Electrical Characteristics Due To Properties Of Entire Semiconductor Body Rather Than Just Surface Region (epo) Patents (Class 257/E29.002)

  • Publication number: 20140054756
    Abstract: An anti spacer process, which comprises: (a) providing a resist layer including a non-uniform shape; (b) coating a target layer above the resist layer; (c) providing anti spacer trenches (spa) between the target layer and the resist layer; and (d) connecting at least part of the anti spacer trenches (spa) together to isolate a first part of the target layer and a second part of the target layer.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Inventors: MICHAEL HYATT, Richard Housley, ANTON DEVILLIERS
  • Publication number: 20140054748
    Abstract: An edge trimming method includes providing a semiconductor wafer having a front side and a backside, trimming an edge of a periphery of the semiconductor wafer from the front side to form at least a notch region around the periphery of the front side of the semiconductor wafer, and providing the front side of the semiconductor wafer to a handle wafer. The notch region comprises a first wall and a second wall, and the first and the second wall are perpendicular to each other.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Inventor: GENMAO LIU
  • Patent number: 8658999
    Abstract: According to an embodiment, a semiconductor device includes first and second memristors. The first memristor includes a first electrode made of a first material, a second electrode made of a second material, and a first resistive switching film arranged between the first and second electrodes. The first resistive switching film is connected to both the first and second electrodes. The second memristor includes a third electrode made of a third material, a fourth electrode made of the second material, and a second resistive switching film arranged between the third and fourth electrodes. The second resistive switching film is connected to both the third and fourth electrodes. The work function of the first material is smaller than that of the second material. The work function of the third material is larger than that of the second material.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshifumi Nishi, Takao Marukame, Takayuki Ishikawa, Masato Koyama
  • Patent number: 8659120
    Abstract: There is provided a semiconductor device substrate including: a multi-layer wiring layer; a first capacitor pad which is provided on an uppermost layer of the multi-layer wiring layer, and which includes a first power supply pad connected to a power supply layer of the multi-layer wiring layer through a first via and a first ground pad connected to a ground layer of the multi-layer wiring layer through a second via; and a second capacitor pad which is provided on the uppermost layer of the multi-layer wiring layer, and which includes a second power supply pad connected to the first power supply pad through a first wire and a second ground pad connected to the first ground pad through a second wire.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoshihiko Ikemoto, Atsushi Kikuchi
  • Publication number: 20140048866
    Abstract: An improved gate structure is provided whereby the gate structure is defined by a trench, the trench having a first oxide layer and a second oxide layer. The invention also provides methods for fabricating the gate structure of the invention defined by a trench having a first oxide layer and a second oxide layer.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Jeng Hwa Liao, Jung Yu Shieh, Ling Wuu Yang
  • Patent number: 8653493
    Abstract: According to example embodiments, a variable resistance memory device include an ohmic pattern on a substrate; a first electrode pattern including a first portion that has a plate shape and contacts a top surface of the ohmic pattern and a second portion that extends from one end of the first portion to a top; a variable resistance pattern electrically connected to the first electrode pattern; and a second electrode pattern electrically connected to the variable resistance pattern, wherein one end of the ohmic pattern and the other end of the first portion are disposed on the same plane.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung Jin Kang, Youngnam Hwang
  • Patent number: 8653518
    Abstract: A semiconductor device has a floating gate structure in which charge storage layers are stacked on a SiO2 layer formed on a substrate made of n-type Si. The charge storage layer has quantum dots made of undoped Si and an oxide layer that covers the quantum dots. The charge storage layer has quantum dots made of n+-Si and an oxide layer that covers the quantum dots. Electrons originally existing in the quantum dots migrate between the quantum dots and the quantum dots via tunnel junction and are distributed in the quantum dots and/or the quantum dots according to the voltage applied to a gate electrode via pads. The distribution is detected in the form of a current (ISD).
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: February 18, 2014
    Assignee: Hiroshima University
    Inventors: Katsunori Makihara, Seiichi Miyazaki, Seiichiro Higashi, Hideki Murakami
  • Publication number: 20140042595
    Abstract: A cavity is etched from a front surface into a semiconductor substrate. After providing an etch stop structure at the bottom of the cavity, the cavity is closed. From a back surface opposite to the front surface the semiconductor substrate is grinded at least up to an edge of the etch stop structure oriented to the back surface. Providing the etch stop structure at the bottom of an etched cavity allows for precisely adjusting a thickness of a semiconductor body of a semiconductor device.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Joachim Schulze, Anton Mauder
  • Patent number: 8643078
    Abstract: A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a base, a stacked structure and a doped layer. The stacked structure is formed on the base, wherein the stacked structure comprises a plurality of conductive strips and a plurality of insulating strips, one of the conductive strips is located between adjacent two insulating strips, the stacked structure has a first side wall, and a long edge of the first side wall is extended along a channel direction. The doped layer is formed in the first side wall, wherein the doped layer is formed by an ion implantation applied to the first side wall, and an acute angle is contained between an implantation direction of the ion implantation and the first side wall.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: February 4, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Hang-Ting Lue, Kuang-Yeu Hsieh
  • Publication number: 20140027878
    Abstract: A stack of a first hard mask portion and a second hard mask portion is formed over a semiconductor material layer by anisotropically etching a stack, from bottom to top, of a first hard mask layer and a second hard mask layer. The first hard mask portion is laterally recessed by an isotropic etch. A dielectric material layer is conformally deposited and planarized. The dielectric material layer is etched employing an anisotropic etch that is selective to the first hard mask portion to form a dielectric material portion that laterally surrounds the first hard mask portion. After removal of the second and first hard mask portions, the semiconductor material layer is etched employing the dielectric material portion as an etch mask. Optionally, portions of the semiconductor material layer underneath the first and second hard mask portions can be undercut at a periphery.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chiahsun Tseng, Chun-chen Yeh, Yunpeng Yin, Lei L. Zhuang
  • Publication number: 20140021582
    Abstract: A wafer of passive components is diced to leave a flat passive chip. The flat passive chip has bond pads for passive components on a same side of the flat passive chip. The flat passive chip is stacked onto an active chip. The passive components are wirebonded together to connect the passive components in series or parallel, resulting in the flat passive chip having an overall passive characteristic equal to a target characteristic.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: ATMEL CORPORATION
    Inventor: Julius Andrew Kovats
  • Publication number: 20140015097
    Abstract: Some embodiments include a method of forming a capacitor. An opening is formed through a silicon-containing mass to a base, and sidewalls of the opening are lined with protective material. A first capacitor electrode is formed within the opening and has sidewalls along the protective material. At least some of the silicon-containing mass is removed with an etch. The protective material protects the first capacitor electrode from being removed by the etch. A second capacitor electrode is formed along the sidewalls of the first capacitor electrode, and is spaced from the first capacitor electrode by capacitor dielectric. Some embodiments include multi-material structures having one or more of aluminum nitride, molybdenum nitride, niobium nitride, niobium oxide, silicon dioxide, tantalum nitride and tantalum oxide. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Joseph Neil Greeley, Duane M. Goodner, Vishwanath Bhat, Vassil N. Antonov, Prashant Raghu
  • Patent number: 8629421
    Abstract: Some embodiments include memory cells having programmable material between a pair of electrodes. The programmable material includes a material selected from the group consisting of a metal silicate with a ratio of metal to silicon within a range of from about 2 to about 6, and metal aluminate with a ratio of metal to aluminum within a range of from about 2 to about 6. Some embodiments include methods of forming memory cells. First electrode material is formed. Programmable material is formed over the first electrode material, with the programmable material including metal silicate and/or metal aluminate. Second electrode material is formed over the programmable material, and then an anneal is conducted at a temperature within a range of from about 300° C. to about 500° C. for a time of from about 1 minute to about 1 hour.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Murali Balakrishnan, Alessandro Torsi, Noel Rocklein
  • Patent number: 8630326
    Abstract: A hybrid integrated optical device includes a substrate comprising a silicon layer and a compound semiconductor device bonded to the silicon layer. The device also includes a bonding region disposed between the silicon layer and the compound semiconductor device. The bonding region includes a metal-semiconductor bond at a first portion of the bonding region. The metal-semiconductor bond includes a first pad bonded to the silicon layer, a bonding metal bonded to the first pad, and a second pad bonded to the bonding metal and the compound semiconductor device. The bonding region also includes an interface assisted bond at a second portion of the bonding region. The interface assisted bond includes an interface layer positioned between the silicon layer and the compound semiconductor device, wherein the interface assisted bond provides an ohmic contact between the silicon layer and the compound semiconductor device.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Publication number: 20140008771
    Abstract: The present invention is to provide a method for forming a compound epitaxial layer by chemical bonding, which comprises the steps of forming a contact layer on a substrate; chemically reacting atoms on a surface of the contact layer with non-metal atoms, such that the non-metal atoms form non-metal ions for chemically bonding to the atoms on the surface of the contact layer; exciting the non-metal ions by energy excitation, such that unpaired electrons of the non-metal ions not yet bound to the atoms on the surface of the contact layer become dangling bonds; and conducting chemical vapor deposition by introducing an organic metal compound and a reactant gas, wherein metal ions of the organic metal compound are bound to the dangling bonds by electric dipole attraction, and anions of the reactant gas are bound to the metal ions by ionic bonding, such that the compound epitaxial layer is formed.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicant: Huey-Jean LIN
    Inventor: Kuo-Wei SHYU
  • Patent number: 8624351
    Abstract: A package structure which includes a non-conductive substrate, a conductive element, a passivation, a jointed side, a conductive layer, a solder and a solder mask is disclosed. The conductive element is disposed on a surface of the non-conductive substrate and consists of a passive element and a corresponding circuit. The passivation completely covers the conductive element and the non-conductive substrate so that the conductive element is sandwiched between the passivation and the non-conductive substrate. The conductive layer covers the jointed side which exposes part of the corresponding circuit, extends beyond the jointed side and is electrically connected to the corresponding circuit. The solder mask which completely covers the jointed side and the conductive layer selectively exposes the solder which is disposed outside the jointed side and electrically connected to the conductive layer.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 7, 2014
    Assignee: Xintec, Inc.
    Inventors: Chien-Hung Liu, Shu-Ming Chang
  • Patent number: 8623697
    Abstract: A storage element structure for phase change memory (PCM) cell and a method for forming such a structure are disclosed. The method of forming a storage element structure, comprises providing a multilayer stack comprising a chalcogenide layer (206), a metal cap layer (208), and a dielectric hard mask layer (210), depositing and patterning a photo resist layer (212) on top of the multilayer stack, etching the dielectric hard mask layer using the photo resist layer as etch mask, after the dielectric hard mask layer is etched, removing the photo resist layer before etching the chalcogenide, etching the chalcogenide layer using the dielectric hard mask layer as etch mask, depositing a spacer dielectric (214) over the multilayer stack and anisotropically etching the spacer dielectric to form sidewall spacers (216) for the multilayer stack.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Michele Magistretti, Pietro Petruzza, Samuele Sciarrillo, Cristina Casellato
  • Publication number: 20140001601
    Abstract: A method of reducing current leakage in unused circuits performed during semiconductor fabrication and a semiconductor device or integrated circuit thereby formed. The method involves modifying a characteristic of at least one idle circuit that is unused in a product variant, to inhibit the circuit and reduce current leakage therefrom upon powering as well as during operation. The method can substantially increase the Vt (threshold voltage) of all transistors of a given type, such as all N-type transistors or all P-type transistors. The method is also suitable for controlling other transistor parameters, such as transistor channel length, as well as other active elements, such as N-type resistors or P-type resistors, in unused circuits which affect leakage current as well as for other unused circuits, such as a high Vt circuit, a standard Vt circuit, a low Vt circuit, and an SRAM cell Vt circuit.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: PMC-SIERRA US, INC.
    Inventors: Bruce SCATCHARD, Chunfang XIE, Scott BARRICK, Kenneth D. WAGNER
  • Publication number: 20140001607
    Abstract: An integrated circuit includes a substrate and passivation layers. The passivation layers include a bottom dielectric layer formed over the substrate for passivation, a doped dielectric layer formed over the bottom dielectric layer for passivation, and a top dielectric layer formed over the doped dielectric layer for passivation.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Chi CHUANG, Kun-Ming HUANG, Hsuan-Hui HUNG, Ming-Yi LIN
  • Publication number: 20140001597
    Abstract: A device includes a dielectric layer, a passive device including a portion in the dielectric layer, and a plurality of voids in the dielectric layer and encircling the passive device.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jiun-Jie Huang, Ling-Sung Wang
  • Publication number: 20140001552
    Abstract: A drift layer of a super junction semiconductor device includes first portions of a first conductivity type and second portions of a second conductivity type opposite to the first conductivity type. The first and second portions are formed both in a cell area and in an edge area surrounding the cell area, wherein an on-state or forward current through the drift layer flows through the first portions in the cell area. At least one of the first and second portions other than the first portions in the cell area includes an auxiliary structure or contains auxiliary impurities to locally reduce the avalanche rate. Locally reducing the avalanche rate increases the total voltage blocking capability of the super junction semiconductor device.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Hans Weber, Hans-Joachim Schulze, Uwe Wahl
  • Publication number: 20140001595
    Abstract: An integrated circuit is provided. The integrated circuit includes a first contact disposed over a first source/drain region, a second contact disposed over a second source/drain region, a polysilicon disposed over a gate, the polysilicon interposed between the first contact and the second contact, a first polysilicon contact bridging the polysilicon and the first contact within an active region, and an output structure electrically coupled to the first polysilicon contact.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Chung Lu, Li-Chun Tien, Hui-Zhong Zhuang
  • Publication number: 20140001604
    Abstract: Semiconductor structures are fabricated that include a semiconductor material bonded to a substrate with a layer of dielectric material between the semiconductor material and the substrate. At least one fluidic microchannel extends in a lateral direction through the layer of dielectric material between the semiconductor material and the substrate. The at least one fluidic microchannel includes at least one laterally extending section having a transverse cross-sectional shape entirely surrounded by the layer of dielectric material.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: SOITEC
    Inventor: Mariam Sadaka
  • Publication number: 20140001596
    Abstract: The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Inventors: Binghua Hu, Sameer Pendharkar, Guru Mathur, Tamura Takehito
  • Patent number: 8618602
    Abstract: A semiconductor device may include, but is not limited to, a semiconductor substrate, a word line, and an isolation region. The semiconductor substrate has an active region and first and second grooves. Each of the first and second grooves extends across the active region. The first groove is wider in width than the second groove. The word line is disposed in the first groove. The isolation region is disposed in the second groove. The isolation region is narrower in width than the word line.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 31, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Kiyonori Oyu
  • Publication number: 20130341770
    Abstract: An SOI substrate including a buried insulator layer positioned between a base substrate and a top semiconductor active layer is first provided. A semiconductor device can then be formed on and/or within a portion of the top semiconductor active layer. A bottommost surface of the buried insulator layer which is opposite a topmost surface of the buried insulator layer that forms an interface with the top semiconductor active layer can be then exposed. Ions can then be implanted through the bottommost surface of the buried insulator layer and into a portion of the buried insulator layer. The ions are implanted at energy ranges that do not disturb the buried insulator layer/top semiconductor active layer interface, while leaving a relatively thin portion of the buried insulator layer near the buried insulator layer/top semiconductor active layer interface intact.
    Type: Application
    Filed: July 23, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8614117
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line and placed on both sides of the gate contact over a layer of insulating material. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars over an insulating material on the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Publication number: 20130335109
    Abstract: A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jui-Long Chen, Chien-Chih Liao, Tseng Chin Lo, Hui-Yun Chao, Ta-Yung Lee, Jong-I Mou, Chin-Hsiang Lin
  • Publication number: 20130334657
    Abstract: A planar interdigitated capacitor structure, methods of forming, and devices including, the same. The device includes first and second planar electrode structures including respective first and second pluralities of planar continuous rectangular plate electrode elements formed above a semiconductor substrate and extending continuously in first and second orthogonal directions substantially parallel to a plane of the substrate, and first and second conductors interconnecting the respective first and second pluralities of planar electrode elements parallel to a third axis substantially normal to the plane of the substrate. The first and second planar electrode structures are arranged with respective continuous rectangular plate electrode elements of each planar electrode structure interleaved and substantially parallel with each other between the first and second conductors. The device also includes a dielectric material between the first planar electrode structure and the second planar electrode structure.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Hsiu-Ying CHO
  • Patent number: 8611388
    Abstract: A composite integrated optical device includes a substrate including a silicon layer and a waveguide disposed in the silicon layer. The composite integrated optical device also includes an optical detector bonded to the silicon layer and a bonding region disposed between the silicon layer and the optical detector. The bonding region includes a metal-assisted bond at a first portion of the bonding region. The metal-assisted bond includes an interface layer positioned between the silicon layer and the optical detector. The bonding region also includes a direct semiconductor-semiconductor bond at a second portion of the bonding region.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: December 17, 2013
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Patent number: 8610101
    Abstract: According to one embodiment, there are provided a first electrode, a second electrode containing a 1B group element having an Al element added thereto, and a variable resistive layer disposed between the first electrode and the second electrode and having a silicon element.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamauchi, Shosuke Fujii, Reika Ichihara
  • Patent number: 8610248
    Abstract: The presented application discloses a capacitor structure and a method for manufacturing the same.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 17, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong
  • Publication number: 20130328155
    Abstract: The disclosed aspects relate to controlling density of photomasks. One or more unprintable auxiliary patterns can be placed near a mask feature as well as onto a location of a feature of the main pattern. If a density is measured and is not within an acceptable density range, one or more printable auxiliary patterns can be replaced with unprintable auxiliary patterns and/or one or more unprintable auxiliary patterns can be replaced with printable auxiliary patterns. The disclosed aspects can be utilized to create a photomask and/or a semiconductor device, such as a large scale integrated circuit device, that comprises the photomask.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventor: Kenji Konomi
  • Patent number: 8604457
    Abstract: A phase-change memory element with an electrically isolated conductor is provided. The phase-change memory element includes: a first electrode and a second electrode; a phase-change material layer electrically connected to the first electrode and the second electrode; and at least two electrically isolated conductors, disposed between the first electrode and the second electrode, directly contacting the phase-change material layers.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: December 10, 2013
    Assignee: Higgs Opl. Capital LLC
    Inventors: Frederick T Chen, Ming-Jinn Tsai
  • Publication number: 20130320493
    Abstract: Capacitor designs for substrates, such as interposers, and methods of manufacture thereof are disclosed. A through via is formed in the interposer, and a capacitor is formed between a lower level metallization layer and a higher level metallization layer. The capacitor may be, for example, a planar capacitor with dual capacitor dielectric layers.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hua CHANG, Der-Chyang YEH, Kuang-Wei CHENG, Yuan-Hung LIU, Shang-Yun HOU, Wen-Chih CHIOU, Shin-Puu JENG
  • Publication number: 20130320511
    Abstract: A semiconductor device including a p or p+ doped portion and an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion. The device further includes at least one termination portion provided adjacent to the drift portion. The at least one termination portion comprises a Super Junction structure.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Elizabeth Kho Ching Tee, Alexander Dietrich Hölke, Steven John Pilkington, Deb Kumar Pal, Marina Antoniou, Florin Udrea
  • Publication number: 20130320512
    Abstract: A method of manufacturing a semiconductor device includes forming a trench in a semiconductor body. The method further includes doping a part of the semiconductor body via sidewalls of the trench by plasma doping.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Peter Irsigler, Hans-Joachim Schulze
  • Publication number: 20130320483
    Abstract: Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 ? are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 ?. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 ?.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Joel P. de Souza, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 8598561
    Abstract: A nonvolatile memory device includes first and second conductive layers, a resistance change layer, and a rectifying element. The first conductive layer has first and second major surfaces. The second conductive layer has third and fourth major surfaces, a side face, and a corner part. The third major surface faces the first major surface and includes a plane parallel to the first major surface and is provided between the fourth and first major surfaces. The corner part is provided between the third major surface and the side face and has a curvature higher than that of the third major surface. The resistance change layer is provided between the first and second conductive layers. The rectifying element faces the second major surface of the first conductive layer. An area of the third major surface is smaller than that of the second major surface.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Ryota Fujitsuka, Yoshio Ozawa
  • Patent number: 8592798
    Abstract: A variable resistance non-volatile storage device includes: a first line which includes a barrier metal layer and a main layer, and fills an inside of a line trench formed in a first interlayer insulating layer; a first electrode covering a top surface of the first line and comprising a precious metal; memory cell holes formed in a second interlayer insulating layer; a variable resistance layer formed in the memory cell holes and connected to the first electrode; and second lines covering the variable resistance layer and the memory cell holes, wherein in an area near the memory cell holes, the main layer is covered with the barrier metal layer and the first electrode in an arbitrary widthwise cross section of the first line.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Haruyuki Sorada
  • Patent number: 8592250
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line. Dielectric pillars are placed on both sides of the gate contact. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars made of an insulating material over the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8592954
    Abstract: A semiconductor element includes a semiconductor layer, an electrode, an adhesion layer, and an insulating layer. The electrode is disposed over the semiconductor layer and has a first upper surface and a second upper surface disposed further away from the semiconductor layer than the first upper surface. The adhesion layer is disposed on the first upper surface of the electrode so that the second upper surface of the electrode is disposed further away from the semiconductor layer than an upper surface of the adhesion layer. The insulating layer covers from the upper surface of the adhesion layer to the semiconductor layer.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 26, 2013
    Assignee: Nichia Corporation
    Inventors: Keiji Emura, Fumihiro Inoue
  • Publication number: 20130307043
    Abstract: Capacitors include a first electrical terminal that has fins formed from doped semiconductor on a top layer of doped semiconductor on a semiconductor-on-insulator substrate; a second electrical terminal that has an undoped material having bottom surface shape that is complementary to the first electrical terminal, such that an interface area between the first electrical terminal and the second electrical terminal is larger than a capacitor footprint; and a dielectric layer separating the first and second electrical terminals.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: KANGGUO CHENG, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20130307126
    Abstract: A semiconductor structure includes a stacked metal oxide layer on a substrate, wherein the stacked metal oxide layer includes a first metal oxide layer, a second metal oxide layer, and a third metal oxide layer from top to bottom, and the energy bandgap of the second metal oxide layer is lower than the energy bandgap of the first metal oxide layer and that of the third metal oxide layer. The semiconductor structure includes a metal oxide layer on a substrate, wherein the energy bandgap of the metal oxide layer changes along a direction perpendicular to the surface of the substrate. The present invention also provides a semiconductor process forming said semiconductor structure.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Inventors: Chen-Kuo Chiang, Chun-Hsien Lin
  • Publication number: 20130307031
    Abstract: According to an embodiment, a semiconductor structure includes a first monocrystalline semiconductor portion having a first lattice constant in a reference direction; a second monocrystalline semiconductor portion having a second lattice constant in the reference direction, which is different to the first lattice constant, on the first monocrystalline semiconductor portion; and a metal layer formed on and in contact with the second monocrystalline semiconductor portion.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Mathias Plappert, Hans-Joachim Schulze
  • Patent number: 8586959
    Abstract: A memristive switch device can comprise a switch formed between a first electrode and a second electrode, where the switch includes a memristive layer and a select layer directly adjacent the memristive layer. The select layer blocks current to the memristive layer over a symmetric bipolar range of subthreshold voltages applied between the first and second electrodes.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D. Pickett, Jianhua Yang, Dmitri Strukov
  • Patent number: 8586405
    Abstract: A method of manufacturing a semiconductor device and a semiconductor device made by the method is disclosed. The method comprises forming a buried N+ layer in an upper portion of a P-type substrate; performing ion implantation on the buried N+ layer; annealing the buried N+ layer; forming an epitaxial semiconductor layer on the buried N+ layer through epitaxial deposition, wherein, an upper portion of said epitaxial semiconductor layer and a portion underlying said P+ region of said epitaxial semiconductor layer are doped to form a P+ region and an N? region, respectively. Increasing the ion implant dosage of the BNL layer, adjusting the method of annealing the BNL layer to increase the width of the BNL layer, or increasing the thickness of the EPI layer, reduces the vertical BJT current gain and suppressed the substrate leakage current.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 19, 2013
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Chao Zhang, Guanping Wu, Bo Liu, Zhitang Song
  • Publication number: 20130299945
    Abstract: A technique is provided for a structure. A substrate has a nanopillar vertically positioned on the substrate. A bottom layer is formed beneath the substrate. A top layer is formed on top of the substrate and on top of the nanopillar, and a cover layer covers the top layer and the nanopillar. A window is formed through the bottom layer and formed through the substrate, and the window ends at the top layer. A nanopore is formed through the top layer by removing the cover layer and the nanopillar.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20130292795
    Abstract: A semiconductor device includes a substrate, a first conductive layer on the substrate and including a main pattern, and substantially symmetrical auxiliary patterns extending from two sides of the main pattern, an insulating layer on the substrate and the first conductive layer, and a second conductive layer on the insulating layer and overlapping at least a portion of the main pattern and the auxiliary patterns.
    Type: Application
    Filed: August 20, 2012
    Publication date: November 7, 2013
    Inventors: Chang-Soo Pyon, Min-Ho Ko, Hyun-Chol Bang, Kwang-Min Kim, Won-Kyu Kwak
  • Patent number: 8575583
    Abstract: A memory storage device includes: a lower electrode formed to be separated for each of memory cells; a memory storage layer formed on the lower electrode and capable of recording information according to a change in resistance; and an upper electrode formed on the memory storage layer, wherein the memory storage device includes a first layer formed of metal or metal silicide and a second layer formed on the first layer and formed of a metal nitride, the lower electrode is formed by lamination of the first layer and the second layer and formed such that only the first layer is in contact with a lower layer and only the second layer is in contact with the memory storage layer, which is an upper layer, the memory storage layer is formed in common to plural memory cells, and the upper electrode is formed in common to the plural memory cells.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventor: Wataru Otsuka