Capacitor Patents (Class 438/239)
  • Publication number: 20120307410
    Abstract: A semiconductor integrated circuit includes a protected circuit connected to two power supply lines that provide a supply voltage, a detecting circuit that includes a resistive element and a capacitive element connected in series between two power supply lines and detects a surge generated in the power supply line based on potential variation of an inter-element connecting node, and a protection transistor that is connected between two power supply lines and has a control electrode connected to an output of the detecting circuit. The protection transistor has the control electrode formed from a different electrode material having a work function difference from a transistor of the same channel conductivity type in the protected circuit, to have a different threshold voltage from the transistor so that the amount of leakage current per unit channel width may be smaller compared with the transistor.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Applicant: SONY CORPORATION
    Inventors: Takashi Yamazaki, Shimpei Tsujikawa
  • Publication number: 20120305999
    Abstract: Provided are a semiconductor device capable of increasing an ON current with a reduced channel resistance, and also capable of stably and independently operating respective transistors, and a method of manufacturing the semiconductor device. A semiconductor device includes a fin portion located in a manner that a part of an active region protrudes from a bottom portion of a gate groove, a gate insulating film for covering the gate groove and a surface of the fin portion, a gate electrode which is embedded within a lower portion of the gate groove and formed so as to straddle the fin portion via the gate insulating film, a first diffusion region, a second diffusion region, and a carrier capture region provided in the surface of the fin portion.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kensuke OKONOGI
  • Publication number: 20120309146
    Abstract: In the semiconductor device composing MOS transistor on which impurities are added from the surface of a P-type substrate, the region of immediate below a gate, layer is the P-type substrate on which the impurities are not added, and first and second MOS devices, having an N-type diffusion layer are provided on the surface region of the P-type substrate circumscribing the gate layer. The gate layer of the first MOS device, and the N-type diffusion layer of the second MOS device are connected, and the N-type diffusion layer of the first MOS device and the gate layer of the second MOS device are connected, and thereby a first capacitive element is composed.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 6, 2012
    Inventor: Koji SHIMBAYASHI
  • Publication number: 20120302020
    Abstract: In one exemplary embodiment, a semiconductor structure including: a SOI substrate having a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. DORIS, Kangguo CHENG, Ali KHAKIFIROOZ, Pranita KULKARNI, Ghavam G. SHAHIDI
  • Publication number: 20120292679
    Abstract: A memory cell of a nonvolatile memory and a capacitive element are formed over the same semiconductor substrate. The memory cell includes a control gate electrode formed over the semiconductor substrate via a first insulating film, a memory gate electrode formed adjacent to the control gate electrode over the semiconductor substrate via a second insulating film, and the second insulating film having therein a charge storing portion. The capacitive element includes a lower electrode formed of the same layer of a silicon film as the control gate electrode, a capacity insulating film formed of the same insulating film as the second insulating film, and an upper electrode formed of the same layer of a silicon film as the memory gate electrode. The concentration of impurities of the upper electrode is higher than that of the memory gate electrode.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 22, 2012
    Inventors: Kota FUNAYAMA, Hiraku Chakihara, Yasushi Ishii
  • Publication number: 20120292678
    Abstract: A method of forming a field effect transistor (FET) capacitor includes forming a channel region; forming a gate stack over the channel region; forming a first extension region on a first side of the gate stack, the first extension region being formed by implanting a first doping material at a first angle such that a shadow region exists on a second side of the gate stack; and forming a second extension region on the second side of the gate stack, the second extension region being formed by implanting a second doping material at a second angle such that a shadow region exists on the first side of the gate stack.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Chung-Hsun Lin, Brian L. Ji, Jeffrey W. Sleight
  • Patent number: 8314004
    Abstract: Provided is a semiconductor device manufacturing method for a capacitor having a dielectric film which can be formed into a thin film, can be formed at a low temperature, and has a readily controllable property. The manufacturing method includes: forming, on a conductor for serving as one electrode of a capacitor, a manganese oxide film for serving as a dielectric film of the capacitor; and forming, on the manganese oxide film, a conductive film for serving as the other electrode of the capacitor.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: November 20, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kenji Matsumoto, Hitoshi Itoh, Hiroshi Sato
  • Publication number: 20120289010
    Abstract: A semiconductor device and method of making a semiconductor device are disclosed. A semiconductor body, a floating gate poly and a source/drain region are provided. A metal interconnect region with a control gate node is provided that capacitively couples to the floating gate poly.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Georg Tempel, Ernst-Otto Andersen, Achim Gratz
  • Patent number: 8309413
    Abstract: Methods of etching into silicon oxide-containing material with an etching ambient having at least 75 volume percent helium. The etching ambient may also include carbon monoxide, O2 and one or more fluorocarbons. The openings formed in the silicon oxide -containing material may be utilized for fabrication of container capacitors, and such capacitors may be incorporated into DRAM.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: November 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Russell A. Benson
  • Patent number: 8309412
    Abstract: A method for forming a semiconductor device includes: etching a hard mask layer and a conductive layer formed on a semiconductor substrate, a lower structure being formed on the semiconductor substrate; forming a sacrificial insulating layer at upper parts of the etched hard mask layer and the etched conductive layer of a peripheral circuit region; forming an isolation insulating layer at an upper part of an isolation insulating layer of a cell region; forming spacers at sidewalls of the etched hard mask layer, the etched conductive layer, and the isolation insulating layer of the cell region, respectively; forming storage electrode contact plugs at both sides of each of the spacers, respectively; and removing the sacrificial insulating layer to expose the semiconductor substrate of the peripheral circuit region, and etching the lower structure to expose the semiconductor substrate of the peripheral circuit region.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: November 13, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young Man Cho
  • Publication number: 20120280297
    Abstract: A DRAM with dopant stop layer includes a substrate, a trench-type transistor and a capacitor electrically connected to the trench-type transistor. The trench-type transistor includes a gate structure embedded in the substrate. A source doping region and a drain doping region are disposed in the substrate at two sides of the gate structure. A boron doping region is disposed under the source doping region. A dopant stop layer is disposed within the boron doping region or below the boron doping region. The dopant stop layer includes a dopant selected from the group consisting of C, Si, Ge, Sn, Cl, F and Br.
    Type: Application
    Filed: September 14, 2011
    Publication date: November 8, 2012
    Inventors: Chia-Ming Yang, Yao-Hsien Wang, Chen-Kang Wei, Chien-Chi Lee, Ming Yean, Yi-Wei Chuang, Hsiao-Lung Chiang, Hung-Chang Liao, Chung-Yuan Lee, Ming-Chi Chao
  • Publication number: 20120280296
    Abstract: Generally, the present disclosure is directed to a semiconductor device with DRAM bit lines made from the same material as the gate electrodes in non-memory regions of the device, and methods of making the same. One illustrative method disclosed herein comprises forming a semiconductor device including a memory array and a logic region. The method further comprises forming a buried word line in the memory array and, after forming the buried word line, performing a first common process operation to form at least a portion of a conductive gate electrode in the logic region and to form at least a portion of a conductive bit line in the memory array.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser, Frank Jakubowski
  • Publication number: 20120276698
    Abstract: A semiconductor device includes a first transistor, a second transistor, an insulation interlayer pattern and a capacitor. The first transistor is formed in a first region of a substrate. The first transistor has a pillar protruding upwardly from the substrate and an impurity region provided in an upper portion of the pillar. The second transistor is formed in a second region of the substrate. The insulation interlayer pattern is formed on the first region and the second region to cover the second transistor and expose an upper surface of the pillar. The insulation interlayer pattern has an upper surface substantially higher than the upper surface of the pillar in the first region. The capacitor is formed on the impurity region in the upper portion of the pillar and is electrically connected to the impurity region.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Inventors: Hui-Jung KIM, Yong-Chul Oh, Jae-Man Yoon, Hyun-Woo Chung, Hyun-Gi Kim, Kang-Uk Kim
  • Publication number: 20120276699
    Abstract: A memory array with data/bit lines extending generally in a first direction formed in an upper surface of a substrate and access transistors extending generally upward and aligned generally atop a corresponding data/bit line. The access transistors have a pillar extending generally upward with a source region formed so as to be in electrical communication with the corresponding data/bit line and a drain region formed generally at an upper portion of the pillar and a surround gate structure substantially completely encompassing the pillar in lateral directions and extending substantially the entire vertical extent of the pillar and word lines extending generally in a second direction and in electrical contact with a corresponding surround gate structure at at least a first surface thereof such that bias voltage applied to a given word line is communicated substantially uniformly in a laterally symmetric extent about the corresponding pillar via the surround gate structure.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Applicant: Micron Technology
    Inventor: Leonard Forbes
  • Patent number: 8298888
    Abstract: Techniques for using gate arrays to create capacitive structures within an integrated circuit are disclosed. Embodiments comprise placing a gate array of P-type field effect transistors (P-fets) and N-type field effect transistors (N-fets) in an integrated circuit design, coupling drains and sources for one or more P-fets and gates for one or more N-fets to a power supply ground, and coupling gates for the one or more P-fets and the drains and sources for one or more N-fets to a positive voltage of the power supply. In some embodiments, source-to-drain leakage current for capacitive apparatuses of P-fets and N-fets are minimized by biasing one or more P-fets and one or more N-fets to the positive voltage and the ground, respectively. In other embodiments, the capacitive structures may be implemented using fusible elements to isolate the capacitive structures in case of shorts.
    Type: Grant
    Filed: April 1, 2012
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony Correale, Jr., Benjamin J. Bowers, Douglass T. Lamb, Nishith Rohatgi
  • Publication number: 20120261733
    Abstract: A semiconductor device comprises a trench isolation. The trench isolation is formed in a surface of a semiconductor substrate to define an active region a well region, and a bottom of the trench isolation is positioned within the well region. The trench isolation includes a conductive wiring electrically connected to the well region and an insulating film which buries the conductive wiring in the bottom of the trench isolation. Semiconductor elements are disposed in the active region.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 18, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kiyonori OYU
  • Patent number: 8288810
    Abstract: A semiconductor device comprises a capacitor in which a lower electrode, an adhesive layer, a capacitance insulating film, and an upper electrode are provided in series. The capacitance insulating film has laminated films in which a first metal oxide film and a second metal oxide film are alternatively laminated so that the first metal oxide film contacts with the adhesive layer. The adhesive layer has thickness of 0.3 nm or more and is an oxide film including at least one element selected from element contained in the lower electrode.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: October 16, 2012
    Assignee: Elpida Memory, Inc
    Inventor: Takashi Arao
  • Patent number: 8287746
    Abstract: A process manufactures an interaction structure for a storage medium. The process includes forming a first interaction head provided with a first conductive region having a sub-lithographic dimension. The step of forming a first interaction head includes: forming on a surface a first delimitation region having a side wall; depositing a conductive portion having a deposition thickness substantially matching the sub-lithographic dimension on the side wall; and then defining the conductive portion. The sub-lithographic dimension preferably is between 1 and 50 nm, more preferably 20 nm.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: October 16, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Caterina Riva, Bruno Murari, Giovanni Frattini
  • Patent number: 8283227
    Abstract: In a method for manufacturing a semiconductor memory device, a three dimensional lower electrode including a titanium nitride film is formed on a semiconductor substrate, and a dielectric film is formed on the surface of the lower electrode. After a first upper electrode is formed at a temperature that the crystal of the dielectric film is not grown on the surface of the dielectric film, the first upper electrode and the dielectric film are heat-treated at a temperature that the crystal of the dielectric film is grown to convert at least a portion of the dielectric film into a crystalline state. Thereafter, a second upper electrode is formed on the surface of the first upper electrode.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 9, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Toshiyuki Hirota, Takakazu Kiyomura
  • Publication number: 20120241829
    Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes portions serving as a transistor gate electrode, a plate of a metal-to-poly storage capacitor, and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Imran Mahmood Khan, Allan T. Mitchell, Kaiping Liu
  • Publication number: 20120244671
    Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes n-type and p-type doped portions serving as gate electrodes of n-channel and p-channel MOS transistors, respectively; a plate of a metal-to-poly storage capacitor; and a plate of poly-to-active tunneling capacitors. Silicide-block silicon dioxide blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit are silicide-clad. An opening at the surface of the analog floating-gate electrode, at the location at which n-type and p-type doped portions of the floating gate electrode abut, allow formation of silicide at that location, shorting the p-n junction.
    Type: Application
    Filed: January 26, 2012
    Publication date: September 27, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Allan T. Mitchell, Imran Mahmood Khan, Michael A. Wu
  • Patent number: 8273622
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 25, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8274152
    Abstract: A transistor is formed on a semiconductor substrate, and thereafter a first insulating film is formed. Subsequently, a ferroelectric capacitor is formed on the first insulating film, and then a second insulating film is formed on the ferroelectric capacitor. Thereafter, the upper surface of the second insulating film is planarized. Subsequently, a contact hole which reaches one of impurity regions of the transistor is formed, and thus a plug is formed by embedding a conductor in the contact hole. Thereafter, a hydrogen barrier layer is formed of aluminum oxide or the like. Then, a third insulating film is formed on the hydrogen barrier layer. Subsequently, contact holes which are connected to the ferroelectric capacitor and the plug are formed. Thereafter, a conductor is embedded in the contact holes, and thus interconnections are formed.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 25, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8273623
    Abstract: The present invention provides an integrated high voltage capacitor, a method of manufacture therefore, and an integrated circuit chip including the same. The integrated high voltage capacitor, among other features, includes a first capacitor plate (120) located over or in a semiconductor substrate (105), and an insulator (130) located over the first capacitor plate (120), at least a portion of the insulator (130) comprising an interlevel dielectric layer (135, 138, 143, or 148). The integrated high voltage capacitor further includes capacitance uniformity structures (910) located at least partially within the insulator (130) and a second capacitor plate (160) located over the insulator (130).
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 25, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: David L. Larkin, Lily X. Springer, Makoto Takemura, Ashish V. Gokhale, Dhaval A. Saraiya
  • Publication number: 20120228677
    Abstract: A method for producing a semiconductor device includes a step of forming a conductor layer and a first semiconductor layer containing a donor impurity or an acceptor impurity on a first semiconductor substrate; a step of forming a second insulating layer so as to cover the first semiconductor layer; a step of thinning the first semiconductor substrate to a predetermined thickness; a step of forming, from the first semiconductor substrate, a pillar-shaped semiconductor having a pillar-shaped structure on the first semiconductor layer; a step of forming a first semiconductor region in the pillar-shaped semiconductor by diffusing the impurity from the first semiconductor layer; and a step of forming a pixel of a solid-state imaging device with the pillar-shaped semiconductor into which the impurity has been diffused.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 13, 2012
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20120228686
    Abstract: Provided is a semiconductor device including, on the same semiconductor substrate, a transistor element, a capacitor, and a resistor. The capacitor is formed on an active region, and the resistor is formed on an element isolation region, both formed of the same polysilicon film. By CMP or etch-back, the surface is ground down while planarizing the surface until a resistor has a desired thickness. Owing to a difference in height between the active region and the element isolation region, a thin resistor and a thick upper electrode of the capacitor are formed to prevent passing through of a contact.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 13, 2012
    Inventors: Ayako INOUE, Kazuhiro Tsumura
  • Patent number: 8263456
    Abstract: A capacitor includes a first capacitor structure on a substrate, the first capacitor structure including a first electrode, a first dielectric layer pattern, and a second electrode, a second capacitor structure on the first capacitor structure, the second capacitor structure including a third electrode, a second dielectric layer pattern, and a fourth electrode, at least one first contact pad on a side of the first electrode, and a wiring structure connecting the at least one first contact pad and the fourth electrode.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kwan-Young Yun
  • Patent number: 8263420
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 11, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Depak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf, Raghuveer Makala
  • Publication number: 20120223413
    Abstract: Semiconductor structures having capacitors and metal wiring integrated in a same dielectric layer are described. For example, a semiconductor structure includes a plurality of semiconductor devices disposed in or above a substrate. One or more dielectric layers are disposed above the plurality of semiconductor devices. Metal wiring is disposed in each of the dielectric layers. The metal wiring is electrically coupled to one or more of the semiconductor devices. A metal-insulator-metal (MIM) capacitor is disposed in one of the dielectric layers, adjacent to the metal wiring of the at least one of the dielectric layers. The MIM capacitor is electrically coupled to one or more of the semiconductor devices.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Inventor: Nick Lindert
  • Patent number: 8257984
    Abstract: A ferroelectric capacitor and a method of manufacturing the same are provided, wherein the ferroelectric capacitor of a semiconductor device, which sequentially includes a lower electrode, a ferroelectric layer, and an upper electrode on a conductive layer connected to a transistor formed on a semiconductor substrate, includes an oxidation preventing layer between the conductive layer and the lower electrode. The oxidation preventing layer prevents the conductive layer from being oxidized during high-temperature heat treatment of the ferroelectric layer. Accordingly, the oxidation resistivity of the interfaces of the conductive layer, used as a storage node, and the lower electrode, which faces the conductive layer, increases, so a temperature at which a ferroelectric thin layer is formed can be also increased. Consequently, a ferroelectric thin layer having excellent characteristics may be obtained.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: June-key Lee, Young-soo Park
  • Patent number: 8252641
    Abstract: In a method of manufacturing a semiconductor device, first contact holes reaching diffusion regions of a cell transistor, bit line contact holes reaching diffusion regions of the cell transistor, and interconnect grooves communicating with the bit line contact holes are buried in a first insulating film. In addition, first contact plugs and bit line contacts are respectively formed by burying conductive materials in the first contact holes, the bit line contact holes and the interconnect grooves, and the first contact plugs are electrically connected to a capacitor formed in a third insulating film through an opening formed in a second insulating film.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yasuyuki Aoki
  • Patent number: 8247288
    Abstract: A bypass capacitor is directly integrated on top of a MOSFET chip. The capacitor comprises multi layers of conductive material and dielectric material staking on top of each other with connection vias through dielectric layer for connecting different conductive layers. The method of integrating the bypass capacitor comprises repeating steps of depositing a dielectric layer, forming connection vias through the dielectric layer, depositing a conductive layer and patterning the conductive layer.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 21, 2012
    Assignee: Alpha & Omega Semiconductor Inc.
    Inventors: Yan Xun Xue, Anup Bhalla, Hamza Yilmaz, Jun Lu
  • Patent number: 8241981
    Abstract: A method includes providing an SOI substrate including a layer of silicon disposed atop a layer of an oxide, the layer of an oxide being disposed atop the semiconductor substrate; forming a deep trench having a sidewall extending through the layer of silicon and the layer of an oxide and into the substrate; depositing a continuous spacer on the sidewall to cover the layer of silicon, the layer of an oxide and a part of the substrate; depositing a first conformal layer of a conductive material throughout the inside of the deep trench; creating a silicide within the deep trench in regions extending through the sidewall into an uncovered part of the substrate; removing the first conformal layer from the continuous spacer; removing the continuous spacer; depositing a layer of a high k dielectric material throughout the inside of the deep trench, and depositing a second conformal layer of a conductive material onto the layer of a high-k dielectric material.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Rishikesh Krishnan, Joseph F. Shepard, Jr., Michael P. Chudzik, Christian Lavoie, Dong-Ick Lee, Oh-Jung Kwon, Unoh Kwon, Youngjin Choi
  • Patent number: 8236643
    Abstract: A method of manufacturing a semiconductor device with a ferroelectric capacitor, including, forming a lower insulating film on a semiconductor substrate, covering a MOS transistor, forming a lower electrode on the lower insulating film, forming a ferroelectric dielectric oxide film on the lower electrode, forming a first upper electrode on the dielectric oxide film, made of conductive oxide having a composition poor in oxygen, forming a second upper electrode on the first upper electrode, made of conductive oxide having a composition nearer to the stoichiometry, forming a third upper electrode on the second upper electrode, having a composition containing metal of the platinum group, constituting a ferroelectric capacitor, and forming a multilayer wiring structure above the lower interlevel insulating film, covering the ferroelectric capacitor, wherein the third upper electrode has a less oxygen composition than the first and second upper electrodes.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: August 7, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8232163
    Abstract: Deep trench capacitor structures and methods of manufacture are disclosed. The method includes forming a deep trench structure in a wafer comprising a substrate, buried oxide layer (BOX) and silicon (SOI) film. The method further includes forming a plate on a sidewall of the deep trench structure in the substrate by an implant process. The implant processes contaminate exposed edges of the SOI film in the deep trench structure. The method further includes removing the contaminated exposed edges of the SOI film by an etching process to form a void in the SOI film. The method further includes growing epitaxial Si in the void, prior to completing a capacitor structure.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Brian Messenger, Karen A. Nummy, Ravi M. Todi
  • Patent number: 8232588
    Abstract: Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 31, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Robert S. Chau, Vivek De, Suman Datta, Dinesh Somasekhar
  • Patent number: 8232156
    Abstract: Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance, as well as fabrication methods for vertical heterojunction bipolar transistors and design structures for BiCMOS integrated circuits. The vertical heterojunction bipolar transistor includes a barrier layer between the intrinsic base and the extrinsic base that blocks or reduces diffusion of a dopant from the extrinsic base to the intrinsic base. The barrier layer has at least one opening that permits direct contact between the intrinsic base and a portion of the extrinsic base disposed in the opening.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Qizhi Liu
  • Patent number: 8222103
    Abstract: Generally, the subject matter disclosed herein relates to a semiconductor device with embedded low-k metallization. A method is disclosed that includes forming a plurality of copper metallization layers that are coupled to a plurality of logic devices in a logic area of a semiconductor device and, after forming the plurality of copper metallization layers, forming a plurality of capacitors in a memory array of the semiconductor device. The capacitors are formed using a non-low-k dielectric material (k value greater than 3), while the copper metallization layers are formed in layers of low-k dielectric material (k value less than 3).
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 17, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser
  • Patent number: 8222102
    Abstract: A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Paul E. Grisham, Gordon A. Haller, Sanh D. Tang
  • Patent number: 8216897
    Abstract: A method for manufacturing a semiconductor device is disclosed. A method for manufacturing a semiconductor device includes forming a device isolation structure for defining an active region, forming a buried word line traversing the active region, forming one or more insulation film patterns over the buried word line, forming a line pattern including a first conductive material at a position between the insulation film patterns, and forming a plurality of storage node contacts (SNCs) by isolating the line pattern. As a result, when forming a bit line contact and a storage node contact, a fabrication margin is increased.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Do Hyung Kim
  • Publication number: 20120161218
    Abstract: In a first method for manufacturing a semiconductor device, an opening is formed in a substrate. A tungsten film is formed on the substrate so as to fill up inside the opening, and then the tungsten film is annealed. The tungsten film is etched back so that the tungsten film remains inside the opening. In a second method for manufacturing a semiconductor device, a laminate body comprising a tungsten film and an insulating film on the tungsten film is formed on a substrate. The laminate body is annealed, and then the laminate body is etched back.
    Type: Application
    Filed: October 6, 2011
    Publication date: June 28, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Kazunori NIITSUMA, Toshiyasu FUJIMOTO
  • Patent number: 8202784
    Abstract: A semiconductor device having high aspect ratio isolation trenches and a method for manufacturing the same is presented. The semiconductor device includes a semiconductor substrate, a first insulation layer, and a second insulation layer. The semiconductor substrate has a second trench that is wider than a first trench. The first insulation layer is partially formed within the wider second trench in which the first insulation layer when formed clogs the opening of the narrower first trench. A cleaning of the first insulation layer unclogs the opening of the narrower first trench in which a second insulation layer can then be formed within both the first and second trenches.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: June 19, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tai Ho Kim
  • Patent number: 8198126
    Abstract: The invention relates to a method for producing a solid electrolytic capacitor with excellent LC value, comprising sequentially stacking a dielectric oxide film, a semiconductor layer and an electrode layer on a sintered body of conductive powder to which an anode lead is connected and then encapsulating the whole with an outer jacket resin, wherein surface area of a cathode plate used in forming the semiconductor layer on the dielectric oxide film by applying current between the conductor having the dielectric oxide film thereon used as anode and the cathode plate provided in electrolysis solution is made larger by 10 times or more than its apparent surface area to thereby efficiently form the semiconductor layer, a capacitor produced by the method, and electronic circuits and electronic devices using the capacitor.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 12, 2012
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito
  • Publication number: 20120139020
    Abstract: A method for forming a variable capacitor includes providing a semiconductor substrate of a first conductivity type and forming an active region of a second conductivity type within the substrate. The method forms a first dielectric layer overlying the active region. The method provides a conductive gate layer over the first dielectric layer and selectively patterns the conductive gate layer to form a plurality of holes in the conductive gate layer. A perimeter of the holes and a spacing between a first and a second holes are selective to provide a high quality factor (Q) of the capacitor. The method implants impurities of the second conductivity type into the active region through the plurality of holes in the conductive layer. The method also includes providing a second dielectric layer and patterning the second dielectric layer to form contacts to the active region and the gate.
    Type: Application
    Filed: January 6, 2011
    Publication date: June 7, 2012
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhen Chen, Yung Feng Lin
  • Publication number: 20120139083
    Abstract: In one embodiment, an integrated circuit (IC) is presented. The IC includes first and second sets of power distribution lines formed in the IC. The IC includes first and second capacitors formed in one or more layers of the IC. A first plurality of vias couple a first input of the first and second capacitors to the first set of power distribution lines, and a second plurality of vias couple a second input of the first and second capacitors to the second set of power distribution lines. The first capacitor and the first plurality of vias and the second plurality of vias coupled thereto having an equivalent series resistance greater than an equivalent series resistance of the second capacitor and the first plurality of vias and the second plurality of vias coupled thereto.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: Xilinx, Inc.
    Inventors: Atul V. Ghia, Christopher P. Wyland, Ketan Sodha, Paul T. Sasaki, Jian Tan, Paul Y. Wu, Romi Mayder
  • Publication number: 20120138921
    Abstract: A conductive film to be a gate electrode, a first insulating film to be a gate insulating film, a semiconductor film in which a channel region is formed, and a second insulating film to be a channel protective film are successively formed. With the use of a resist mask formed by performing light exposure with the use of a photomask which is a multi-tone mask and development, i) in a region without the resist mask, the second insulating film, the semiconductor film, the first insulating film, and the conductive film are successively etched, ii) the resist mask is made to recede by ashing or the like and only the region of the resist mask with small thickness is removed, so that part of the second insulating film is exposed, and iii) the exposed part of the second insulating film is etched, so that a pair of opening portions is formed.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 7, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yuta ENDO, Kosei NODA
  • Patent number: 8187934
    Abstract: A method of fabricating a memory cell comprises forming a plurality of doped semiconductor layers on a carrier substrate. The method further comprises forming a plurality of digit lines separated by an insulating material. The digit lines are arrayed over the doped semiconductor layers. The method further comprises etching a plurality of trenches into the doped semiconductor layers. The method further comprises depositing an insulating material into the plurality of trenches to form a plurality of electrically isolated transistor pillars. The method further comprises bonding at least a portion of the structure formed on the carrier substrate to a host substrate. The method further comprises separating the carrier substrate from the host substrate.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 29, 2012
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, H. Montgomery Manning
  • Patent number: 8179293
    Abstract: In an embodiment, an apparatus and method reduces a calibration settling time in an analog-to-digital converter (ADC). The ADC has a reference voltage supply. The reference voltage supply has an output. A filter capacitor is coupled to the reference voltage supply output. An isolation transistor is series-coupled between the filter capacitor and ground. The isolation transistor isolates the filter capacitor during calibration of the ADC.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: May 15, 2012
    Assignee: Broadcom Corporation
    Inventor: Chun-Ying Chen
  • Patent number: 8178404
    Abstract: A Metal-Insulator-Metal (MIM) capacitor structure and method of fabricating the same in an integrated circuit improve capacitance density in a MIM capacitor structure by utilizing a sidewall spacer extending along a channel defined between a pair of legs that define portions of the MIM capacitor structure. Each of the legs includes top and bottom electrodes and an insulator layer interposed therebetween, as well as a sidewall that faces the channel. The sidewall spacer incorporates a conductive layer and an insulator layer interposed between the conductive layer and the sidewall of one of the legs, and the conductive layer of the sidewall spacer is physically separated from the top electrode of the MIM capacitor structure. In addition, the bottom electrode of a MIM capacitor structure may be ammonia plasma treated prior to deposition of an insulator layer thereover to reduce oxidation of the electrode.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignee: NXP B.V.
    Inventors: Michael Olewine, Kevin Saiz
  • Publication number: 20120115293
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 10, 2012
    Inventors: Jin-Tae NOH, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang