Responsive To Non-electrical Signal (e.g., Chemical, Stress, Light, Or Magnetic Field Sensors) Patents (Class 257/414)
  • Patent number: 8987845
    Abstract: The present disclosure is directed to a device and its method of manufacture in which a protective region is formed below a suspended body. The protective region allows deep reactive ion etching of a bulk silicon body to form a MEMS device without encountering the various problems presented by damage to the silicon caused by backscattering of oxide during overetching periods of DRIE processes.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Hau Wu, Kuei-Sung Chang
  • Patent number: 8987841
    Abstract: A CMOS (Complementary Metal Oxide Semiconductor) pixel for sensing at least one selected from a biological, chemical, ionic, electrical, mechanical and magnetic stimulus. The CMOS pixel includes a substrate including a backside, a source coupled with the substrate to generate a background current, and a detection element electrically coupled to measure the background current. The stimulus, which is to be provided to the backside, affects a measurable change in the background current.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: March 24, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Manoj Bikumandla, Dominic Massetti
  • Patent number: 8981504
    Abstract: A vertical Hall sensor includes first and second vertical Hall effect regions in a semiconductor substrate, with first and second pluralities of contacts arranged at one side of the first or second vertical Hall effect regions, respectively. The second vertical Hall effect region is connected in series with the first vertical Hall effect region regarding a power supply. The vertical Hall sensor further includes first and second layers adjacent to the first and second vertical Hall effect regions at a side other than a side of the first or second pluralities of contacts. The first and second layers have different doping properties than the first and second vertical Hall effect regions and insulate the first and second vertical Hall effect regions from a bulk of the semiconductor substrate by at least one reverse-biased p-n junction per vertical Hall effect region during an operation of the vertical Hall sensor.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Udo Ausserlechner
  • Patent number: 8981497
    Abstract: A chip package structure and a method for forming the chip package structure are disclosed. At least a block is formed on a surface of a cover, the cover is mounted on a substrate having a sensing device formed thereon for covering the sensing device, and the block is disposed between the cover and the sensing device. In the present invention, the block is mounted on the cover, there is no need to etch the cover to form a protruding portion, and thus the method of the present invention is simple and has low cost.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Xintec Inc.
    Inventors: Ho-Yin Yiu, Chien-Hung Liu, Tsang-Yu Liu, Ying-Nan Wen, Yen-Shih Ho
  • Patent number: 8975104
    Abstract: A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience while also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: March 10, 2015
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mourad El-Gamal, Frederic Nabki, Paul-Vahe Cicek
  • Publication number: 20150061043
    Abstract: A compact sensor module and methods for forming the same are disclosed herein. In some embodiments, a sensor die is mounted on a sensor substrate. A processor die can be mounted on a flexible processor substrate. In some arrangements, a thermally insulating stiffener can be disposed between the sensor substrate and the flexible processor substrate.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventor: David Frank Bolognia
  • Patent number: 8969976
    Abstract: A double-sided diaphragm micro gas-preconcentrator has a micro-gas chamber which is formed by bonding an upper silicon substrate with a lower silicon substrate. One or more suspended membranes are provided on every silicon substrate. The silicon where the suspended membrane is provided is completely removed for forming a cavity. A thin-film heater is deposited on every suspended membrane. A sorptive film is coated on an inner wall of every suspended membrane. Thus, the upper and lower sides of the preconcentrator in the present invention are suspended membranes, which improve the area of the sorptive film on the diaphragm. As a result, the preconcentrating factor is improved while keeping the small heat capacity, fast heating rate, and low power consumption features of the planar diaphragm preconcentrator.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: March 3, 2015
    Assignee: University of Electronic Science and Technology of China
    Inventors: Xiaosong Du, Ze Wu, Yi Li, Yadong Jiang, Dong Qiu
  • Patent number: 8969980
    Abstract: A micro-electromechanical system (MEMS) device includes a housing and a base. The base includes a port opening extending therethrough and the port opening communicates with the external environment. The MEMS die is disposed on the base and over the opening. The MEMS die includes a diaphragm and a back plate and the MEMS die, the base, and the housing form a back volume. At least one vent extends through the MEMS die and not through the diaphragm. The at least one vent communicates with the back volume and the port opening and is configured to allow venting between the back volume and the external environment.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: March 3, 2015
    Assignee: Knowles Electronics, LLC
    Inventor: Sung Bok Lee
  • Patent number: 8963261
    Abstract: Provided are a capacitive transducer, and methods of manufacturing and operating the same. The capacitive transducer includes: a monolithic substrate comprising a first doping region, a second doping region that is opposite in conductivity to the first doping region, and a vibrating portion; and an empty space that is disposed between the first doping region and the vibrating portion. The vibrating portion includes a plurality of through-holes, and a material film for sealing the plurality of through-holes is disposed on the vibrating portion.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Che-heung Kim
  • Patent number: 8957489
    Abstract: A component assembly including a carrier element including a first contact face and a semiconductor component disposed on the carrier element, wherein the semiconductor component includes a second contact face. The component assembly further includes a contact-making bonding wire, wherein one end of the contact-making bonding wire is connected to the first contact face and a second end of the contact-making bonding wire is connected to the second contact face. The component assembly includes a flow stop bonding wire positioned on the second contact face, wherein the flow stop bonding wire defines on the second contact face a first zone and a second zone. An encapsulation material is applied from the first zone to the first contact face so as to define an encapsulation for the flow stop bonding wire, wherein the flow stop bonding wire prevents an uncontrolled flow of the encapsulation material into the second zone.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: February 17, 2015
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventor: Roman Angerer
  • Patent number: 8957460
    Abstract: The invention provides a semiconductor device for the detection of an active site-containing protein or a ligand thereof in a solution, said device comprising at least one insulating or semi-insulating layer; at least one conducting semiconductor layer, two conducting pads on top of the upper layer making electrical contact with said at least one conducting semiconductor layer, such that electrical current can flow between them at a finite distance from the surface of the device; a protective molecular layer fabricated on top of said upper layer and protecting said layer from corrosion; and said ligand or active site-containing protein linked to said protective molecular layer. Exposure of said ligand or active site-containing protein to a solution containing said active site-containing protein or ligand, respectively, causes a current change through the device when a constant electric potential is applied between the two conducting pads.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 17, 2015
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Ron Naaman, Eyal Capua, Danny Bavli, Maria Tkachev
  • Patent number: 8952463
    Abstract: A MEMS (Micro-Electro-Mechanical-System) structure preventing stiction, comprising: a substrate; and at least two structural layers above the substrate, wherein at least one of the at least two structural layers is a movable part, and anyone or more of the at least two structural layers is provided with at least one bump to prevent the movable part from sticking to another portion of the MEMS structure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Pixart Imaging Incorporation
    Inventors: Chuan-Wei Wang, Sheng-Ta Lee, Hsin-Hui Hsu
  • Patent number: 8950240
    Abstract: An acetone gas sensor apparatus, including: a chamber, used for containing a gas sample taken from a breath of a person; and an acetone gas sensor, placed in the chamber for generating an output current in response to an acetone concentration of the gas sample, the acetone gas sensor including: a substrate; a buffer layer, deposited on the substrate; an InN epilayer, deposited on the buffer layer for providing a current path for the output current; a first conductive contact, deposited on the InN epilayer for providing a drain contact; and a second conductive contact, deposited on the InN epilayer for providing a source contact.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 10, 2015
    Assignee: National Tsing Hua University
    Inventors: Jer-Liang Andrew Yeh, Shang-Jr Gwo
  • Patent number: 8952464
    Abstract: A MEMS apparatus includes a pillar, a supporter, and a solder. The pillar has a first side and a second side opposite to the first side. The supporter supports the pillar. The supporter is adjacent to the pillar, but the supporter is not connected to the pillar. The supporter has a third side and a fourth side opposite to the third side. The supporter includes a plurality of first confined layers and a plurality of second confined layers. These first confined layers and these second confined layers are overlapped with each other. The second side and the third side are adjacent to each other. The solder is located between the second side and the third side. The solder is also located at the first side and the fourth side. The solder is utilized to combine the pillar and the supporter. The solder also isolates the pillar and the supporter.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: February 10, 2015
    Assignee: Sensor Tek Co., Ltd.
    Inventors: Mao-Chen Liu, Po-Wei Lu, Wen-Chieh Chou, Shu-Yi Weng, Chun-Chieh Wang
  • Publication number: 20150033827
    Abstract: A chemical sensor (10) is described with at least one layer of a metal oxide (11) arranged between two current injecting electrodes (16,16) with the length (L) of the layer of a metal oxide between the current injecting electrodes being less than 50 microns and one or a pair of voltage sensing electrodes (17) connected to the layer of a metal oxide (11) with the electrodes (16,16?,17) forming a 3- or 4-terminal arrangement for determining the resistance changes of layer material (11) excluding series resistances such as contact resistances close to or at at least one of the current injecting electrodes (16) from the resistance measurement.
    Type: Application
    Filed: July 23, 2014
    Publication date: February 5, 2015
    Inventors: Lukas BURGI, Marc Von Waldkirch, Felix Mayer
  • Patent number: 8946831
    Abstract: A microphone system includes a diaphragm suspended by springs and including a sealing layer that seals passageways which, if left open, would degrade the microphone's frequency response by allowing air to pass from one side of the diaphragm to the other when the diaphragm is responding to an incident acoustic signal. In some embodiments, the sealing layer may include an equalization aperture to allow pressure to equalize on both sides of the diaphragm.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 3, 2015
    Assignee: Invensense, Inc.
    Inventors: Fang Liu, Kuang L. Yang
  • Patent number: 8941191
    Abstract: A radio frequency microelectromechanical (RF MEMS) device can comprise an actuation p-n junction and a sensing p-n junction formed within a semiconductor substrate. The RF MEMS device can be configured to operate in a mode in which an excitation voltage is applied across the actuation p-n junction varying a non-mobile charge within the actuation p-n junction to modulate an electric field acting upon dopant ions and creating electrostatic forces. The electrostatic forces can create a mechanical motion within the actuation p-n junction. The mechanical motion can modulate a depletion capacitance of the sensing p-n junction, thereby creating a motional current. At least one of the p-n junctions can be located at an optimal location to maximize the efficiency of the RF MEMS device at high resonant frequencies.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 27, 2015
    Assignee: Cornell University
    Inventors: Eugene Hwang, Sunil Ashok Bhave
  • Patent number: 8940586
    Abstract: The present disclosure relates to a bump processing method and/or resulting MEMS-CMOS structure, in which one or more anti-stiction bumps are formed within a substrate prior to the formation of a cavity in which the one or more anti-stiction bumps reside. By forming the one or more anti-stiction bumps prior to a cavity, the sidewall angle and the top critical dimension (i.e., surface area) of the one or more anti-stiction bumps are reduced. The reduction in sidewall angle and critical dimension reduces stiction between a substrate and a moveable part of a MEMS device. By reducing the size of the anti-stiction bumps through a processing sequence change, lithographic problems such as reduction of the lithographic processing window and bump photoresist collapse are avoided.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chris Kuo, Lee-Chuan Tseng
  • Publication number: 20150021716
    Abstract: Provided are a low power micro semiconductor gas sensor and a method of manufacturing the same. The micro semiconductor gas sensor includes a substrate having an air gap, a peripheral portion provided on the substrate and comprising electrode pads, a sensor portion comprising sensing electrodes connected from the electrode pads and a sensing film on the sensing electrodes and floating on the air gap, and a connection portion comprising conductive wires electrically connecting the electrode pads and the sensing electrodes to each other, and connecting the peripheral portion and the sensor portion to one another. In this case, the air gap penetrates the substrate, and a thermal isolation area extended from the air gap to a space between the peripheral portion and the sensor portion is provided.
    Type: Application
    Filed: May 7, 2014
    Publication date: January 22, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dae-Sik LEE, Moon Youn JUNG, Seunghwan KIM
  • Publication number: 20150014798
    Abstract: Described herein is an assembly for a MEMS sensor device, which envisages: a first body made of semiconductor material, integrating a micromechanical detection structure at a first main face thereof; a cap element, set stacked on the first main face of the first body, above the micromechanical detection structure; and an adhesion structure set between the first body and the cap element, defining a gap in a position corresponding to the micromechanical detection structure. At least one first opening is defined through the adhesion structure in fluidic communication with the gap.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventors: Dino Faralli, Benedetto Vigna, Laura Maria Castoldi
  • Patent number: 8932905
    Abstract: A method and apparatus for forming an organic semiconductor circuit. A circuit printer is positioned relative to a location on a surface of a composite structure. A number of organic materials is deposited in a pattern on the surface of the composite structure at the location to form the organic semiconductor circuit on the surface of the composite structure at the location.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: January 13, 2015
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 8933527
    Abstract: A device includes a plurality of isolation spacers, and a plurality of bottom electrodes, wherein adjacent ones of the plurality of bottom electrodes are insulated from each other by respective ones of the plurality of isolation spacers. A plurality of photoelectrical conversion regions overlaps the plurality of bottom electrodes, wherein adjacent ones of the plurality of photoelectrical conversion regions are insulated from each other by respective ones of the plurality of isolation spacers. A top electrode overlies the plurality of photoelectrical conversion regions and the plurality of isolation spacers.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shin Chu, Cheng-Tao Lin, Meng-Hsun Wan, Szu-Ying Chen, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 8928649
    Abstract: The present invention provides a display medium including a pair of substrates; pixel electrodes disposed on one of the pair of substrates; a common electrode disposed on the other substrate of the pair of substrates; and a display layer, the common electrode includes two or more common electrode layers containing a first common electrode layer and a second common electrode layer which being disposed across a gap in a thickness direction, and electrical voltages thereof being controlled independently of each other, the first common electrode layer containing at least one electrode unit and at least one non-electrode area corresponding to a disposition of the pixel electrodes, and the second common electrode layer containing at least one second electrode unit, the at least one second electrode layer completely overlapping with at least the at least one non-electrode area of the first common electrode layer in a thickness direction.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 6, 2015
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yoshinori Machida, Naoki Hiji, Ryota Mizutani
  • Patent number: 8927967
    Abstract: An electrochemically-gated field-effect transistor includes a source electrode, a drain electrode, a gate electrode, a transistor channel and an electrolyte. The transistor channel is located between the source electrode and the drain electrode. The electrolyte completely covers the transistor channel and has a one-dimensional nanostructure and a solid polymer-based electrolyte that is employed as the electrolyte.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 6, 2015
    Assignee: Karlsruhe Institute of Technology
    Inventors: Subho Dasgupta, Horst Hahn, Babak Nasr
  • Patent number: 8927312
    Abstract: A MEMS transistor for a FBEOL level of a CMOS integrated circuit is disclosed. The MEMS transistor includes a cavity within the integrated circuit. A MEMS cantilever switch having two ends is disposed within the cavity and anchored at least at one of the two ends. A gate and a drain are in a sidewall of the cavity, and are separated from the MEMS cantilever switch by a gap. In response to a voltage applied to the gate, the MEMS cantilever switch moves across the gap in a direction parallel to the plane of the FBEOL level of the CMOS integrated circuit into electrical contact with the drain to permit a current to flow between the source and the drain. Methods for fabricating the MEMS transistor are also disclosed. In accordance with the methods, a MEMS cantilever switch, a gate, and a drain are constructed on a far back end of line (FBEOL) level of a CMOS integrated circuit in a plane parallel to the FBEOL level.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Guy Cohen, Michael A. Guillorn, Effendi Leobandung, Fei Liu, Ghavam G. Shahidi
  • Patent number: 8928097
    Abstract: A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: January 6, 2015
    Assignee: Genia Technologies, Inc.
    Inventor: Roger J. A. Chen
  • Publication number: 20140373600
    Abstract: Embodiments of the present disclosure include sensors, arrays of conductometric sensors, devices including conductometric sensors, methods of making conductometric sensors, methods of using conductometric gas sensors, and the like.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 25, 2014
    Inventors: James Gole, William Ivey Laminack
  • Patent number: 8916943
    Abstract: An integrated circuit device includes a first layer comprising at least two partial cavities, an intermediate layer bonded to the first layer, the intermediate layer formed to support at least two Micro-electromechanical System (MEMS) devices, and a second layer bonded to the intermediate layer, the second layer comprising at least two partial cavities to complete the at least two partial cavities of the first layer through the intermediate layer to form at least two sealed full cavities. The at least two full cavities have different pressures within.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-Wei Cheng, Jui-Chun Weng, Hsi-Cheng Hsu, Chih-Yu Wang, Jung-Kuo Tu, Che-Jung Chu, Yu-Ting Hsu
  • Patent number: 8916948
    Abstract: A pyroelectric detector includes a support member, a capacitor and a fixing part. The support member includes a first side and a second side opposite from the first side, with the first side facing a cavity. The capacitor includes a pyroelectric body between a first electrode and a second electrode such that an amount of polarization varies based on a temperature. The capacitor is mounted and supported on the second side of the support member with the first electrode being disposed on the second side of the support member. The fixing part supports the support member, with the cavity being formed between the support member and the fixing part.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 23, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Takafumi Noda, Jun Takizawa
  • Patent number: 8918152
    Abstract: Disclosed are devices comprising multiple nanogaps having a separation of less than about 5 nm. Also disclosed are methods for fabricating these devices.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 23, 2014
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Douglas R. Strachan, Danvers E. Johnston, Beth S. Guiton, Peter K. Davies, Dawn A. Bonnell, Alan T. Johnson, Jr.
  • Publication number: 20140368258
    Abstract: An embodiment relates to a device comprising a high-side semiconductor, a low-side semiconductor, a first sensing element arranged adjacent to the high-side semiconductor. The first sensing element is isolated from the high-side semiconductor and the first sensing element is directly connectable to a processing device.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Stefan Willkofer, Andreas Kiep
  • Patent number: 8912613
    Abstract: Provided are a dual-side micro gas sensor and a method of fabricating the same. The sensor may include an elastic layer, a heat-generating resistor layer on the elastic layer, an interlayered insulating layer on the heat-generating resistor layer, an upper sensing layer on the interlayered insulating layer, and a lower sensing layer provided below the elastic layer to face the heat-generating resistor layer, thereby reducing heat loss of the heat-generating resistor layer.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: December 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung-Kun Lee, Seungeon Moon, Nak Jin Choi, Jaewoo Lee
  • Patent number: 8907549
    Abstract: A vibrator includes a base substrate, a tuning fork type vibrating body, a first vibrating body, a second vibrating body, a first extraction electrode at the one vibration arm portion, a second extraction electrode at the other vibration arm portion, and an input/output port at the base portion. The input/output port is configured to input/output an electric signal to/from each of the first extraction electrode, the second extraction electrode, and the excitation electrodes of the vibration arm portions. The tuning fork type vibrating body is configured to generate a flexural vibration in reverse phase to the contour vibration of the first and second vibrating bodies, so as to absorb the contour vibration of the first and second vibrating bodies.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: December 9, 2014
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Takefumi Saito, Noritoshi Kimura
  • Publication number: 20140353789
    Abstract: A packaged sensor assembly and method of forming that includes a first substrate having opposing first and second surfaces and a plurality of conductive elements each extending between the first and second surfaces. A second substrate comprises opposing front and back surfaces, one or more detectors formed on or in the front surface, and a plurality of contact pads formed at the front surface which are electrically coupled to the one or more detectors. A third substrate is mounted to the front surface to define a cavity between the third substrate and the front surface, wherein the third substrate includes a first opening extending from the cavity through the third substrate. The back surface is mounted to the first surface. A plurality of wires each extend between and electrically connecting one of the contact pads and one of the conductive elements.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Inventors: Vage Oganesian, Zhenhua Lu
  • Publication number: 20140355381
    Abstract: Techniques, systems, and devices are described for implementing for implementing computation devices and artificial neurons based on nanoelectromechanical (NEMS) systems. In one aspect, a nanoelectromechanical system (NEMS) based computing element includes: a substrate; two electrodes configured as a first beam structure and a second beam structure positioned in close proximity with each other without contact, wherein the first beam structure is fixed to the substrate and the second beam structure is attached to the substrate while being free to bend under electrostatic force. The first beam structure is kept at a constant voltage while the other voltage varies based on an input signal applied to the NEMS based computing element.
    Type: Application
    Filed: May 8, 2014
    Publication date: December 4, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Amit Lal, Serhan Ardanuc, Jason T. Hoople, Justin C. Kuo
  • Patent number: 8901678
    Abstract: A light-assisted biochemical sensor based on a light addressable potentiometric sensor is disclosed. The light-assisted biochemical sensor comprises a semiconductor substrate and a sensing layer, which are used to detect the specific ion concentration or the biological substance concentration of a detected solution. Lighting elements fabricated directly on the back surface of the semiconductor substrate directly illuminate the light to the semiconductor substrate, so as to enhance the photoconduction property of the semiconductor substrate. And then, the hysteresis and the sensing sensitivity of the light-assisted biochemical sensor are respectively reduced and improved. In addition, due to its characteristics of integration, the light-assisted biochemical sensor not only reduces the fabrication cost but also has portable properties and real-time detectable properties. As a result, its detection range and the application range are wider.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 2, 2014
    Assignee: Chang Gung University
    Inventors: Liann-Be Chang, Chao-Sung Lai, Po-Chuan Chen
  • Patent number: 8901562
    Abstract: There are provided a transistor and a radiation imaging device in which a shift in a threshold voltage due to radiation exposure may be suppressed. The transistor includes a first gate electrode, a first gate insulator, a semiconductor layer, a second gate insulator, and a second gate electrode in this order on a substrate. Each of the first and second gate insulators includes one or a plurality of silicon compound films having oxygen, and a total sum of thicknesses of the silicon compound films is 65 nm or less.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventors: Yasuhiro Yamada, Tsutomu Tanaka, Makoto Takatoku
  • Patent number: 8901679
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Publication number: 20140346618
    Abstract: Provided are active materials for electrochemical cells. The active materials include silicon containing structures and treatment layers covering at least some surface of these structures. The treatment layers may include aminosilane, a poly(amine), or a poly(imine). These layers are used to increase adhesion of the structures to polymer binders within active material layers of the electrode. As such, when the silicon containing structures change their size during cycling, the bonds between the binder and the silicon containing structure structures or, more specifically, the bonds between the binder and the treatment layer are retained and cycling characteristics of the electrochemical cells are preserved. Also provided are electrochemical cells fabricated with such active materials and methods of fabricating these active materials and electrochemical cells.
    Type: Application
    Filed: December 2, 2013
    Publication date: November 27, 2014
    Inventors: John Lahlouh, Klaus Joachim Dahl, Sarah Lynn Goertzen, Marie Kerlau
  • Patent number: 8896073
    Abstract: Disclosed is an integrated circuit comprising a substrate including at least one light sensor; an interconnect structure over the substrate; at least one passivation layer over the interconnect structure, said passivation layer including a first area over the at least one light sensor; and a gas sensor such as a moisture sensor at least partially on a further area of the at least one passivation layer, wherein the gas sensor comprises a gas sensitive layer in between a first electrode and a second electrode, the gas sensitive layer further comprising a portion over the first area. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: November 25, 2014
    Assignee: NXP B.V.
    Inventors: Youri Victorovitch Ponomarev, David Tio Castro, Roel Daamen
  • Patent number: 8890285
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8890138
    Abstract: An optical touch panel may be used remotely to control a large-sized display device. According to a method of fabricating the optical touch panel, an optical sensor transistor for sensing light and a switch transistor for drawing data can be formed together on the same substrate by using a relatively simple process. The optical touch panel may include an optical sensor transistor and a switch transistor. The optical sensor transistor may be configured to sense light and the switch transistor may be configured to draw data from the optical sensor transistor. The optical sensor transistor may include a light sensitive oxide semiconductor material as a channel layer. The switch transistor may include a non-light sensitive oxide semiconductor material as a channel layer.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-chul Park, I-hun Song, Chang-jung Kim
  • Patent number: 8890286
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Publication number: 20140332908
    Abstract: A chip package including a chip is provided. The chip includes a sensing region or device region adjacent to an upper surface of the chip. A sensing array is located in the sensing region or device region and includes a plurality of sensing units. A plurality of first openings is located in the chip and correspondingly exposes the sensing units. A plurality of conductive extending portions is disposed in the first openings and is electrically connected to the sensing units, wherein the conductive extending portions extend from the first openings onto the upper surface of the chip. A method for forming the chip package is also provided.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Yen-Shih HO, Tsang-Yu LIU, Shu-Ming CHANG, Yu-Lung HUANG, Chao-Yen LIN, Wei-Luen SUEN, Chien-Hui CHEN, Ho-Yin YIU
  • Patent number: 8884384
    Abstract: A semiconductor element of the electric circuit includes a semiconductor layer over a gate electrode. The semiconductor layer of the semiconductor element is formed of a layer including polycrystalline silicon which is obtained by crystallizing amorphous silicon by heat treatment or laser irradiation, over a substrate. The obtained layer including polycrystalline silicon is also used for a structure layer such as a movable electrode of a structure body. Therefore, the structure body and the electric circuit for controlling the structure body can be formed over one substrate. As a result, a micromachine can be miniaturized. Further, assembly and packaging are unnecessary, so that manufacturing cost can be reduced.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Patent number: 8884381
    Abstract: A device may comprise a substrate formed of a first semiconductor material, a first trench formed in the substrate, a second trench formed in the substrate proximate the first trench, an oxide layer formed in the first trench and the second trench, and a second semiconductor material formed upon the oxide layer. The oxide layer in the second trench may be adapted to mitigate undercut of the oxide layer in the first trench during an etching process.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: November 11, 2014
    Assignee: DigitalOptics Corporation MEMS
    Inventors: Ankur Jain, Robert J. Calvet, Roman C. Gutierrez
  • Patent number: 8884382
    Abstract: A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: November 11, 2014
    Assignee: KWJ Engineering, Inc.
    Inventors: Joseph R. Stetter, Amol G. Shirke
  • Patent number: 8878257
    Abstract: An ISFET includes a control gate coupled to a floating gate in a CMOS device. The control gate, for example, a poly-to-well capacitor, is configured to receive a bias voltage and effect movement of a trapped charge between the control gate and the floating gate. The threshold voltage of the ISFET can therefore by trimmed to a predetermined value, thereby storing the trim information (the amount of trapped charge in the floating gate) within the ISFET itself.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Patrice M. Parris, Weize Chen, Richard J. De Souza, Md M. Hoque, John M. McKenna
  • Patent number: 8866237
    Abstract: An embedded micro-electro-mechanical system (MEMS) (100) comprising a semiconductor chip (101) embedded in an insulating board (120), the chip having a cavity (102) including a radiation sensor MEMS (105), the opening (104) of the cavity at the chip surface covered by a plate (110) transmissive to the radiation (150) sensed by the MEMS. The plate surface remote from the cavity having a bare central area, to be exposed to the radiation sensed by the MEMS in the cavity, and a peripheral area covered by a metal film (111) touching the plate surface and a layer (112) of adhesive stacked on the metal film.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Christopher D. Manack, Frank Stepniak, Sreenivasan K. Koduri
  • Patent number: 8866239
    Abstract: A method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over the components, the metallization stack comprising a first sensing element and a second sensing element adjacent to the first sensing element.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 21, 2014
    Assignee: NXP B.V.
    Inventors: Marcus Van Dal, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev