Arrangements For Conducting Electric Current Within Device In Operation From One Component To Another, Interconnections, E.g., Wires, Lead Frames (epo) Patents (Class 257/E23.141)

  • Patent number: 8941250
    Abstract: A redistribution pattern is formed on active surfaces of electronic components while still in wafer form. The redistribution pattern routes bond pads of the electronic components to redistribution pattern terminals on the active surfaces of the electronic components. The bond pads are routed to the redistribution pattern terminals while still in wafer form, which is a low cost and high throughput process, i.e., very efficient process.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: January 27, 2015
    Inventors: Robert Francis Darveaux, Brett Arnold Dunlap, Ronald Patrick Huemoeller
  • Patent number: 8928118
    Abstract: The present invention discloses methods and apparatuses for the separations of IC fabrication and assembling of separated IC components to form complete IC structures. In an embodiment, the present fabrication separation of an IC structure into multiple discrete components can take advantages of dedicated IC fabrication facilities and achieve more cost effective products. In another embodiment, the present chip assembling provides high density interconnect wires between bond pads, enabling cost-effective assembling of small chip components. In an aspect, the present process provides multiple interconnect wires in the form of a ribbon between the bond pads, and then subsequently separates the ribbon into multiple individual interconnect wires.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 6, 2015
    Inventor: Jayna Sheats
  • Patent number: 8928138
    Abstract: A complete power management system implemented in a single surface mount package. The system may be drawn to a DC to DC converter system and includes, in a leadless surface mount package, a driver/controller, a MOSFET transistor, passive components (e.g., inductor, capacitor, resistor), and optionally a diode. The MOSFET transistor may be replaced with an insulated gate bipolar transistor, IGBT in various embodiments. The system may also be a power management system, a smart power module or a motion control system. The passive components may be connected between the leadframe connections. The active components may be coupled to the leadframe using metal clip bonding techniques. In one embodiment, an exposed metal bottom may act as an effective heat sink.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: January 6, 2015
    Assignee: Vishay-Siliconix
    Inventors: King Owyang, Mohammed Kasem, Yuming Bai, Frank Kuo, Sen Mao, Sam Kuo
  • Patent number: 8927416
    Abstract: A first insulating film is formed on a semiconductor substrate, an interconnect groove is formed in the first insulating film, the inside of the interconnect groove is filled with a metal film, thereby forming a first interconnect. Then, a protective film is formed on the first insulating film and the first interconnect, and the surface of the protective film is exposed to reactive gas, thereby forming a reaction layer on an interface between the first interconnect and the protective film.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 6, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takeshi Harada, Junichi Shibata, Akira Ueki
  • Patent number: 8922005
    Abstract: Methods and apparatus for package on package structures having stud bump through via interconnections. A structure includes an interconnect layer having a plurality of through via assemblies each including at least one stud bump are formed on conductive pads; and encapsulant surrounding the through via assembly, a first redistribution layer formed over a surface of the encapsulant and coupled to the through via assemblies and carrying connectors, and a second redistribution layer over interconnect layer at the other end of the through via assemblies, the through via assemblies extending vertically through the interconnect layer. In an embodiment the interconnect layer is mounted using the connectors to a lower package substrate to form a package on package structure. A first integrated circuit device may be mounted on the second redistribution layer of the interconnect layer. Methods for forming the interconnect layer and the package on package structures are disclosed.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chang Hu, Ching-Wen Hsiao, Chih-Hua Chen, Chen-Shien Chen, Tin-Hao Kuo
  • Patent number: 8916910
    Abstract: Reconfigurable 3D interconnect is provided that can be used for digital and RF signals. The reconfigurable 3D interconnect can include an array of vertical interconnect vias (or TSVs) providing a signal path between a first core element of a 3D IC and a second core element of the 3D IC stacked above the first core element. A routing circuit can be used to route a signal from the first core element to the second core element through selected TSVs of the array of TSVs providing the signal path between the first core element and the second core element. The routing circuit allows re-routing of the signal through different selected TSVs during operation, which can provide real time adjustments and capacity optimization of the TSVs passing the particular signal between the elements.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 23, 2014
    Assignee: Research Foundation of State University of New York
    Inventors: Robert E. Geer, Wei Wang, Tong Jing
  • Patent number: 8916976
    Abstract: First semiconductor element 1 being buried in first insulating material 2; second semiconductor element 5 being covered by second insulating material 6; connection electrode 4 being buried in first insulating material 2 arranged between circuit surface of first semiconductor element 1 and circuit surface of second semiconductor element 5; external connection terminal 8 being arranged on lower surface of first insulating material 2 facing in the same direction as lower surface of first semiconductor element 1 opposite to circuit surface thereof; connection electrode 4 forming a part of path for electrically connecting circuit surface of first semiconductor element 1 and circuit surface of second semiconductor element 5 to each other; first semiconductor element 1 and external connection terminal 8 being electrically connected to each other by way of wire 3 and via 7 passing through region of insulating layer other than region thereof burying connection electrode 4.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: December 23, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masamoto Tago, Yoichiro Kurita
  • Patent number: 8916975
    Abstract: A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 23, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Chang Kun Park, Seong Hwi Song, Yong Ju Kim, Sung Woo Han, Hee Woong Song, Ic Su Oh, Hyung Soo Kim, Tae Jin Hwang, Hae Rang Choi, Ji Wang Lee, Jae Min Jang
  • Patent number: 8907487
    Abstract: An electronic device package includes a bump having a post disposed on a contact portion of a semiconductor chip and an enlarged portion laterally protruded from an upper portion of the post; an interconnection portion having a locking portion that substantially surrounds the enlarged portion and an upper sidewall of the post; and a dielectric layer substantially surrounding the bump and the locking portion to separate the interconnection portion from the semiconductor chip.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 9, 2014
    Assignee: SK Hynix Inc.
    Inventors: Seung Jee Kim, Qwan Ho Chung, Jong Hyun Nam, Si Han Kim, Sang Yong Lee, Seong Cheol Shin
  • Patent number: 8902123
    Abstract: To provide a semiconductor device in which wireless communication is performed between devices formed over different substrates and connection defects of wirings are reduced. A first device having a first antenna is provided over a first substrate, a second device having a second antenna which can communicate with the first antenna is provided over a second substrate, and the first substrate and the second substrate are bonded to each other to manufacture a semiconductor device. The first substrate and the second substrate are bonded to each other by bonding with a bonding layer interposed therebetween, anodic bonding, or surface activated bonding.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Konami Izumi
  • Patent number: 8901747
    Abstract: A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 2, 2014
    Assignee: MoSys, Inc.
    Inventors: Michael J. Miller, Mark Baumann, Richard S. Roy
  • Patent number: 8901734
    Abstract: An interconnect pad is formed over a first substrate. A photoresist layer is formed over the first substrate and interconnect pad. A portion of the photoresist layer is removed to form a channel and expose a perimeter of the interconnect pad while leaving the photoresist layer covering a central area of the interconnect pad. A first conductive material is deposited in the channel of the photoresist layer to form a column of conductive material. The remainder of the photoresist layer is removed. A masking layer is formed around the column of conductive material while exposing the interconnect pad within the column of conductive material. A second conductive material is deposited over the first conductive layer. The second conductive material extends above the column of conductive material. The masking layer is removed. The second conductive material is reflowed to form a column interconnect structure over the semiconductor device.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 2, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: SungWon Cho, TaeWoo Kang
  • Patent number: 8896130
    Abstract: A multi-chip stack structure and a method for fabricating the same are provided.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 25, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chung-Lun Liu, Jung-Pin Huang, Yi-Feng Chang, Chin-Huang Chang
  • Patent number: 8890332
    Abstract: A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: MoSys, Inc.
    Inventors: Michael J. Miller, Mark William Baumann, Richard S. Roy
  • Patent number: 8884419
    Abstract: Embodiments of the present disclosure provide a substrate, one of either a semiconductor die or an interposer disposed on the substrate, the semiconductor die or the interposer having a first surface attached to the substrate and a second surface that is opposite to the first surface, one or more interconnect structures formed on the second surface of the semiconductor die or the interposer, a mold compound formed to substantially encapsulate the semiconductor die or the interposer, and one or more vias formed in the mold compound to facilitate coupling the one or more interconnect structures with another component. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: November 11, 2014
    Assignee: Marvell International Ltd.
    Inventors: Shiann-Ming Liou, Albert Wu
  • Patent number: 8871638
    Abstract: A method for fabricating a semiconductor device includes forming a first interlayer dielectric layer having a conductive contact, forming a sacrifice layer having a conductive interconnection over the first interlayer dielectric layer such that the conductive interconnection is contacted with the conductive contact, removing the sacrifice layer, and forming a recess by removing a part of the conductive contact exposed by the conductive interconnection.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 28, 2014
    Assignee: SK Hynix Inc.
    Inventor: Nam-Jae Lee
  • Patent number: 8866292
    Abstract: In accordance with an embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A first chip is disposed in the substrate. The first chip includes a plurality of contact pads at the first major surface. A via bar is disposed in the substrate. An antenna structure is disposed within the via bar.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: Gottfried Beer, Maciej Wojnowski, Mehran Pour Mousavi
  • Patent number: 8866282
    Abstract: A slew rate of a signal transmitted between a semiconductor device having a small load capacitance and a semiconductor device having a large load capacitance is improved. When a signal is transmitted to the semiconductor device (for example, a memory device) having the large load capacitance, pre-emphasis is performed, and when a signal is transmitted to the semiconductor device (for example, a memory controller) having the small load capacitance, pre-emphasis is not performed or is slightly performed. By this, when the signal is transmitted to the memory device, blunting in signal rising due to the load capacitance is suppressed, and when the signal is transmitted to the memory controller, ringing due to the reflection of the signal is suppressed, and the slew rate of the data transmission is improved.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 21, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Ikeda, Yutaka Uematsu, Satoshi Muraoka
  • Patent number: 8860035
    Abstract: Disclosed is an organic light emitting diode display including: a substrate including a display area configured to display an image and a peripheral area surrounding the display area; a plurality of pad wires at the peripheral area of the substrate; and an inspection wire having a zigzag form on the plurality of pad wires.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Han-Sung Bae, Won-Kyu Kwak
  • Patent number: 8860095
    Abstract: An electronic circuit, includes a plurality of electronic devices configured as interconnected to provide one or more circuit functions and at least one interconnect structure that includes a first patterned conductor connected to a terminal of a first electronic device in the electronic circuit. A second patterned conductor is connected to a terminal of a second electronic device in the electronic circuit. A first electrode is connected to a portion of the first patterned conductor, and a second electrode is connected to a portion of the second patterned conductor. A metal oxide region is formed between the first electrode and the second electrode. The metal oxide region provides a reprogrammable switch function between the first patterned conductor and the second patterned conductor by providing a conductivity that is selectively controlled by a direction and an amount of current that passes through the metal oxide region during a switch setting operation for the metal oxide region.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Daniel C. Edelstein, Kailash Gopalakrishnan, Ramachandran Muralidhar
  • Patent number: 8860224
    Abstract: A device includes a top metal layer; a UTM line over the top metal layer and having a first thickness; and a passivation layer over the UTM line and having a second thickness. A ratio of the second thickness to the first thickness is less than about 0.33.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: October 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wen Chen, Chuang-Han Hsieh, Kun-Yu Lin, Kuan-Chi Tsai
  • Patent number: 8860186
    Abstract: A method for forming an integrated circuit including the steps of: forming electronic components on a first surface of a substrate; forming a stack of interconnection levels on the first surface, each interconnection level including conductive tracks separated by an insulating material; forming at least one hole from a second surface of the substrate, opposite to the first surface, the hole stopping on one of the conductive tracks; depositing, on the walls and the bottom of the hole, a conductive layer and filling the remaining space with a filling material; and forming, in an interconnection level or at the surface of the interconnection stack, and opposite to said at least one hole, at least one region of a material having a modulus of elasticity greater than 50 GPa and an elongation at break greater than 20%, insulated from the conductive tracks.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 14, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Mohamed Bouchoucha, Laurent-Luc Chapelon
  • Patent number: 8860226
    Abstract: A semiconductor device includes a storage node contact plug, a bit line in communication with to the storage node contact plug, and an expansion unit formed on a sidewall of the bit line. Thermal expansion of the expansion unit serves to increase capacitance by ensuring a distance between the bit line and the storage node contact plug, thereby improving a sensing margin. A cell characteristic such as a record recovery time (tWR) may be enhanced.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: October 14, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yong Won Seo
  • Publication number: 20140252631
    Abstract: A semiconductor wafer contains a plurality of semiconductor die each having a plurality of contact pads. A sacrificial adhesive is deposited over the contact pads. Alternatively, the sacrificial adhesive is deposited over the carrier. An underfill material can be formed between the contact pads. The semiconductor wafer is singulated to separate the semiconductor die. The semiconductor die is mounted to a temporary carrier such that the sacrificial adhesive is disposed between the contact pads and temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier and sacrificial adhesive is removed to leave a via over the contact pads. An interconnect structure is formed over the encapsulant. The interconnect structure includes a conductive layer which extends into the via for electrical connection to the contact pads. The semiconductor die is offset from the interconnect structure by a height of the sacrificial adhesive.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 11, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 8829659
    Abstract: An integrated circuit connection comprises a substrate, first and second transmission lines, a die, and a conductive ribbon. The first transmission line has a first end and is arranged on the substrate. The die is spaced from the first end. The die has a first surface, which is arranged on the substrate, and a second surface, which is opposite to the first surface and which has the second transmission line arranged thereon. The second transmission line has a second end. The conductive ribbon electrically couples the first and the second ends.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventors: Xiaobing Sun, Yaqiong Zhang, Yugang Ma
  • Patent number: 8823156
    Abstract: A semiconductor device package with an interposer, which serves as an intermediate or bridge circuit of various electrical pathways in the package to electrically connect any two or more electrical contacts, such as any two or more electrical contacts of a substrate and a chip. In particular, the interposer provides electrical pathways for simplifying a circuit layout of the substrate, reducing the number of layers of the substrate, thereby reducing package height and manufacturing cost. Furthermore, the tolerance of the circuit layout can be increased or maintained, while controlling signal interference between adjacent traces and accommodating high density circuit designs. Moreover, the package is suitable for a PoP process, where a profile of top solder balls on the substrate and a package body can be varied according to particular applications, so as to expose at least a portion of each of the top solder balls and electrically connect the package to another device through the exposed, top solder balls.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 2, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Po-Chi Hsieh
  • Patent number: 8822281
    Abstract: A semiconductor device has a semiconductor die mounted over a carrier. An encapsulant is deposited over the semiconductor die and carrier. An insulating layer is formed over the semiconductor die and encapsulant. A plurality of first vias is formed through the insulating layer and semiconductor die while mounted to the carrier. A plurality of second vias is formed through the insulating layer and encapsulant in the same direction as the first vias while the semiconductor die is mounted to the carrier. An electrically conductive material is deposited in the first vias to form conductive TSV and in the second vias to form conductive TMV. A first interconnect structure is formed over the insulating layer and electrically connected to the TSV and TMV. The carrier is removed. A second interconnect structure is formed over the semiconductor die and encapsulant and electrically connected to the TSV and TMV.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 2, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Seung Uk Yoon
  • Patent number: 8796832
    Abstract: A wiring device for a semiconductor device, a composite wiring device for a semiconductor device and a resin-sealed semiconductor device are provided, each of which is capable of mounting thereon a semiconductor chip smaller than conventional chips and being manufactured at lower cost. The wiring device connects an electrode on a semiconductor chip with an external wiring device, and has an insulating layer, a metal substrate and a copper wiring layer. The wiring device has a semiconductor chip support portion provided on the side of the copper wiring layer with respect to the insulating layer. The copper wiring layer includes a first terminal, a second terminal and a wiring portion. The first terminal is connected with the electrode. The second terminal is connected with the external wiring device. The wiring portion connects the first terminal with the second terminal.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 5, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Susumu Baba, Masachika Masuda, Hiromichi Suzuki
  • Patent number: 8791448
    Abstract: Semiconductor memory devices having strapping contacts are provided, the devices include cell regions and strapping regions between adjacent cell regions in a first direction. Active patterns, extending in the first direction throughout the cell regions and strapping regions, are spaced apart from one another in a second direction intersecting the first direction. First interconnection lines, extending in the first direction throughout the cell regions and strapping regions, are spaced apart from one another in the second direction while overlapping with the active patterns. Second interconnection lines, extending in the second direction, intersect the active patterns and first interconnection lines in the cell regions. The second interconnection lines are spaced apart from one another in the first direction. Memory cells are positioned at intersection portions of the first and second interconnection lines in the cell regions.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-in Kim, Jae-hee Oh, Jun-hyok Kong, Sung-ho Eun, Yong-tae Oh
  • Patent number: 8786095
    Abstract: Interconnects for optoelectronic devices are described. For example, an interconnect for an optoelectronic device includes an interconnect body having an inner surface, an outer surface, a first end, and a second end. A plurality of bond pads is coupled to the inner surface of the interconnect body, between the first and second ends. A stress relief feature is disposed in the interconnect body. The stress relief feature includes a slot disposed entirely within the interconnect body without extending through to the inner surface, without extending through to the outer surface, without extending through to the first end, and without extending through to the second end of the interconnect body.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: July 22, 2014
    Assignee: SunPower Corporation
    Inventors: Ryan Linderman, Keith Johnston, Thomas Phu, Matthew Dawson
  • Patent number: 8785250
    Abstract: Fabrication of a semiconductor package includes placing a conductive material on a protrusion from a leadframe to form a first assembly, forming a non-conductive mask about the protrusion, and placing a die on the first assembly, the die having an active area. Fabrication can further include reflowing the conductive material to form a second assembly such that a connection extends from the die active area, through the conductive material, to the protrusion. A semiconductor package includes a leadframe having a protrusion, a conductive material reflowed to the protrusion, and a die having an active area coupled to the protrusion by the reflowed solder.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 22, 2014
    Assignee: Allegro Microsystems, LLC
    Inventors: Nirmal Sharma, Virgil Ararao
  • Patent number: 8785930
    Abstract: Indexing a plurality of die obtainable from a material wafer comprising a plurality of stacked material layers. Each die is obtained in a respective position of the wafer. A manufacturing stage comprises at least two steps for treating a respective superficial portion of the material wafer that corresponds to a subset of said plurality of dies using the at least one lithographic mask through the exposition to the proper radiation in temporal succession. The method may include providing a die index on each die which is indicative of the position of the respective die by forming an external index indicative of the position of the superficial portion of the material wafer corresponding to the subset of the plurality of dies including said die and may comprise a plurality of electronic components electrically coupled to each other by means of a respective common control line.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 22, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Daniele Alfredo Brambilla, Fausto Redigolo
  • Patent number: 8786063
    Abstract: A method of manufacture of an integrated circuit packaging system includes: conductively bonding a first surface of a transposer to an inner end of a lead separate from the transposer; conductively bonding a die to the first surface of the transposer; and encapsulating the inner end with a mold compound having a bottom mold surface that is exposed and is coplanar with a surface of the transposer opposite the first surface.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: July 22, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Arnel Senosa Trasporto
  • Patent number: 8779595
    Abstract: Provided is a semiconductor device including high-frequency interconnect and dummy conductor patterns (second dummy conductor patterns). The dummy conductor patterns are disposed in a interconnect layer different from a interconnect layer in which the high-frequency interconnect is disposed. The dummy conductor patterns are disposed so as to keep away from a region overlapping the high-frequency interconnect in plan view. The semiconductor device further includes dummy conductor patterns (first dummy conductor patterns) in the interconnect layer in which the high-frequency interconnect is disposed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 8772086
    Abstract: Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects to disable electrical connections are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a backside, an interconnect extending through the first die to the backside, an integrated circuit electrically coupled to the interconnect, and a first electrostatic discharge (ESD) device electrically isolated from the interconnect. A second microelectronic die has a front side coupled to the backside of the first die, a metal contact at the front side electrically coupled to the interconnect, and a second ESD device electrically coupled to the metal contact. In another embodiment, the first die further includes a substrate carrying the integrated circuit and the first ESD device, and the interconnect is positioned in the substrate to disable an electrical connection between the first ESD device and the interconnect.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jeffery W. Janzen, Michael Chaine, Kyle K. Kirby, William M. Hiatt
  • Patent number: 8772942
    Abstract: A metallic liner stack including at least a Group VIIIB element layer and a CuMn alloy layer is deposited within a trench in a dielectric layer. Copper is deposited on the metallic liner stack and planarized to form a conductive interconnect structure, which can be a metal line, a metal via, or a combination thereof. The deposited copper and the metallic liner stack are annealed before or after planarization. The Mn atoms are gettered by the Group VIIIB element layer to form a metallic alloy liner including Mn and at least one of Group VIIIB elements. Mn within the metallic alloy liner combines with oxygen during the anneal to form MnO, which acts as a strong barrier to oxygen diffusion, thereby enhancing the reliability of the conductive interconnect structure.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 8, 2014
    Assignees: International Business Machines Corporation, Toshiba America Electronic Components, Inc.
    Inventors: Daniel C. Edelstein, Takeshi Nogami, Kazumichi Tsumura, Takamasa Usui
  • Patent number: 8766455
    Abstract: A semiconductor device includes a first semiconductor chip, a first connection structure disposed on a first side of the first semiconductor chip, a second semiconductor chip disposed on a second side of the first semiconductor chip, and a second connection structure disposed between the first and second semiconductor chips, wherein a number of the second connection structures is less than a number of the first connection structures.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: SeYoung Jeong, Sunpil Youn, Hogeon Song
  • Patent number: 8766441
    Abstract: Solder on slot connections in package on package structures. An apparatus includes a substrate having a front side surface and a back side surface; a first passivation layer disposed over at least one of the front side and back side surfaces; at least one via opening formed in the first passivation layer; a conductor layer disposed over the first passivation layer, coupled to the at least one via and forming a conductive trace on the surface of the first passivation layer; a second passivation layer formed over the conductor layer; and at least one slot opening formed in the second passivation layer and exposing a portion of the conductive trace for receiving a solder connector. In additional embodiments the substrate may be a semiconductor wafer. Methods for forming the structures are disclosed.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Sen Chang, Ching-Wen Hsiao, Chen-Shien Chen
  • Patent number: 8759883
    Abstract: In a semiconductor integrated circuit device, a plurality of electrode pads for external connection are arranged in a zigzag pattern. Some electrode pads of the electrode pads of the plurality of I/O cells which are closer to a side of the semiconductor chip, each have an end portion closer to the side of the semiconductor chip, the end portion being set at the same position as that of an end portion of the corresponding I/O cell. A power source-side protective circuit and a ground-side protective circuit against discharge of static electricity are provided with the power source-side protective circuit being closer to the scribe region. A distance between a center position of one of the electrode pads and the ground-side protective circuit of the corresponding I/O cell and a distance between a center position of the other one electrode pad and the ground-side protective circuit of the corresponding I/O cell are both short and are substantially equal between each I/O cell.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 24, 2014
    Assignee: Panasonic Corporation
    Inventors: Koichi Taniguchi, Masato Maede
  • Patent number: 8759984
    Abstract: A semiconductor memory device includes a first wiring region and a second wiring region located adjacent to the first wiring region. First lines located in the first wiring region include a first portion, a first lead portion and first inclined portion. Second lines located in the second wiring region include a second portion, a second lead portion and a second inclined portion. The first and second portions are located in parallel with a same pitch, the first and second lead portions are located with a pitch which is larger than the pitch of the first and second portions, the first and second inclined portions extend the same direction at a predetermined angle.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuo Saito
  • Patent number: 8753975
    Abstract: A method includes forming a trench/via in a layer of insulating material, forming a first layer comprised of silicon or germanium on the insulating material in the trench/via, forming a copper-based seed layer on the first layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 17, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Larry Zhao, Ming He, Sean Lin, John Iacoponi, Errol Todd Ryan
  • Patent number: 8754394
    Abstract: A variable resistive memory device includes a bit line, a word line, first electrodes and second electrodes, which are respectively arrayed in different directions, wherein a unit cell including a variable resistive material layer interposed between the first electrode and the second electrode is located at every intersection between the first electrode and the second electrode.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 17, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jae-Yun Yi, Seok-Pyo Song
  • Patent number: 8749002
    Abstract: A structure and method for air cavity packaging, the structure comprises a carrier having plural die pads and leads, plural dies, plural wires, plural walls, and a lid. The dies are mounted on the die pads. The wires electrically connect the dies to the leads. The plural walls are disposed on the carrier and form plural cavities in a way that each cavity contains at least one die pad and plural leads, and each wall is provided with at least one air vent for exhausting air to the outside. The lid is attached on the plural walls via an adhesive agent to seal the plural air cavities, so that the plural connected air cavity packages are formed.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: June 10, 2014
    Assignee: Win Semiconductors Corp.
    Inventors: Zi-Hong Fu, Sung-Mao Yang, Chun-Ting Chu, Wen-Ching Hsu
  • Patent number: 8742524
    Abstract: A semiconductor device, which is configured as a backside illuminated solid-state imaging device, includes a stacked semiconductor chip which is formed by bonding two or more semiconductor chip units to each other and in which, at least, a pixel array and a multi-layer wiring layer are formed in a first semiconductor chip unit and a logic circuit and a multi-layer wiring layer are formed in a second semiconductor chip unit; a semiconductor-removed region in which a semiconductor section of a part of the first semiconductor chip unit is completely removed; and a plurality of connection wirings which is formed in the semiconductor-removed region and connects the first and second semiconductor chip units to each other.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventors: Kazuichiroh Itonaga, Machiko Horiike
  • Patent number: 8742488
    Abstract: Example embodiments relate to a three-dimensional semiconductor memory device including an electrode structure on a substrate, the electrode structure including at least one conductive pattern on a lower electrode, and a semiconductor pattern extending through the electrode structure to the substrate. A vertical insulating layer may be between the semiconductor pattern and the electrode structure, and a lower insulating layer may be between the lower electrode and the substrate. The lower insulating layer may be between a bottom surface of the vertical insulating layer and a top surface of the substrate. Example embodiments related to methods for fabricating the foregoing three-dimensional semiconductor memory device.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaegoo Lee, Kil-Su Jeong, Hansoo Kim, Youngwoo Park
  • Patent number: 8742579
    Abstract: A semiconductor device is made by providing a sacrificial substrate and depositing an adhesive layer over the sacrificial substrate. A first conductive layer is formed over the adhesive layer. A polymer pillar is formed over the first conductive layer. A second conductive layer is formed over the polymer pillar to create a conductive pillar with inner polymer core. A semiconductor die or component is mounted over the substrate. An encapsulant is deposited over the semiconductor die or component and around the conductive pillar. A first interconnect structure is formed over a first side of the encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The sacrificial substrate and adhesive layers are removed. A second interconnect structure is formed over a second side of the encapsulant opposite the first interconnect structure. The second interconnect structure is electrically connected to the conductive pillar.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 3, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Shuangwu Huang
  • Patent number: 8736061
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, an integrated circuit includes a standard cell having a first boundary, a second boundary opposite the first boundary, a third boundary interconnecting the first and second boundaries, and a fourth boundary opposite the third boundary and interconnecting the first and second boundaries. The standard cell further includes parallel active areas extending from the first boundary to the second boundary. Also, the standard cell has parallel gate strips extending from the third boundary to the fourth boundary and over the active areas. A cut mask overlies the gate strips. An interconnect is positioned overlying the cut mask and forms an electrical connection with a selected gate strip.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: May 27, 2014
    Assignees: GLOBALFOUNDRIES, Inc., International Business Machines, STMicroelectronics, Inc.
    Inventors: Frank Johnson, Olivier Menut, Marc Tarabbia, Gregory A. Northrop
  • Patent number: 8729609
    Abstract: Embodiments of an integrated circuit are provided. In one embodiment, the integrated circuit includes a substrate and a plurality of locally interconnected multi-gate transistors. The plurality of locally interconnected multi-gate transistors includes a continuous fin structure formed on the substrate and first and second multi-gate transistors formed on the substrate and including first and second fin segments of the continuous fin structure, respectively. The continuous fin structure electrically interconnects the first and second multi-gate transistors.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Frank Scott Johnson, Andreas Knorr
  • Patent number: 8728873
    Abstract: In various embodiments, a method for filling a contact hole in a chip package arrangement is provided. The method may include introducing electrically conductive discrete particles into a contact hole of a chip package; and forming an electrical contact between the electrically conductive particles and a contact terminal of the front side and/or the back side of the chip.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: May 20, 2014
    Assignee: Infineon Technologies AG
    Inventors: Benjamin Alles, Joachim Mahler, Edward Fuergut, Ivan Nikitin
  • Patent number: 8723289
    Abstract: A method for manufacturing an interconnection wiring structure of a semiconductor device includes forming an isolation region, which arranges active regions in a diagonal direction, in a semiconductor substrate; forming first damascene trenches, which open upper portions of a bit line contacts, by selectively etching a second interlayer insulation layer; forming bit lines which fill the first damascene trenches; forming second damascene trenches, which expose portions of the active region, by selectively etching the portion of a second interlayer insulation layer between the bit lines and the portion of the first interlayer insulation layer thereunder; attaching trench spacer on side walls of the second damascene trench; and forming storage node contact lines which fill the second damascene trenches.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 13, 2014
    Assignee: SK hynix Inc.
    Inventor: Chun Soo Kang