Capacitor Patents (Class 438/239)
  • Publication number: 20110220977
    Abstract: A semiconductor device, comprising: a vertical pillar transistor (VPT) formed on a silicon-on-insulator (SOI) substrate, the VPT including a body that has a lower portion and an upper portion, a source/drain node disposed at an upper end portion of the upper portion of the body and a drain/source node disposed at the lower portion of the body; a buried bit line (BBL) formed continuously on sidewalls and an upper surface of the lower portion, the BBL includes metal sificide; and a word line that partially enclosing the upper portion of the body of the VPT, wherein the BBL extends along a first direction and the word line extends in a second direction substantially perpendicular to the first direction. An offset region is disposed immediately beneath the word line.
    Type: Application
    Filed: April 14, 2010
    Publication date: September 15, 2011
    Inventors: Jae-Man Yoon, Hui-Jung Kim, Hyun-Woo Chung, Hyun-Gi Kim, Kang-Uk Kim, Yong-Chul Oh
  • Publication number: 20110223730
    Abstract: Provided is a method of manufacturing a semiconductor circuit device including a MOS transistor and a capacitor element in which a gate electrode of a MOS transistor is formed of a first polysilicon film, a capacitor is formed of the first polysilicon film, a capacitor film, and a second polysilicon film, reduction in resistance of a normally-off transistor and reduction in resistance of a lower electrode of the capacitor are simultaneously performed, and reduction in resistance of an N-type MOS transistor and reduction in resistance of an upper electrode of the capacitor are simultaneously performed.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Inventor: Kazuhiro Tsumura
  • Publication number: 20110216566
    Abstract: In a rectifier circuit, by using a transistor whose off-state current is small as a so-called diode-connected MOS transistor included in the rectifier circuit, breakdown which is caused when a reverse bias is applied is prevented. Thus, an object is to provide a rectifier circuit whose reliability is increased and rectification efficiency is improved. A gate and a drain of a transistor are both connected to a terminal of the rectifier circuit to which an AC signal is input. In the transistor, an oxide semiconductor is used for a channel formation region and the off-state current at room temperature is less than or equal to 10?20 A/?m, which is equal to 10 zA/?m (z: zepto), when the source-drain voltage is 3.1 V.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 8, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Koichiro KAMATA
  • Publication number: 20110217819
    Abstract: DRAM cell arrays having a cell area of less than about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is non-orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Inventor: Todd R. Abbott
  • Publication number: 20110215374
    Abstract: A power semiconductor device having adjustable output capacitance includes a semiconductor substrate having a first device region and a second device region defined thereon, at lest one power transistor device disposed in the first device region, a heavily doped region disposed in the semiconductor substrate of the second device region, a capacitor dielectric layer disposed on the heavily doped region, a source metal layer disposed on a top surface of the semiconductor substrate and electrically connected to the power transistor device, and a drain metal layer disposed on a bottom surface of the semiconductor substrate. The source metal layer in the second device, the capacitor dielectric layer and the heavily doped region form a snubber capacitor.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 8, 2011
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Shian-Hau Liao
  • Patent number: 8012823
    Abstract: Provided are methods of fabricating capacitors of semiconductor devices, the methods including: forming a lower electrode on a semiconductor substrate, performing a pre-process operation on the lower electrode for suppressing deterioration of the lower electrode during a process, forming a dielectric layer on the lower electrode using a source gas and an ozone gas, and forming an upper electrode on the dielectric layer, wherein the pre-process operation and the forming of the dielectric layer may be performed in one device capable of atomic layer deposition.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-jin Lim, Jae-young Park, Young-jin Kim, Seok-woo Nam, Bong-hyun Kim, Kyoung-ryul Yoon, Jae-hyoung Choi, Beom-jong Kim
  • Publication number: 20110210384
    Abstract: According to one embodiment, a scalable integrated MIM capacitor in a semiconductor die includes a high-k dielectric segment over a substrate and a metal segment over the high-k dielectric segment, where the metal segment forms a capacitor terminal of the integrated MIM capacitor. The capacitor further includes a filler laterally separating consecutive capacitor terminals, where the filler can be used as a capacitor dielectric of the integrated MIM capacitor. In one embodiment, the metal segment comprises a gate metal. In another embodiment, the integrated MIM capacitor is formed substantially concurrently with one or more transistors without requiring additional fabrication process steps.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Wei Xia, Xiangdong Chen
  • Publication number: 20110212585
    Abstract: A semiconductor device including a capacitor and a proximate high-voltage gate having a boron-barrier layer that ideally serves as part of both the capacitor dielectric and the (high voltage) HV gate oxide. The boron-barrier layer is preferably formed over a poly oxide layer that is in turn deposited on a substrate infused to create a neighboring wells, and N-well over which the capacitor will be formed, and P-well to be overlaid by the HV gate. The boron-barrier helps to reduce or eliminate the harmful effects of boron diffusion from the P-well during TEOS deposition of the gate oxide material.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chyi-Chyuan Huang, Shyh-An Lin, Chen-Fu Hsu
  • Publication number: 20110211399
    Abstract: In a vertical-type semiconductor device, a method of manufacturing the same and a method of operating the same, the vertical-type semiconductor device includes a single-crystalline semiconductor pattern having a pillar shape provided on a substrate, a gate surrounding sidewalls of the single-crystalline semiconductor pattern and having an upper surface lower than an upper surface of the single-crystalline semiconductor pattern, a mask pattern formed on the upper surface of the gate, the mask pattern having an upper surface coplanar with the upper surface of the single-crystalline semiconductor pattern, a first impurity region in the substrate under the single-crystalline semiconductor pattern, and a second impurity region under the upper surface of the single-crystalline semiconductor pattern. The vertical-type pillar transistor formed in the single-crystalline semiconductor pattern may provide excellent electrical properties.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8008698
    Abstract: A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-hyung Lee, Sun-ghil Lee, Si-young Choi, Byeong-chan Lee, Seung-hun Lee
  • Patent number: 8003461
    Abstract: A method of fabricating an efuse structure, a resistor structure and a transistor structure. First, a work function metal layer, a polysilicon layer and a first hard mask layer are formed to cover a transistor region, a resistor region and an e-fuse region on a substrate. Then, the work function metal layer on the resistor region and the efuse region is removed by using a first photomask. Later, a gate, a resistor, an efuse are formed in the transistor region, the resistor region and the efuse region respectively. After that, a dielectric layer aligning with the top surface of the gate is formed. Later, the polysilicon layer in the gate is removed by taking a second hard mask as a mask to form a recess. Finally, a metal layer fills up the recess.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: August 23, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Che-Hua Hsu, Zhi-Cheng Lee, Cheng-Guo Chen, Shao-Hua Hsu
  • Publication number: 20110198677
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventor: Andrew E. Carlson
  • Patent number: 7999296
    Abstract: A nonvolatile memory integrated circuit has a semiconductor substrate and a nonvolatile memory device on the semiconductor substrate. The device has a transistor and a capacitor on the semiconductor substrate, and a shared floating gate connecting the gate regions of the transistor and the capacitor. The transistor has at least a doping region defining the source and drain regions, as well as three other doping regions overlapping the source and drain regions. Also disclosed are a nonvolatile memory circuit with multiple such nonvolatile memory device, and methods for making the nonvolatile memory circuit with one or more such nonvolatile memory devices.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 16, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Publication number: 20110195552
    Abstract: A semiconductor device includes a transistor. A gate insulating film of the transistor contains oxygen and nitrogen atoms. The gate insulating film does not contain the nitrogen atoms in a first face thereof being in a contact with the semiconductor layer, and in a second face thereof being in a contact with the gate electrode. A concentration peak of the nitrogen atoms appears between the first and second faces in the gate insulating film.
    Type: Application
    Filed: December 6, 2010
    Publication date: August 11, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Takayuki KANDA
  • Publication number: 20110189828
    Abstract: A silicon layer is formed on a silicon substrate by an epitaxial growth, and, then a surface of the silicon layer is oxidized. The surface of the silicon layer is cleaned, to remove foreign material generated on the surface of the silicon layer during the epitaxial growth.
    Type: Application
    Filed: December 13, 2010
    Publication date: August 4, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Nobuyuki Sako, Eiji Hasunuma, Yuki Togashi
  • Patent number: 7989285
    Abstract: The use of atomic layer deposition (ALD) to form a dielectric layer of hafnium oxide (HfO2) doped with dysprosium (Dy) and a method of fabricating such a combination gate and dielectric layer produces a reliable structure for use in a variety of electronic devices. Forming the dielectric structure includes depositing hafnium oxide using atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing dysprosium oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: August 2, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7989284
    Abstract: A method for forming a memory device. The method provides a protective layer overlying a surface region of a substrate before threshold voltage implant. The method then includes depositing a photo resist layer and patterning the photo resist by selectively removing a portion of the photo resist to expose the protective layer overlying a first region while maintaining the photo resist overlying a second region. The method includes implanting impurities for threshold voltage adjustment into the first region while the second region is substantially free of the impurities for threshold voltage adjustment. The method also includes forming a source region and a drain region. The method further includes providing a conductive structure over the source region. A junction between the conductive structure and the source region is substantially within the second region. The method then provides a storage capacitor in electrical contact with the source region via the conductive structure.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: JoBong Choi
  • Publication number: 20110180862
    Abstract: Embodiments of the invention provide an integrated circuit for an embedded dynamic random access memory (eDRAM), a semiconductor-on-insulator (SOI) wafer in which such an integrated circuit may be formed, and a method of forming an eDRAM in such an SOI wafer.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, John E. Barth, JR., Herbert L. Ho, Edward J. Nowak, Wayne Trickle
  • Publication number: 20110175152
    Abstract: An integrated circuit is provided that includes a fully depleted semiconductor device and a capacitor present on a semiconductor on insulator (SOI) substrate. The fully depleted semiconductor device may be a finFET semiconductor device or a planar semiconductor device. In one embodiment, the integrated circuit includes a substrate having a first device region and a second device region. The first device region of the substrate includes a first semiconductor layer that is present on a buried insulating layer. The buried insulating layer that is in the first device region is present on a second semiconductor layer of the substrate. The second device region includes the second semiconductor layer, but the first semiconductor layer and the buried insulating layer are not present in the second device region. The first device region includes the fully depleted semiconductor device. A capacitor is present in the second device region.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Bruce B. Doris, Ghavam G. Shahidi
  • Patent number: 7981764
    Abstract: A method for fabricating a semiconductor device includes: forming a stack structure including pillar regions whose upper portion has a wider width than a lower portion over a substrate, the lower portion including at least a conductive layer; forming a gate insulation layer on sidewalls of the pillar regions; forming active pillars to gap-fill the pillar regions; and forming vertical gates that serve as both gate electrode and word lines by selectively etching the conductive layer.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: July 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7981761
    Abstract: In this invention, the film thicknesses of an upper barrier film of a lower electrode of a capacitive element and an upper barrier film of a metallic interconnect layer formed in the same layer as this is made thicker than the film thicknesses of upper barrier films of other metallic interconnect layers. Moreover, in this invention, the film thickness of the upper barrier film of the lower electrode of the capacitive element is controlled to be 110 nm or more, more preferably, 160 nm or more. A decrease in the dielectric voltage of the capacitive dielectric film due to cracks in the upper barrier film does not occur and the deposition temperature of the capacitive dielectric film can be made higher, so that a semiconductor device having a MIM capacitor with high performance and high capacitance can be achieved, where the dielectric voltage of the capacitive dielectric film is improved.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 19, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Toshinori Imai, Tsuyoshi Fujiwara, Hiroshi Ashihara, Akira Ootaguro, Yoshihiro Kawasaki
  • Publication number: 20110170336
    Abstract: The present invention relates to a DRAM device having 4F2 size cells and a method for fabricating the same. The DRAM device comprises plural word lines arranged parallel to each other in one direction, plural bit lines arranged parallel to each other and in an intersecting manner with the word line, and plural memory cells having a transistor and a capacitor connected electrically to a source terminal of the transistor. A gate terminal of the transistor is filling an associated trench between two adjacent memory cells in a bit line direction and simultaneously covering a sidewall of said two adjacent memory cells via a gate insulating film interposed between the gate terminal and said two adjacent memory cells. An interval between the gate terminals in the bit or the word line direction, is more distant than 1F, and the F means minimal processing size.
    Type: Application
    Filed: August 13, 2010
    Publication date: July 14, 2011
    Inventor: Jai Hoon Sim
  • Patent number: 7979836
    Abstract: A semiconductor structure for a dynamic random access memory cell, the structure including: a fin of a fin-type field effect transistor (FinFET) device formed over and spaced apart from a conductive region of a substrate; a storage capacitor connected to a first end of the fin; and a back-gate at a first lateral side of the fin and in electrical contact with the conductive region.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7968924
    Abstract: In a semiconductor device comprising a capacitive element, an area of the capacitive element is reduced without impairing performance, and further, without addition of an extra step in a manufacturing process.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 28, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Akihiko Sato
  • Publication number: 20110151632
    Abstract: A method for forming a semiconductor device includes: etching a hard mask layer and a conductive layer formed on a semiconductor substrate, a lower structure being formed on the semiconductor substrate; forming a sacrificial insulating layer at upper parts of the etched hard mask layer and the etched conductive layer of a peripheral circuit region; forming an isolation insulating layer at an upper part of an isolation insulating layer of a cell region; forming spacers at sidewalls of the etched hard mask layer, the etched conductive layer, and the isolation insulating layer of the cell region, respectively; forming storage electrode contact plugs at both sides of each of the spacers, respectively; and removing the sacrificial insulating layer to expose the semiconductor substrate of the peripheral circuit region, and etching the lower structure to expose the semiconductor substrate of the peripheral circuit region.
    Type: Application
    Filed: July 23, 2010
    Publication date: June 23, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Young Man CHO
  • Publication number: 20110148529
    Abstract: A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier signals frequency-spaced larger than the base-band bandwidth. The circuit includes a radiofrequency transistor connected to a circuit output having a parasitic output capacitance. The source-drain terminal is electrically connected to the circuit output. An internal shunt inductor provides compensation for the parasitic output capacitance. A high-density capacitor is connected between the internal shunt inductor and a circuit ground. The high-density capacitor has a terminal with a surface area can be at least ten times that of a corresponding planar surface.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Willem Frederick Adrianus Besling, Theodorus Wilhelmus Bakker, Yann Lamy, Fred Roozeboom
  • Patent number: 7960226
    Abstract: On-chip decoupling capacitor structures, and methods of fabricating such decoupling capacitors are disclosed. On-chip decoupling capacitors help to reduce or prevent L di/dt voltage droop on the power grid for high surge current conditions. The inclusion of one or more decoupling capacitors on a chip, in close proximity to the power grid conductors reduces parasitic inductance and thereby provides improved decoupling performance with respect to high frequency noise. In one embodiment of the present invention, a capacitor stack structure is inserted between metal interconnect layers. Such a capacitor stack may consist of a bottom electrode/barrier; a thin dielectric material having a high dielectric constant; and a top electrode/barrier. In an alternative embodiment, the bottom electrode and/or bottom metal interconnect layer have three dimensional texture to increase the surface area of the capacitor.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: June 14, 2011
    Assignee: Intel Corporation
    Inventors: Bruce A. Block, Richard Scott List, Ruitao Zhang
  • Patent number: 7955872
    Abstract: In the case where a laminated structure formed by laminating tunneling magnetoresistive films are processed by ion milling or the like, scattered substances of a material constituting the tunneling magnetoresistive film are deposited onto side walls of the laminated structure, or contaminate the inside of a device for processing. Accordingly, it has been difficult to manufacture a magnetic memory or a semiconductor device on which the magnetic memory is mounted, with stable characteristics. Side wall spacers are formed on side walls of a conductive layer arranged above a tunneling magnetoresistive film, and scattered substances of a material constituting the tunneling magnetoresistive film during processing are deposited. Thereafter, by removing the side wall spacers, the redepositions of the material are also removed. The side wall spacers used are of one kind or two kinds.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventor: Nozomu Matsuzaki
  • Patent number: 7955945
    Abstract: A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene) polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 7, 2011
    Assignee: Sandia Corporation
    Inventors: Shawn M. Dirk, Ross S. Johnson, David R. Wheeler, Gregory R. Bogart
  • Patent number: 7951663
    Abstract: A semiconductor device is made by forming a smooth conductive layer over a substrate. A first insulating layer is formed over a first surface of the smooth conductive layer. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The substrate is removed. A second conductive layer is formed over a second surface of the smooth conductive layer opposite the first surface of the smooth conductive layer. A third insulating layer is formed over the second conductive layer. The second conductive layer, smooth conductive layer, first insulating layer, and first conductive layer constitute a MIM capacitor. A portion of the second conductive layer includes an inductor. The smooth conductive layer has a smooth surface to reduce particles and hill-locks which decreases ESR, increases Q factor, and increases ESD of the MIM capacitor.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 31, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Publication number: 20110121374
    Abstract: A vertical transistor comprises a semiconductor region, a pillar region formed on the semiconductor region, a gate insulating film formed so as to cover a side surface of the pillar region, a gate electrode formed on the gate insulating film, a first impurity diffusion region formed in an upper portion of the pillar region, and a second impurity diffusion region formed in the semiconductor region so as to surround the pillar region. The first impurity diffusion region is formed so as to be spaced from the side surface of the pillar region.
    Type: Application
    Filed: October 12, 2010
    Publication date: May 26, 2011
    Applicant: Elpida Memory, Inc.
    Inventor: Kazuo OGAWA
  • Publication number: 20110121372
    Abstract: A process for manufacturing an eDRAM device comprises fabricating semiconductor features on a semiconductor substrate, the semiconductor substrate including a DRAM area and logic area. The process also includes fabricating a first conductive layer in the DRAM area and in the logic area, the first conductive layer in communication with a first group of the semiconductor features. After fabricating the first conductive layer, a storage component is fabricated in communication with a second group of the semiconductor features within the DRAM area.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Wootag Kang, Zhongze Wang
  • Patent number: 7943446
    Abstract: A semiconductor device able to secure electrical effective thicknesses required for insulating films of electronic circuit elements by using depletion of electrodes of the electronic circuit elements even if the physical thicknesses of the insulating films are not different, where gate electrodes of high withstand voltage use transistors to which high power source voltages are supplied contain an impurity at a relatively low concentration, so the gate electrodes are easily depleted at the time of application of the gate voltage; depletion of the gate electrodes is equivalent to increasing the thickness of the gate insulating films; the electrical effective thicknesses required of the gate insulating films can be made thicker; and the gate electrodes of high performance transistors for which a high speed and large drive current are required do not contain an impurity at a high concentration where depletion of the gate electrodes will not occur, so the electrical effective thickness of the gate insulating films
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 17, 2011
    Assignee: Sony Corporation
    Inventor: Yuko Ohgishi
  • Patent number: 7944020
    Abstract: A method and apparatus for a reverse metal-insulator-metal (MIM) capacitor. The apparatus includes a lower metal layer, a bottom electrode, and an upper metal layer. The lower metal layer is disposed above a substrate layer. The bottom electrode is disposed above the lower metal layer and coupled to the lower metal layer. The upper metal layer is disposed above the bottom electrode. The upper metal layer comprises a top electrode of a metal-insulator-metal (MIM) capacitor.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 17, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Vladimir Korobov, Oliver Pohland
  • Publication number: 20110108900
    Abstract: A method of forming a field effect transistor (FET) capacitor includes forming a channel region; forming a gate stack over the channel region; forming a first extension region on a first side of the gate stack, the first extension region being formed by implanting a first doping material at a first angle such that a shadow region exists on a second side of the gate stack; and forming a second extension region on the second side of the gate stack, the second extension region being formed by implanting a second doping material at a second angle such that a shadow region exists on the first side of the gate stack.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Chung-Hsun Lin, Brian L. Ji, Jeffrey W. Sleight
  • Patent number: 7939403
    Abstract: A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 10, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Paul Grisham, Gordon A. Haller, Sanh D. Tang
  • Patent number: 7939390
    Abstract: A semiconductor structure formation method and operation method. The structure includes (i) a dielectric layer, (ii) a bottom capacitor plate and an electrically conductive line on the dielectric layer, (iii) a top capacitor plate on top of the bottom capacitor plate, (iv) a gap region, and (v) a solder ball on the dielectric layer. The dielectric layer includes a top surface that defines a reference direction perpendicular to the top surface. The top capacitor plate overlaps the bottom capacitor plate in the reference direction. The gap region is sandwiched between the bottom capacitor plate and the top capacitor plate. The gap region does not include any liquid or solid material. The solder ball is electrically connected to the electrically conductive line. The top capacitor plate is disposed between the dielectric layer and the solder ball.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen P. Ayotte, Timothy Harrison Daubenspeck, Jeffrey Peter Gambino, Christopher David Muzzy, Wolfgang Sauter
  • Patent number: 7939872
    Abstract: A multi-dielectric film including at least one first dielectric film that is a composite film made of zirconium-hafnium-oxide and at least one second dielectric film that is a metal oxide film made of amorphous metal oxide. Adjacent ones of the dielectric films are made of different materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Lee, Sang-Yeol Kang, Ki-Vin Lim, Hoon-Sang Choi, Eun-Ae Chung
  • Publication number: 20110101499
    Abstract: A semiconductor device and a method for fabricating a semiconductor device are provided. The method for fabricating a semiconductor device includes forming an isolation layer over a semiconductor substrate defining first and second regions, etching the isolation layer at an edge of the first region to form a guard ring pattern, forming a buried guard ring filling the guard ring pattern, selectively etching the isolation layer of the first region to form a plurality of patterns, forming a plurality of conductive patterns in the respective patterns, and completely removing the isolation layer of the first region through a dip-out process.
    Type: Application
    Filed: December 17, 2009
    Publication date: May 5, 2011
    Inventors: Jin-A Kim, Seok-Ho Jie
  • Patent number: 7935999
    Abstract: A memory device comprises an active area comprising a source and at least two drains defining a first axis. At least two substantially parallel word lines are defined by a first pitch, with one word line located between each drain and the source. Digit lines are defined by a second pitch, one of the digit lines being coupled to the source and forming a second axis. The active areas of the memory array are tilted at 45° to the grid defined by the word lines and digit lines. The word line pitch is about 1.5F, while the digit line pitch is about 3F.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, David K. Hwang, Sanh Dang Tang, Ceredig Roberts
  • Publication number: 20110097861
    Abstract: An object of the invention is to reduce an area occupied by a capacitor in a circuit in a semiconductor device, and to downsize a semiconductor device on which the capacitor and an organic memory are mounted. The organic memory and the capacitor, included in a peripheral circuit, in which the same material as the layer containing the organic compound used for the organic memory is used as a dielectric, are used. The peripheral circuit here means a circuit having at least a capacitor such as a resonance circuit, a power supply circuit, a boosting circuit, a DA converter, or a protective circuit. Further, a capacitor in which a semiconductor is used as a dielectric may be provided over the same substrate as well as the capacitor in which the same material as the layer containing the organic compound is used as a dielectric.
    Type: Application
    Filed: January 4, 2011
    Publication date: April 28, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Toshihiko SAITO
  • Patent number: 7932147
    Abstract: A flash memory device may include a device isolation layer and an active area formed over a semiconductor substrate, a memory gate formed over the active area, and a control gate formed over the semiconductor substrate including the memory gate, wherein the active area, where a source contact is to be formed, has the same interval spacing as a bit line, and a common source line area, where the source contact is to be formed, has an impurity area connecting neighboring active areas.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 26, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jin-Ha Park
  • Patent number: 7932167
    Abstract: A memory cell in an integrated circuit is fabricated in part by forming a lower electrode feature, an island, a sacrificial feature, a gate feature, and a phase change feature. The island is formed on the lower electrode feature and has one or more sidewalls. It comprises a lower doped feature, a middle doped feature formed above the lower doped feature, and an upper doped feature formed above the middle doped feature. The sacrificial feature is formed above the island, while the gate feature is formed along each sidewall of the island. The gate feature overlies at least a portion of the middle doped feature of the island and is operative to control an electrical resistance therein. Finally, the phase feature is formed above the island at least in part by replacing at least a portion of the sacrificial feature with a phase change material. The phase change material is operative to switch between lower and higher electrical resistance states in response to an application of an electrical signal.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles William Koburger, III, Chung Hon Lam
  • Patent number: 7927945
    Abstract: Provided is a method for manufacturing a semiconductor device having a 4F2 transistor. In the method, a gate stack is formed on a semiconductor substrate. A first interlayer dielectric including a contact hole which includes a first region and second regions Spacer layers are formed on both sides of the gate stack and a portion of the second region. Landing plugs are formed on the contact hole, a portion of the semiconductor substrate exposed by a thickness of the spacer layer, and a lateral side of the trench. A second interlayer dielectric is formed to separate the landing plug. The bit line contact plug is connected to a first portion of the landing plug that extends to the lateral side of the trench. The bit line stack is connected to the bit line contact plug. The storage node contact plug is connected to the first portion and a second portion of the landing plug located at a corresponding position in a diagonal direction.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: April 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Yul Lee
  • Patent number: 7927990
    Abstract: A method is provided to form densely spaced metal lines. A first set of metal lines is formed by etching a first metal layer. A thin dielectric layer is conformally deposited on the first metal lines. A second metal is deposited on the thin dielectric layer, filling gaps between the first metal lines. The second metal layer is planarized to form second metal lines interposed between the first metal lines, coexposing the thin dielectric layer and the second metal layer at a substantially planar surface. In some embodiments, planarization continues to remove the thin dielectric covering tops of the first metal lines, coexposing the first metal lines and the second metal lines, separated by the thin dielectric layer, at a substantially planar surface.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 19, 2011
    Assignee: SanDisk Corporation
    Inventors: Kang-Jay Hsia, Calvin K Li, Christopher J Petti
  • Patent number: 7927946
    Abstract: An interlayer insulating film (14) covering a ferroelectric capacitor is formed and a contact hole (19) reaching a top electrode (11a) is formed in the interlayer insulating film (14). An Al wiring (17) connected to the top electrode (11a) via the contact hole (19) is formed on the interlayer insulating film (14). A planar shape of the contact hole (19) is an ellipse.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7923324
    Abstract: A method for manufacturing a capacitor of a semiconductor device includes forming a lower metal layer over a substrate, forming a dielectric layer over the lower metal layer, forming an upper metal layer over the dielectric layer, forming an upper electrode and a dielectric layer pattern by performing a reactive ion etching process with respect to the upper metal layer using the dielectric layer as an etch stop layer, and exposing a top surface of the lower metal layer, and performing a chemical down-stream etch (CDE) process to remove a by-product of a sidewall of the upper electrode.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Taek-Seung Yang
  • Patent number: 7923323
    Abstract: Disclosed is a metal capacitor including a lower electrode having hemispherical metal grains thereon. The metal capacitor includes a lower metal electrode containing Ti, hemispherical metal grains containing Pd and formed on the lower metal electrode containing Ti, a dielectric layer formed on the lower metal electrode containing Ti and the hemispherical metal grains containing Pd, and an upper metal electrode formed on the dielectric layer.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Woo Hong, Chang-Huhn Lee, Jae-Hun Kim
  • Patent number: 7923322
    Abstract: A method of forming a capacitor includes forming a first capacitor electrode over a substrate. A substantially crystalline capacitor dielectric layer is formed over the first capacitor electrode. The substrate with the substantially crystalline capacitor dielectric layer is provided within a chemical vapor deposition reactor. Such substrate has an exposed substantially amorphous material. A gaseous precursor comprising silicon is fed to the chemical vapor deposition reactor under conditions effective to substantially selectively deposit polysilicon on the substantially crystalline capacitor dielectric layer relative to the exposed substantially amorphous material, and the polysilicon is formed into a second capacitor electrode.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: April 12, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Michael Nuttall, Er-Xuan Ping, Yongjun Jeff Hu
  • Patent number: 7923325
    Abstract: A deep trench device with a single sided connecting structure. The device comprises a substrate having a trench therein. A buried trench capacitor is disposed in a lower portion of the trench. An asymmetric collar insulator is disposed on an upper portion of the sidewall of the trench. A connecting structure is disposed in the upper portion of the trench, comprising an epitaxial silicon layer disposed on and adjacent to a relatively low portion of the asymmetric collar insulator and a connecting member disposed between the epitaxial silicon layer and a relatively high portion of the asymmetric collar insulator. A conductive layer is disposed between the relatively high and low portions of the asymmetric collar insulator, to electrically connect the buried trench capacitor and the connecting structure. A cap layer is disposed on the connecting structure. A fabrication method for a deep trench device is also disclosed.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: April 12, 2011
    Assignee: Nanya Technology Corporation
    Inventors: Shian-Jyh Lin, Chien-Li Cheng