Capacitor Patents (Class 438/239)
  • Patent number: 8815677
    Abstract: A method for processing dielectric materials and electrodes to decrease leakage current is disclosed. The method includes a post dielectric anneal treatment in an oxidizing atmosphere to reduce the concentration of oxygen vacancies in the dielectric material. The method further includes a post metallization anneal treatment in an oxidizing atmosphere to reduce the concentration of interface states at the electrode/dielectric interface and to further reduce the concentration of oxygen vacancies in the dielectric material.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Xiangxin Rui, Sandra Malhotra, Hiroyuki Ode
  • Patent number: 8813325
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO2) with a rutile-phase crystal structure. This facilitates the formation of the rutile-phase crystal structure when TiO2 is used as the dielectric layer. The rutile-phase of TiO2 has a higher k value than the other possible crystal structures of TiO2 resulting in improved performance of the DRAM capacitor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Nobumichi Fuchigami, Wim Deweerd, Hanhong Chen, Hiroyuki Ode
  • Patent number: 8815695
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. A second electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the second electrode layer contains a conductive base layer and conductive metal oxide layer. In some embodiments, both the first electrode layer and the second electrode layer contain a conductive base layer and conductive metal oxide layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Mitsuhiro Horikawa, Hiroyuki Ode, Karthik Ramani
  • Patent number: 8796782
    Abstract: A polysilicon film that serves as a resistance element is formed. The polysilicon film is patterned to a predetermined shape. CVD oxide films covering the patterned polysilicon film are etched thereby removing the portion of the CVD oxide film where the contact region is formed, leaving the portion covering the portion of the polysilicon film that serves as the resistor main body. BF2 is implanted by using the portions of the remaining CVD oxide films covering the polysilicon film as an implantation mask thereby forming a high concentration region in the contact region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Igarashi
  • Patent number: 8796087
    Abstract: A semiconductor device including a substrate; a bottom electrode on the substrate; a first dielectric layer on the bottom electrode, the first dielectric layer including a first metal oxide including at least one of Hf, Al, Zr, La, Ba, Sr, Ti, and Pb; a second dielectric layer on the first dielectric layer, the second dielectric layer including a second metal oxide including at least one of Hf, Al, Zr, La, Ba, Sr, Ti, and Pb, wherein the first metal oxide and the second metal oxide are different materials; a third dielectric layer on the second dielectric layer, the third dielectric layer including a metal carbon oxynitride; and an upper electrode on the third dielectric layer.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Weon-Hong Kim, Min-Woo Song, Jung-Min Park
  • Patent number: 8790975
    Abstract: When forming capacitive structures in a metallization system, such as in a dynamic RAM area, placeholder metal regions may be formed together with “regular” metal features, thereby achieving a very efficient overall process flow. At a certain manufacturing stage, the metal of the placeholder metal region may be removed on the basis of a wet chemical etch recipe followed by the deposition of the electrode materials and the dielectric materials for the capacitive structure without unduly affecting other portions of the metallization system. In this manner, very high capacitance values may be realized on the basis of a very efficient overall manufacturing flow.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 29, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser, Vivien Schroeder
  • Patent number: 8785271
    Abstract: A capacitor is formed in nano channels in a conductive body. Embodiments include forming a source contact through a first inter layer dielectric (ILD), forming a conductive body on the first ILD, forming a second ILD on the conductive body, forming drain and gate contacts through the second ILD, conductive body, and first ILD, forming nano channels in the conductive body, forming an insulating layer in the channels, and metalizing the channels. An embodiment includes forming the nano channels by forming a mask on the second ILD, the mask having features with a pitch of 50 nanometers (nm) to 100 nm, etching the second ILD through the mask, etching the conductive body through the mask to a depth of 80% to 90% of the thickness of the conductive body, and removing the mask.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 22, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Dmytro Chumakov, Wolfgang Buchholtz, Petra Hetzer
  • Patent number: 8772104
    Abstract: The semiconductor device comprises a device isolation region formed in a semiconductor substrate, a lower electrode formed in a device region defined by the device isolation region and formed of an impurity diffused layer, a dielectric film of a thermal oxide film formed on the lower electrode, an upper electrode formed on the dielectric film, an insulation layer formed on the semiconductor substrate, covering the upper electrode, a first conductor plug buried in a first contact hole formed down to the lower electrode, and a second conductor plug buried in a second contact hole formed down to the upper electrode, the upper electrode being not formed in the device isolation region. The upper electrode is not formed in the device isolation region, whereby the short-circuit between the upper electrode and the lower electrode in the cavity can be prevented.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 8, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Makoto Yasuda, Akiyoshi Watanabe, Yoshihiro Matsuoka
  • Patent number: 8772105
    Abstract: A semiconductor device and a method for forming the same are disclosed. The semiconductor device includes a first junction region formed at the bottom of a vertical pillar, a bit line formed below the first junction region, and an insulation film formed below the bit line. As a result, the 4F2-sized semiconductor device is provided and the bit line is configured in the form of a laminated structure of a conductive layer and a polysilicon layer, so that bit line resistance is reduced. In addition, the semiconductor device reduces ohmic contact resistance by forming silicide between the conductive layer and the polysilicon layer, and includes an insulation film at a position between the semiconductor substrate and the bit line, resulting in reduction of bit line capacitance. Therefore, the sensing margin of the semiconductor device is increased and the data retention time is also increased.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 8, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Tae Su Jang, Min Soo Yoo
  • Patent number: 8767404
    Abstract: Integrated circuits with decoupling capacitor circuitry are provided. The decoupling capacitor circuitry may include density-compliance structures. The density-compliance structures may be strapped to metal paths driven by power supply lines. Strapping density-compliance dummy structures in this way may increase the capacitance per unit area of the decoupling capacitor circuitry. Strapping density-compliance dummy structures in this way may shield the decoupling capacitor from nearby noisy signal sources.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 1, 2014
    Assignee: Altera Corporation
    Inventor: Chin Hieang Khor
  • Patent number: 8765548
    Abstract: Semiconductor devices, capacitors, and methods of manufacture thereof are disclosed. In one embodiment, a method of fabricating a capacitor includes forming a first material over a workpiece, and patterning the first material, forming a first capacitor plate in a first region of the workpiece and forming a first element in a second region of the workpiece. A second material is formed over the workpiece and over the patterned first material. The second material is patterned, forming a capacitor dielectric and a second capacitor plate in the first region of the workpiece over the first capacitor plate and forming a second element in a third region of the workpiece.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: July 1, 2014
    Assignee: Infineon Technologies AG
    Inventors: Martin Ostermayr, Richard Lindsay
  • Patent number: 8765592
    Abstract: A method for contacting MOS devices. First openings in a photosensitive material are formed over a substrate having a top dielectric in a first die area and a second opening over a gate stack in a second die area having the top dielectric, a hard mask, and a gate electrode. The top dielectric layer is etched to form a semiconductor contact while etching at least a portion the hard mask layer thickness over a gate contact area exposed by the second opening. An inter-layer dielectric (ILD) is deposited. A photosensitive material is patterned to generate a third opening in the photosensitive material over the semiconductor contact and a fourth opening inside the gate contact area. The ILD is etched through to reopen the semiconductor contact while etching through the ILD and residual hard mask if present to provide a gate contact to the gate electrode.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Fei Xie, Wen Cheng Tien, Ya Ping Chen, Li Bin Man, Kuo Jung Chen, Yu Liu, Tian Yi Zhang, Sisi Xie
  • Patent number: 8765569
    Abstract: A metal oxide bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a desired composition and crystal structure. An example is crystalline MoO2 if the dielectric layer is TiO2 in the rutile phase. The other component of the bilayer (i.e. top layer) is a sub-oxide of the same material as the bottom layer. The top layer serves to protect the bottom layer from oxidation during subsequent PMA or other DRAM fabrication steps by reacting with any oxygen species before they can reach the bottom layer of the bilayer second electrode.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 1, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Hiroyuki Ode
  • Patent number: 8766410
    Abstract: Integrated circuits having combined memory and logic functions are provided. In one aspect, an integrated circuit is provided. The integrated circuit comprises: a substrate comprising a silicon layer over a BOX layer, wherein a select region of the silicon layer has a thickness of between about three nanometers and about 20 nanometers; at least one eDRAM cell comprising: at least one pass transistor having a pass transistor source region, a pass transistor drain region and a pass transistor channel region formed in the select region of the silicon layer; and a capacitor electrically connected to the pass transistor.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Josephine Chang, Leland Chang, Brian L. Ji, Steven John Koester, Amlan Majumdar
  • Patent number: 8766228
    Abstract: An electrically actuated device includes a first electrode, a second electrode, and an active region disposed between the first and second electrodes. The device further includes at least one of dopant initiators or dopants localized at an interface between i) the first electrode and the active region, or ii) the second electrode and the active region, or iii) the active region and each of the first and second electrodes.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Duncan Stewart, Philip J. Kuekes, William M. Tong
  • Patent number: 8766343
    Abstract: In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Hyuk Kang, Bo-Un Yoon, Kun-Tack Lee, Woo-Gwan Shim, Ji-Hoon Cha, Im-Soo Park, Hyo-San Lee, Young-Hoo Kim, Jung-Min Oh
  • Patent number: 8765547
    Abstract: An on-chip decoupling capacitor is disclosed. One or more carbon nanotubes are coupled to a first electrode of the capacitor. A dielectric skin is formed on the one or more carbon nanotubes. A metal coating is formed on the dielectric skin. The dielectric skin is configured to electrically isolate the one or more carbon nanotubes from the metal coating.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Shu-Jen Han, George S. Tulevski
  • Publication number: 20140179073
    Abstract: A method of manufacturing a semiconductor device may include: forming active patterns of pillar-shapes upward protruding from a substrate, the active patterns fully doped with dopants of one conductivity type; forming a gate electrode extending in one direction, the gate electrode overlapped with sidewalls of the active patterns; and forming a gate insulating layer between the gate electrode and the active patterns.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jong Un KIM
  • Publication number: 20140167126
    Abstract: Provided are a semiconductor device and a method of manufacturing the same. The semiconductor device includes a substrate and a PIP capacitor located. The PIP capacitor includes a first polysilicon layer, a metallic silicide layer, a protective layer, a dielectric layer, and a second polysilicon layer, which have a lower conductive plate pattern and are successively arranged. The method includes: providing a substrate; successively forming a first polysilicon layer, a metallic silicide, and a protective layer on the substrate; transferring a lower conductive plate pattern into the first polysilicon layer, the metallic silicide layer, and the protective layer, thus forming the first polysilicon layer, the metallic silicide layer, and the protective layer having the lower conductive plate pattern; successively forming a dielectric layer and a second polysilicon layer having a lower conductive plate pattern on the protective layer. The capacitance and reliability of the PIP capacitor are improved.
    Type: Application
    Filed: July 31, 2012
    Publication date: June 19, 2014
    Applicant: CSMC Technologies FAB2 Co., Ltd
    Inventors: Liangwei Mou, Zhaoxing Huang, Xuelei Chen, Li Wang, Zhewei Wang
  • Publication number: 20140167127
    Abstract: Memory devices and methods of manufacture thereof are disclosed. In one embodiment, a memory device includes a transistor having a gate disposed over a workpiece. The transistor includes a source region and a drain region disposed in the workpiece proximate the gate. The memory device includes an erase gate having a tip portion that extends towards the workpiece. The erase gate is coupled to the gate of the transistor.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alexander Kalnitsky, Hsiao-Chin Tuan, Felix Ying-Kit Tsui, Hau-Yan Lu
  • Publication number: 20140167130
    Abstract: The present invention provides an EEPROM core structure embedded into BCD process and forming method thereof. The EEPROM core structure embedded into BCD process comprises a selection transistor and a storage transistor connected in series, wherein the selection transistor is an LDNMOS transistor. The present invention may embed the procedure for forming the EEPROM core structure into the BCD process, which is favorable to reduce the complexity of the process.
    Type: Application
    Filed: January 19, 2012
    Publication date: June 19, 2014
    Inventor: Jianhua Liu
  • Patent number: 8753966
    Abstract: A method for fabricating a semiconductor device is provided, the method includes forming a plug conductive layer over an entire surface of a substrate, etching the plug conductive layer to form landing plugs, etching the substrate between the landing plugs to form a trench, forming a gate insulation layer over a surface of the trench and forming a buried gate partially filling the trench over the gate insulation layer.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: June 17, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jum-Yong Park, Jong-Han Shin
  • Patent number: 8753933
    Abstract: Methods of selectively forming a conductive material and methods of forming metal conductive structures are disclosed. An organic material may be patterned to expose regions of an underlying material. The underlying material may be exposed to a precursor gas, such as a platinum precursor gas, that reacts with the underlying material without reacting with the remaining portions of the organic material located over the underlying material. The precursor gas may be used in an atomic layer deposition process, during which the precursor gas may selectively react with the underlying material to form a conductive structure, but not react with the organic material. The conductive structures may be used, for example, as a mask for patterning during various stages of semiconductor device fabrication.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 17, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 8748257
    Abstract: Capacitor plates, capacitors, semiconductor devices, and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes at least one via and at least one conductive member coupled to the at least one via. The at least one conductive member comprises an enlarged region proximate the at least one via.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: June 10, 2014
    Assignee: Infineon Technologies AG
    Inventor: Sun-Oo Kim
  • Patent number: 8748258
    Abstract: An ETSOI transistor and a capacitor are formed respectively in a transistor and capacitor region thereof by etching through an ETSOI and thin BOX layers in a replacement gate HK/MG flow. The capacitor formation is compatible with an ETSOI replacement gate CMOS flow. A low resistance capacitor electrode makes it possible to obtain a high quality capacitor or varactor. The lack of topography during dummy gate patterning are achieved by lithography in combination accompanied with appropriate etch.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam Shahidi
  • Patent number: 8741755
    Abstract: Disclosed herein is a semiconductor device that includes a trench formed across active regions and the element isolation regions. A conductive film is formed at a lower portion of the trench, and a cap insulating film is formed at an upper portion of the trench. The cap insulating film has substantially the same planer shape as that of the conductive film.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 3, 2014
    Inventor: Wu Nan
  • Patent number: 8741730
    Abstract: A method of forming a field effect transistor (FET) capacitor includes forming a channel region; forming a gate stack over the channel region; forming a first extension region on a first side of the gate stack, the first extension region being formed by implanting a first doping material at a first angle such that a shadow region exists on a second side of the gate stack; and forming a second extension region on the second side of the gate stack, the second extension region being formed by implanting a second doping material at a second angle such that a shadow region exists on the first side of the gate stack.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Brian L. Ji, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8742515
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition, to form a dielectric layer of hafnium oxide doped with dysprosium and a method of fabricating such a combination produces a reliable structure for use in a variety of electronic devices. The dielectric structure can include hafnium oxide on a substrate surface followed by dysprosium oxide, and repeating to form a thin laminate structure. A dielectric layer of dysprosium doped hafnium oxide may be used as the gate insulator of a MOSFET, as a capacitor dielectric in a DRAM, as a tunnel gate insulator in flash memories, or as a dielectric in NROM devices.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20140146598
    Abstract: Methods and structures are described for reducing leakage currents in semiconductor memory storage cells. Vertically oriented nanorods may be used in the channel region of an access transistor. The nanorod diameter can be made small enough to cause an increase in the electronic band gap energy in the channel region of the access transistor, which may serve to limit channel leakage currents in its off-state. In various embodiments, the access transistor may be electrically coupled to a double-sided capacitor. Memory devices according to embodiments of the invention, and systems including such devices are also disclosed.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Chandra Mouli
  • Patent number: 8735243
    Abstract: A method for fabricating an FET device is disclosed. The FET device has a gate insulator with a high-k dielectric portion, and a threshold modifying material. The method introduces a stabilizing material into the gate insulator in order to hinder one or more metals from the threshold modifying material to penetrate across the high-k portion of the gate insulator. The introduction of the stabilizing material may involve disposing a stabilizing agent over a layer which contains an oxide of the one or more metals. A stabilizing material may also be incorporated into the high-k dielectric. Application of the method may lead to FET devices with unique gate insulator structures.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew W. Copel, Bruce B. Doris, Vijay Narayanan, Yun-Yu Wang
  • Patent number: 8716833
    Abstract: A method of manufacturing a semiconductor device including forming on a substrate an insulating interlayer through which a capacitor contact is interposed; forming on the insulating interlayer a first upper electrode having an opening through which the capacitor contact is exposed; forming a first dielectric layer pattern on a lateral wall of the opening; forming a lower electrode on the first dielectric layer pattern formed in the opening and the capacitor contact; forming a second dielectric layer pattern on the lower electrode formed in the opening and the first dielectric layer pattern; and forming on the second dielectric layer pattern a second upper electrode so as to fill the opening and to contact the first upper electrode. The semiconductor device may prevent a lower electrode of a capacitor from collapsing.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Tae-woong Koo
  • Patent number: 8716083
    Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes n-type and p-type doped portions serving as gate electrodes of n-channel and p-channel MOS transistors, respectively; a plate of a metal-to-poly storage capacitor; and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad. An opening at the surface of the analog floating-gate electrode, at the location at which n-type and p-type doped portions of the floating gate electrode abut, allow formation of silicide at that location, shorting the p-n junction.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Allan T. Mitchell, Imran Mahmood Khan, Michael A. Wu
  • Patent number: 8709956
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Hual, Jing Zhang, Ebrahim Abedlfard
  • Patent number: 8709889
    Abstract: A memory cell therein includes a first transistor and a capacitor and stores data corresponding to a potential held in the capacitor. The first transistor includes a pair of electrodes, an insulating film in contact with side surfaces of the electrodes, a first gate electrode provided between the electrodes with the insulating film provided between the first gate electrode and each electrode and whose top surface is at a lower level than top surfaces of the electrodes, a first gate insulating film over the first gate electrode, an oxide semiconductor film in contact with the first gate insulating film and the electrodes, a second gate insulating film at least over the oxide semiconductor film, and a second gate electrode over the oxide semiconductor film with the second gate insulating film provided therebetween. The capacitor is connected to the first transistor through one of the electrodes.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Toshihiko Saito
  • Patent number: 8703562
    Abstract: A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Patent number: 8703554
    Abstract: An array substrate for an LCD device includes a gate line crossing a data line to define a pixel region. A thin film transistor (TFT) includes a gate electrode connected to the gate line, insulating and active layers on the gate electrode, a source electrode connected to the data line, and a drain electrode spaced apart from the source electrode. An auxiliary common electrode includes a horizontal portion disposed in the pixel region. A metal layer overlaps the insulating layer and contacts the horizontal portion of the auxiliary common electrode through a contact hole defined through the insulating layer. A passivation layer is disposed on the TFT and the metal layer. A pixel electrode has a horizontal portion overlapping the metal layer with the passivation layer therebetween to form a storage capacitor, the pixel electrode connected to the drain electrode through a second contact hole defined through the passivation layer.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: April 22, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Il-Man Choi, Ho-June Kim
  • Patent number: 8697515
    Abstract: The present disclosure provides many different embodiments of fabricating a FinFET device that provide one or more improvements over the prior art. In one embodiment, a method of fabricating a FinFET includes providing a semiconductor substrate and a plurality of dummy fins and active fins on the semiconductor substrate. A predetermined group of dummy fins is removed.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Joanna Chaw Yane Yin, Chi-Hsi Wu, Kuo-Chiang Ting, Kuang-Hsin Chen
  • Patent number: 8691657
    Abstract: Corona effect in a monolithic microwave integrated circuit (MMIC) is prevented by disposing a bottom metal layer on a substrate, defining a conductive via through the substrate electrically contacting the bottom metal layer, the conductive via further connected to a reference electrical potential, disposing a layer of dielectric material on a region of the bottom metal layer, forming a component metal layer over the conductive via and in electrical communication with the via and the bottom metal layer to define an electrical component, forming a top metal layer on the layer of dielectric material, the layer of dielectric layer interposed between the top metal layer and the bottom metal layer to thereby define an MMIC capacitor on the substrate, the top metal layer of the MMIC capacitor being separated from the electrical component, and disposing a passivation layer adjacent and conformal to a side wall of the top metal layer.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: April 8, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Kevin L. Robinson
  • Patent number: 8692305
    Abstract: Semiconductor device structures include an at least partially formed container capacitor having a generally cylindrical first conductive member with at least one inner sidewall surface, a lattice material at least partially laterally surrounding an upper end portion of the first conductive member, an anchor material, and at least one aperture extending through the lattice material between the at least partially formed container capacitor and an adjacent at least partially formed container capacitor. Other structures include an at least partially formed container capacitor, a lattice material, and an anchor material disposed over a surface of the lattice material and at least a portion of an end surface of the first conductive member and forming a chemical barrier over at least a portion of an interface between the lattice material and the upper end portion of the first conductive member.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Brett Busch, Kevin R. Shea, Thomas A. Figura
  • Patent number: 8686484
    Abstract: A spin-torque magnetoresistive memory element has a high magnetoresistance and low current density. A free magnetic layer is positioned between first and second spin polarizers. A first tunnel barrier is positioned between the first spin polarizer and the free magnetic layer and a second tunnel barrier is positioned between the second spin polarizer and the free magnetic layer. The magnetoresistance ratio of the second tunnel barrier has a value greater than double the magnetoresistance ratio of the first tunnel barrier.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 1, 2014
    Assignee: EverSpin Technologies, Inc.
    Inventors: Renu Whig, Jon Slaughter, Nicholas Rizzo, Jijun Sun, Frederick Mancoff, Dimitri Houssameddine
  • Patent number: 8673714
    Abstract: A semiconductor device includes a semiconductor substrate having a groove; a gate insulator; a first diffusion region; a gate electrode; a hydrogen-containing insulator; and a fluorine-containing insulator. The gate insulator covers inside surfaces of the groove. The first diffusion region is formed in the substrate. The first diffusion region has a first contact surface that contacts the gate insulator. The gate electrode is formed on the gate insulator and in the groove. The hydrogen-containing insulator is formed over the gate electrode and in the groove. The hydrogen-containing insulator is adjacent to the gate insulator. The fluorine-containing insulator is formed on the hydrogen-containing insulator and in the groove. The first contact surface includes Si—H bonds and Si—F bonds.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 18, 2014
    Inventor: Takashi Shinhara
  • Patent number: 8674420
    Abstract: A semiconductor device, including a semiconductor substrate including isolations defining active regions of the semiconductor substrate, a plurality of buried gate electrodes extending below an upper surface of the semiconductor device, and a plurality of bit lines extending along a first direction over the semiconductor substrate, wherein the plurality of bit lines are connected to corresponding ones of the active regions of the semiconductor substrate, and at least a portion of the bit lines extend along a same and/or substantially same plane as an upper surface of the corresponding active region to which it is connected.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kye-Hee Yeom
  • Patent number: 8673719
    Abstract: A semiconductor nanowire is formed integrally with a wraparound semiconductor portion that contacts sidewalls of a conductive cap structure located at an upper portion of a deep trench and contacting an inner electrode of a deep trench capacitor. The semiconductor nanowire is suspended from above a buried insulator layer. A gate dielectric layer is formed on the surfaces of the patterned semiconductor material structure including the semiconductor nanowire and the wraparound semiconductor portion. A wraparound gate electrode portion is formed around a center portion of the semiconductor nanowire and gate spacers are formed. Physically exposed portions of the patterned semiconductor material structure are removed, and selective epitaxy and metallization are performed to connect a source-side end of the semiconductor nanowire to the conductive cap structure.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Jeffrey W. Sleight
  • Patent number: 8669605
    Abstract: A semiconductor device comprises a circuit cell and a basic end cell. The circuit cell includes a plurality of elements aligned in a first direction, and the basic end cell is arranged adjacent to the circuit cell in the first direction and has a compensation capacitor capable of being connected to a supply voltage of the circuit cell. In the semiconductor device, a diffusion layer forming the compensation capacitor extends along the first direction in a predetermined region of the circuit cell.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: March 11, 2014
    Inventor: Yoshiaki Shimizu
  • Patent number: 8669156
    Abstract: Provided is a method of manufacturing a semiconductor circuit device including a MOS transistor and a capacitor element in which a gate electrode of a MOS transistor is formed of a first polysilicon film, a capacitor is formed of the first polysilicon film, a capacitor film, and a second polysilicon film, reduction in resistance of a normally-off transistor and reduction in resistance of a lower electrode of the capacitor are simultaneously performed, and reduction in resistance of an N-type MOS transistor and reduction in resistance of an upper electrode of the capacitor are simultaneously performed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 11, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Kazuhiro Tsumura
  • Publication number: 20140065776
    Abstract: The improvement of the reliability of a semiconductor device having a split gate type MONOS memory is implemented. An ONO film and a second polysilicon film are sequentially formed so as to fill between a first polysilicon film and a dummy gate electrode. Then, the dummy gate electrode is removed. Then, the top surfaces of the first and second polysilicon films are polished, thereby to form a memory gate electrode formed of the second polysilicon film at the sidewall of a control gate electrode formed of the first polysilicon film via the ONO film. As a result, the memory gate electrode high in perpendicularity of the sidewall, and uniform in film thickness is formed.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Tatsuyoshi MIHARA
  • Patent number: 8659064
    Abstract: The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: February 25, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 8652899
    Abstract: The present invention provides a pixel structure including a substrate, a patterned electrode disposed on the substrate, a first insulating layer disposed on the patterned electrode, a common electrode disposed on the first insulating layer, a second insulating layer disposed on the common electrode, and a drain disposed on the second insulating layer. The first insulating layer has a first through hole, and the second insulating layer has a second through hole. The drain includes a first portion electrically connected to the patterned electrode via the first through hole and the second through hole, and a second portion extending onto the common electrode. The common electrode is coupled with the patterned electrode to form a first storage capacitor and is coupled with the second portion to form a second storage capacitor.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: February 18, 2014
    Assignee: AU Optronics Corp.
    Inventors: Chien-Chih Lee, Pei-Yi Shen, Ching-Yang Cheng, Shu-Ming Huang
  • Patent number: 8653596
    Abstract: An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20140042509
    Abstract: Provided are semiconductor devices and methods of manufacturing the same. The semiconductor device may include a substrate provided with a transistor, an insulating layer disposed on the substrate, the insulating layer including a contact hole exposing a portion of the transistor, a spacer disposed on an inner sidewall of the contact hole, and a contact plug disposed in the contact hole. Here, a space defined by the spacer may increase in width from a bottom side thereof to a top side thereof.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: SAMSUNG Electronics Co., Ltd.
    Inventors: Jongchul PARK, Sangsup JEONG, Byung-Jin KANG