENO, Katsushi AKITA, Takashi KYONO, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20100270568
    Abstract: A light emitting device comprises a light emitting layer section having a double heterostructure of an n-type cladding layer, an active layer and a p-type cladding layer, each composed of AlGaInP stacked in this order. Supposing a bonding object layer having a first main surface side as p type and a second main surface side as n type, a light extraction side electrode is formed to cover the first main surface partially. An n-type transparent device substrate composed of Group III-V compound semiconductor having greater band gap energy than the active layer is bonded to the second main surface of the bonding object layer. On one sides of the transparent device substrate and the bonding object layer, a bonding surface to the other is formed, and an InGaP intermediate layer is formed to have a high concentration Si doping layer formed on the bonding surface side.
    Type: Application
    Filed: May 29, 2007
    Publication date: October 28, 2010
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Yukari Suzuki, Jun Ikeda, Jun-ya Ishizaki, Shunichi Ikeda
  • Publication number: 20100265981
    Abstract: A nitride-based semiconductor light-emitting diode capable of suppressing complication of a manufacturing process while improving light extraction efficiency from a light-emitting layer and further improving flatness of a semiconductor layer is obtained. This nitride-based semiconductor light-emitting diode (30) includes a substrate (11) formed with a recess portion (21) on a main surface and a nitride-based semiconductor layer (12) having a light-emitting layer (14) on the main surface and including a first side surface (12a) having a (000-1) plane formed to start from a first inner side surface (21a) of the recess portion and a second side surface (12b) formed at a region opposite to the first side surface with the light-emitting layer therebetween to start from a second inner side surface (21b) of the recess portion on the main surface.
    Type: Application
    Filed: December 12, 2008
    Publication date: October 21, 2010
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Ryoji Hiroyama, Yasuto Miyake, Yasumitsu Kunoh, Yasuyuki Bessho, Masayuki Hata
  • Publication number: 20100264452
    Abstract: High temperature semiconducting materials in a freestanding epitaxial chip enables the use of high temperature interconnect and bonding materials. Process materials can be used which cure, fire, braze, or melt at temperatures greater than 400 degrees C. These include, but are not limited to, brazing alloys, laser welding, high-temperature ceramics and glasses. High temperature interconnect and bonding materials can additionally exhibit an index of refraction intermediate to that of the freestanding epitaxial chip and its surrounding matrix. High index, low melting point glasses provide a hermetic seal of the semiconductor device and also index match the freestanding epitaxial chip thereby increasing extraction efficiency. In this manner, a variety of organic free semiconducting devices, such as solid-sate lighting sources, can be created which exhibit superior life, efficiency, and environmental stability.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 21, 2010
    Inventors: Scott M. Zimmerman, Karl W. Beeson, William R. Livesay
  • Publication number: 20100258826
    Abstract: A light emitting diode (1) of the invention is provided with: a light emitting section (3) which includes a light emitting layer (2); a substrate (5) that is joined to the light emitting section (3) via a semiconductor layer (4); a first electrode (6) on an upper surface of the light emitting section (3); a second electrode (7) on a bottom surface of the substrate (5); and an ohmic electrode (8) around an outer perimeter of the light emitting section (3) on the semiconductor layer (4), and in the outer perimeter of the light emitting section (3), the ohmic electrode (8) and the substrate (5) are conductive, and a penetrating electrode (9) is provided in the semiconductor layer (4), passing through the semiconductor layer (4) in a thickness direction. Thus, it is provided a light emitting diode with high brightness in which the current flowing in the light emitting layer is uniform, and the light emission efficiency from the light emitting layer is high.
    Type: Application
    Filed: November 25, 2008
    Publication date: October 14, 2010
    Applicant: Showa Denko K.K.
    Inventor: Ryouichi Takeuchi
  • Publication number: 20100260224
    Abstract: A primary surface 23a of a supporting base 23 of a light-emitting diode 21a tilts by an off-angle of 10 degrees or more and less than 80 degrees from the c-plane. A semiconductor stack 25a includes an active layer having an emission peak in a wavelength range from 400 nm to 550 nm. The tilt angle “A” between the (0001) plane (the reference plane SR3 shown in FIG. 5) of the GaN supporting base and the (0001) plane of a buffer layer 33a is 0.05 degree or more and 2 degrees or less. The tilt angle “B” between the (0001) plane of the GaN supporting base (the reference plane SR4 shown in FIG. 5) and the (0001) plane of a well layer 37a is 0.05 degree or more and 2 degrees or less. The tilt angles “A” and “B” are formed in respective directions opposite to each other with reference to the c-plane of the GaN supporting base.
    Type: Application
    Filed: May 13, 2010
    Publication date: October 14, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Masaki UENO, Fumitake NAKANISHI
  • Publication number: 20100258814
    Abstract: There is provided a light emitting diode fabricating method including: a) forming, on a substrate and via a buffer layer, an epitaxial growth layer that includes a light emitting layer, and forming one electrode on a surface of the epitaxial growth layer; b) joining a supporting substrate to the one electrode; c) removing, by etching, the substrate and the buffer layer; and d) forming another electrode at a region, other than a region where output light is taken-out, at a reverse surface opposite the surface of the epitaxial growth layer on which the one electrode is formed.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 14, 2010
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventors: Shinichi Hoshi, Isao Tamai
  • Publication number: 20100258822
    Abstract: A method of manufacturing a semiconductor light-emitting device assembly includes providing light-emitting device portions on a light-emitting device production substrate so as to be separated from each other, each of the light-emitting device portions including a laminated structure, in which a first compound semiconductor layer, an active layer, and a second compound semiconductor layer are sequentially laminated, and a second electrode provided on the second compound semiconductor layer; forming an insulating layer on an entire surface so as to have an opening portion in which a top central portion of the second electrode is exposed; providing an extraction electrode to each light-emitting device portion so as to be patterned to extend from a top surface of the second electrode to the insulating layer; and forming an adhesive layer so as to cover an entire surface and attaching a support substrate using the adhesive layer.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 14, 2010
    Applicant: SONY CORPORATION
    Inventor: Arata Kobayashi
  • Publication number: 20100252844
    Abstract: A nitride semiconductor light emitting diode includes at least an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer. The active layer is formed of one first nitride semiconductor layer having a highest In ratio in the light emitting diode. The light emitting diode further includes at least one of a second nitride semiconductor layer located between the active layer and the n-type nitride semiconductor layer and including an InGaN layer, and a third nitride semiconductor layer located between the active layer and the p-type nitride semiconductor layer and including an InGaN layer. Respective In (Indium) ratios of the InGaN layers included in the second nitride semiconductor layer and the InGaN layers included in the third nitride semiconductor layer are lower than the In ratio of the first nitride semiconductor layer forming the active layer. The LED with high luminous efficiency can thus be provided.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 7, 2010
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Satoshi KOMADA
  • Publication number: 20100244087
    Abstract: During the growth of a nitride semiconductor crystal on a nonpolar face nitride substrate, such as an m-face, the gas that constitutes the main flow in the process of heating up to a relatively high temperature range, before growth of the nitride semiconductor layer, (the atmosphere to which the main nitride face of the substrate is exposed) and the gas that constitutes the main flow until growth of first and second nitride semiconductor layers is completed (the atmosphere to which the main nitride face of the substrate is exposed) are primarily those that will not have an etching effect on the nitride, while no Si source is supplied at the beginning of growth of the nitride semiconductor layer. Therefore, nitrogen atoms are not desorbed from near the nitride surface of the epitaxial substrate, thus suppressing the introduction of defects into the epitaxial film. This also makes epitaxial growth possible with a surface morphology of excellent flatness.
    Type: Application
    Filed: November 20, 2008
    Publication date: September 30, 2010
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Hideyoshi Horie, Kaori Kurihara
  • Publication number: 20100248404
    Abstract: A method for producing a Group III nitride-based compound semiconductor device includes, before bonding a support substrate to an epitaxial layer formed on an epitaxial growth substrate, forming trenches in such a manner as to extend from the top surface of a stacked structure including the epitaxial layer to at least the interface between the epitaxial growth substrate and the bottom surface of the epitaxial layer. The trenches divide the epitaxial layer into extended device areas which encompass respective product device structures, and stress relaxation areas. A plurality of laser irradiations are performed for laser lift off such that, after each laser irradiation, the expanded device areas and the stress relaxation areas are formed by a laser-irradiated area and a laser-unirradiated area, and a strip-shaped laser-unirradiated stress relaxation area is formed at a boundary between the laser-irradiated area and the laser-unirradiated area.
    Type: Application
    Filed: March 30, 2010
    Publication date: September 30, 2010
    Applicant: TOYODA GOSEI CO., LTD.
    Inventors: Toshiya Umemura, Masahiro Ohashi
  • Publication number: 20100244046
    Abstract: On a processed substrate having an engraved region as a depressed portion formed thereon, a nitride semiconductor thin film is laid. The sectional area occupied by the nitride semiconductor thin film filling the depressed portion is 0.8 times the sectional area of the depressed portion or less.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki
  • Publication number: 20100244063
    Abstract: A nitride-based semiconductor light-emitting device according to the present invention has a nitride-based semiconductor multilayer structure 50. The nitride-based semiconductor multilayer structure 50 includes: an active layer 32 including an AlaInbGacN crystal layer (where a+b+c=1, a?0, b?0 and c?0); an AldGaeN overflow suppressing layer 36 (where d+e=1, d>0, and e?0); and an AlfGagN layer 38 (where f+g=1, f?0, g?0 and f<d). The AldGaeN overflow suppressing layer 36 is arranged between the active layer 32 and the AlfGagN layer 38. And the AldGaeN overflow suppressing layer 36 includes an In-doped layer that is doped with In at a concentration of 1×1016 atms/cm3 to 1×1019 atms/cm3.
    Type: Application
    Filed: September 7, 2009
    Publication date: September 30, 2010
    Inventors: Toshiya Yokogawa, Ryou Kato
  • Publication number: 20100244086
    Abstract: A method for manufacturing a Group III nitride semiconductor of the present invention, comprising a sputtering step for disposing a substrate and a target in a chamber and forming a Mg-doped Group III nitride semiconductor on the substrate by a reactive sputtering method, wherein the sputtering step includes respective substeps of: a film formation step for forming a semiconductor thin film while doping with Mg; and a plasma treatment step for applying an inert gas plasma treatment to the semiconductor thin film that has been formed in the film formation step, and the Group III nitride semiconductor is formed by laminating the semiconductor thin film through alternate repetitions of the film formation step and the plasma treatment step.
    Type: Application
    Filed: June 3, 2008
    Publication date: September 30, 2010
    Applicant: Showa Denko K.K.
    Inventors: Kenzo Hanawa, Yasumasa Sasaki, Hisayuki Miki
  • Publication number: 20100244079
    Abstract: Projections/depressions forming a two-dimensional periodic structure are formed in a surface of a semiconductor multilayer film opposing the principal surface thereof, while a metal electrode with a high reflectivity is formed on the other surface. By using the diffracting effect of the two-dimensional periodic structure, the efficiency of light extraction from the surface formed with the projections/depressions can be improved. By reflecting light emitted toward the metal electrode to the surface formed with the projections/depressions by using the metal electrode with the high reflectivity, the foregoing effect achieved by the two-dimensional periodic structure can be multiplied.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 30, 2010
    Applicant: PANASONIC CORPORATION
    Inventor: Kenji ORITA
  • Publication number: 20100243988
    Abstract: A nitride semiconductor light-emitting chip offers enhanced luminous efficacy as a result of an improved EL emission pattern. The nitride semiconductor laser chip (nitride semiconductor light-emitting chip) has a nitride semiconductor substrate having a principal growth plane, and nitride semiconductor layers grown on the principal growth plane of the nitride semiconductor substrate. The principal growth plane of the GaN substrate is a plane having off-angles in both the a- and c-axis directions relative to an m plane, and the off-angle in the a-axis direction is larger than the off-angle in the c-axis direction.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 30, 2010
    Inventors: Takeshi Kamikawa, Masataka Ohta
  • Publication number: 20100237366
    Abstract: A method for manufacturing a light emitting device, includes: preparing a first substrate by slicing a single crystal ingot pulled in a pulling direction tilted with respect to a first plane orientation, the slicing being in a direction substantially perpendicular to the pulling direction; preparing a second substrate including a major surface having a plane orientation substantially parallel to a plane orientation of a major surface of the first substrate; growing a stacked unit as a crystal on the major surface of the second substrate, the stacked unit including a light emitting layer; and removing the second substrate after bonding the stacked unit and the major surface of the first substrate by heating them in a joined state.
    Type: Application
    Filed: January 20, 2010
    Publication date: September 23, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji Isomoto, Chisato Furukawa
  • Publication number: 20100230690
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 16, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20100230711
    Abstract: A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 16, 2010
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY INC.
    Inventors: CHESTER KUO, LUNG HSIN CHEN, WEN LIANG TSENG, SHIH CHENG HUANG, PO MIN TU, YING CHAO YEH, WEN YU LIN, PENG YI WU, SHIH HSIUNG CHAN
  • Publication number: 20100230713
    Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 16, 2010
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
  • Publication number: 20100224860
    Abstract: An LED made from a wide band gap semiconductor material and having a low resistance p-type confinement layer with a tunnel junction in a wide band gap semiconductor device is disclosed. A dissimilar material is placed at the tunnel junction where the material generates a natural dipole. This natural dipole is used to form a junction having a tunnel width that is smaller than such a width would be without the dissimilar material. A low resistance p-type confinement layer having a tunnel junction in a wide band gap semiconductor device may be fabricated by generating a polarization charge in the junction of the confinement layer, and forming a tunnel width in the junction that is smaller than the width would be without the polarization charge. Tunneling through the tunnel junction in the confinement layer may be enhanced by the addition of impurities within the junction. These impurities may form band gap states in the junction.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Inventors: James P. IBBETSON, Bernd P. Keller, Umesh K. Mishra
  • Publication number: 20100219437
    Abstract: A nitride semiconductor light emitting diode includes a p-type layer 103 made of a p-type nitride semiconductor, a light emission layer 102 provided on a lower surface of the p-type layer 103, an n-type layer 101 made of an n-type nitride semiconductor provided on a lower surface of the light emission layer 102, and a bonding layer 114 provided, contacting the n-type layer 101. An uneven topography having a plurality of sloped surface is provided on a surface contacting the bonding layer 114 of the n-type layer 101. The bonding layer 114 is made of a metal made of Group III atoms or an alloy containing the Group III atoms.
    Type: Application
    Filed: August 28, 2009
    Publication date: September 2, 2010
    Inventors: Manabu Usuda, Kazuhiko Yamanaka
  • Publication number: 20100221856
    Abstract: One aspect of the present invention provides a semiconductor light-emitting device improved in luminance, and also provides a process for production thereof. The process comprises a procedure of forming a relief structure on the light-extraction surface of the device by use of a self-assembled film. In that procedure, the light-extraction surface is partly covered with a protective film so as to protect an area for an electrode to be formed therein. The electrode is then finally formed there after the procedure. The process thus reduces the area incapable, due to thickness of the electrode, of being provided with the relief structure. Between the electrode and the light-extraction surface, a contact layer is formed so as to establish ohmic contact between them.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 2, 2010
    Inventors: Akira Fujimoto, Ryota Kitagawa, Koji Asakawa, Hidefumi Yasuda, Yasuhiko Akaike, Takeyuki Suzuki
  • Publication number: 20100219436
    Abstract: The present invention provides a semiconductor light-emitting device that includes a compound semiconductor layer formed by laminating a first clad layer, a light-emitting layer and a second clad layer, a plurality of first ohmic electrodes formed on the first clad layer, a plurality of second ohmic electrodes formed on the second clad layer, a transparent conductive film that is formed on the first clad layer of the compound semiconductor layer and is conductively connected to the first ohmic electrodes, a bonding electrode formed on the transparent conducting film, and a support plate that is positioned on the second clad layer side of the compound semiconductor layer and is conductively connected to the second ohmic electrodes.
    Type: Application
    Filed: September 29, 2008
    Publication date: September 2, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Takashi Watanabe
  • Publication number: 20100213439
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 26, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki Ueno, Yohei Enya, Takashi Kyono, Katsushi Akita, Yusuke Yoshizumi, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 7781796
    Abstract: A nitride semiconductor laser element includes a substrate and a nitride semiconductor layer in which a first semiconductor layer, an active layer, and a second semiconductor layer are laminated in this order on the substrate. At least one of the first semiconductor layer and the second semiconductor layer includes a first section forming recessed and raised portions and a second section embedding the recessed and raised portions of the first section. A region with a higher aluminum mixed crystal ratio than the second section that embeds the recessed and raised portions is disposed on top faces of the raised portions. The nitride semiconductor layer defines resonant planes, and the recessed and raised portions are formed in a shape of stripes that extend substantially parallel to the resonant planes.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: August 24, 2010
    Assignee: Nichia Corporation
    Inventors: Shingo Masui, Kazutaka Tsukayama
  • Publication number: 20100207096
    Abstract: One embodiment of the present invention provides a method for fabricating a highly reflective electrode in a light-emitting device. During the fabrication process, a multilayer semiconductor structure is fabricated on a growth substrate, wherein the multilayer semiconductor structure includes a first doped semiconductor layer, a second doped semiconductor layer, and/or a multi-quantum-wells (MQW) active layer.
    Type: Application
    Filed: March 26, 2008
    Publication date: August 19, 2010
    Applicant: LATTICE POWER (JIANGXI) CORPORATION
    Inventors: Yingwen Tang, Li Wang, Fengyi Jiang
  • Publication number: 20100207159
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure including a plurality of compound semiconductor layers, a second electrode layer below the light emitting structure, a channel layer between the light emitting structure and an edge area of the second electrode layer, a buffer layer on the channel layer, and a passivation layer on the buffer layer.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventor: Hwan Hee JEONG
  • Publication number: 20100207139
    Abstract: The invention relates to photonic materials having regularly arranged cavities containing at least one colorant, where the wall material of the photonic material has dielectric properties and as such is essentially non-absorbent for the wavelength of an absorption band of the respective colorant and is essentially transparent for the wavelength of a colorant emission which can be stimulated by the absorption wavelength, and the cavities are shaped in such a way that radiation having the wavelength of the weak absorption band of the colorant is stored in the photonic material, to the use thereof as phosphor system in an illuminant, to corresponding illuminants and production processes.
    Type: Application
    Filed: July 17, 2006
    Publication date: August 19, 2010
    Inventors: Holger Winkler, Helmut Bechtel, Thomas Juestel, Joachim Opitz
  • Publication number: 20100207138
    Abstract: Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 ?m or more but 600 ?m or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
    Type: Application
    Filed: April 26, 2010
    Publication date: August 19, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Seiji Nakahata, Hideaki Nakahata, Koji Uematsu, Makoto Kiyama, Youichi Nagai, Takao Nakamura
  • Publication number: 20100207158
    Abstract: The embodiment discloses a semiconductor light emitting device. The semiconductor light emitting device includes a first conductive semiconductor layer; a first electrode layer below the first conductive semiconductor layer; a semiconductor layer at an outer peripheral portion of the first conductive semiconductor layer; an active layer on the first conductive semiconductor layer; a second conductive semiconductor layer on the active layer; and a second electrode layer on the second conductive semiconductor layer.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventor: Hwan Hee JEONG
  • Publication number: 20100207136
    Abstract: The present invention provides an inexpensive substrate which can realize m-plane growth of a crystal by vapor phase growth. In a sapphire substrate, an off-angle plane slanted from an m-plane by a predetermined very small angle is prepared as a growth surface, which is a template of the crystal, at the time of growing a crystal of GaN or the like, by a polishing process to prepare a stepwise substrate comprising steps and terraces. According to the above-described configuration, even if an inexpensive sapphire substrate, which normally does not form an m-plane (nonpolar plane) GaN film, is used as a substrate for crystal growth, the following advantages can be attained.
    Type: Application
    Filed: October 19, 2007
    Publication date: August 19, 2010
    Applicants: PANASONIC ELECTRIC WORKS CO., LTD., RIKEN
    Inventors: Robert David Armitage, Yukihiro Kondo, Hideki Hirayama
  • Publication number: 20100207160
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a first conductive semiconductor layer including a first carrier blocking layer of semiconductor material; an active layer below the first conductive semiconductor layer; and a second conductive semiconductor layer below the active layer.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventor: Hyung Jo PARK
  • Publication number: 20100207145
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Application
    Filed: January 12, 2010
    Publication date: August 19, 2010
    Inventor: Myung Cheol Yoo
  • Publication number: 20100207123
    Abstract: A light emitting device is provided. The light emitting device may include a plurality of light emitting elements formed on a first common electrode, each light emitting element having a first conductive layer formed over the first common electrode. The light emitting device may also include an active layer formed over the first conductive layer, a second conductive layer formed over the active layer, and an insulator formed between adjacent light emitting elements. A plurality of electrodes may be respectively formed on the plurality of light emitting elements, and a second common electrode may couple the plurality electrodes. Such a light emitting structure may improve emission characteristics, heat dissipation and high temperature reliability.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 19, 2010
    Inventor: Hyun Don SONG