Attaching Or Detaching Leads Or Other Conductive Members, To Be Used For Carrying Current To Or From Device In Operation (epo) Patents (Class 257/E21.506)
  • Publication number: 20120133033
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a base structure having an intermediate lead with an intermediate concave side and an intermediate convex side, a peripheral lead with a peripheral concave side and a peripheral convex side, and a paddle with a paddle concave side and a paddle convex side; applying an inner multi-layer finish directly on the intermediate concave side, the peripheral concave side, and the paddle concave side; applying an outer multi-layer finish directly on the intermediate convex side, the peripheral convex side, and the paddle convex side; mounting an integrated circuit device over the inner multi-layer finish; attaching an interconnect directly to the inner multi-layer finish on the peripheral concave side and directly to integrated circuit device; and applying an encapsulation over the integrated circuit device, the interconnect, and the base structure, with the outer multi-layer finish exposed from the encapsulation.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Publication number: 20120135579
    Abstract: A method uses a line pattern to form a semiconductor device including asymmetrical contact arrays. The method includes forming a plurality of parallel first conductive line layers extending in a first direction on a semiconductor substrate. In this method, the semiconductor substrate may have active regions forming an oblique angle with the first direction. The method may further include forming a first mask layer and a second mask layer and using the first mask layer and the second mask layer to form a trench comprising a line area and a contact area by etching the first conductive line layers using the first mask layer and the second mask layer. The method further includes forming a gap filling layer filling the line area of the trench and forming a spacer of sidewalls of the contact area and forming a second conductive line layer electrically connected to the active region.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 31, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-chul Park, Sang-sup Jeong
  • Publication number: 20120133001
    Abstract: A method for forming a tileable detector array is presented.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Eric Tkaczyk, Lowell Scott Smith, Charles Edward Baumgartner, Robert Gideon Wodnicki, Rayette Ann Fisher, Charles Gerard Woychik, Robert Stephen Lewandowski
  • Publication number: 20120135583
    Abstract: A method of manufacturing a Three Dimensional (3D) semiconductor memory device can be provided by forming at least one trench in a plate stack structure to divide the plate stack structure into a plurality of sub-plate stack structures between forming a plurality of vertical active patterns in the plate stack structure and forming pads of a stepped structure from the plate stack structure.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 31, 2012
    Inventors: Byong-hyun JANG, Dongchul YOO, Chanjin PARK, Hanmei CHOI
  • Patent number: 8187920
    Abstract: One aspect of the present invention relates to an integrated circuit package that includes multiple layers of a planarizing, photo-imageable epoxy that are formed over a substrate. In some designs, the substrate is a silicon wafer. An integrated circuit is embedded in the epoxy. An antenna, which is electrically coupled to the active face of the integrated circuit through an interconnect layer, is formed over one of the epoxy layers. In various embodiments, at least some of the epoxy layers are positioned between the substrate and the antenna such that there is a distance of at least approximately 100 microns between the substrate and the antenna.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: May 29, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Anuraag Mohan, Peter Smeys
  • Publication number: 20120129299
    Abstract: A method of making a semiconductor assembly that includes a semiconductor device, a heat spreader, an adhesive and a build-up circuitry is disclosed. The heat spreader includes a bump, a base and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the build-up circuitry and thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The build-up circuitry includes a dielectric layer and conductive traces on the semiconductor device and the flange. The conductive traces provide signal routing for the semiconductor device.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20120118975
    Abstract: A RFID device includes a substrate, a conductive element, and a RFID chip. The conductive element is coupled to the substrate and defines at least one pathway. The RFID chip includes an integrated circuit, a terminal, and an electrical lead connecting the integrated circuit and the terminal. The terminal is in electrical communication with the conductive element. The RFID chip is positioned so that a first portion of the RFID chip is positioned above the conductive element and a second portion of the RFID chip is positioned above the at least one pathway. Methods are also provided.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 17, 2012
    Applicant: AVERY DENNISON CORPORATION
    Inventor: Ian J. FORSTER
  • Publication number: 20120119355
    Abstract: A method of forming an integrated circuit structure comprises the steps of: providing a semiconductor substrate having a first side and a second side opposite the first side; forming a hole extending from the first side of the semiconductor substrate into the semiconductor substrate; filling the hole with conductive material; thinning the second side of the semiconductor substrate to a first predetermined thickness, so that the bottom of the hole does not protrude from the second side of the semiconductor substrate; and etching the second side of the semiconductor to substrate to a second predetermined thickness, thereby exposing the bottom of the hole.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 17, 2012
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: KEE WEI CHUNG, CHIANG HUNG LIN, NENG TAI SHIH
  • Publication number: 20120119343
    Abstract: Methods and systems are described for enabling the efficient fabrication of small form factor power converter packages and other devices using stacked leadframes.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 17, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jaime A. Bayan, James D. Broiles
  • Patent number: 8178936
    Abstract: The MEMS package has a mounting substrate on which one or more transducer chips are mounted wherein the mounting substrate has an opening. A top cover is attached to and separated from the mounting substrate by a spacer forming a housing enclosed by the top cover, the spacer, and the mounting substrate and accessed by the opening. Electrical connections are made between the one or more transducer chips and the mounting substrate and/or between the one or more transducer chips and the top cover. A bottom cover can be mounted on a bottom surface of the mounting substrate wherein a hollow chamber is formed between the mounting substrate and the bottom cover, wherein a second opening in the bottom cover is not aligned with the first opening. Pads on outside surfaces of the top and bottom covers can be used for further attachment to printed circuit boards. The top and bottom covers can be a flexible printed circuit board folded under the mounting substrate.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: May 15, 2012
    Assignee: Shandong Gettop Acoustic Co. Ltd.
    Inventors: Wang Zhe, Chong Ser Choong
  • Patent number: 8178971
    Abstract: A ball grid array semiconductor device has a wiring substrate (2), a semiconductor chip (6) disposed on one surface side of the wiring substrate, and a bump arrangement (5) as external terminals disposed on a surface side, opposite to the one surface side, of the wiring substrate. The semiconductor chip is mounted so that the center of the semiconductor chip is shifted from the center of the semiconductor device by one pitch or more of the bump arrangement, and the bump arrangement has a reinforcing structure (5-2) for a bump array located at a position farthest from the center of the semiconductor device in a shift direction of the semiconductor chip.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: May 15, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Seiya Fujii
  • Patent number: 8178395
    Abstract: A method of making a semiconductor chip assembly includes providing a post, a base, a support layer and an underlayer, wherein the post extends above the base and the support layer is sandwiched between the base and the underlayer, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive upward between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, providing a heat spreader that includes the post, the base, the underlayer and a thermal via that extends from the base through the support layer to the underlayer, then mounting a semiconductor device on the post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: May 22, 2011
    Date of Patent: May 15, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang, Ming Yu Shih
  • Publication number: 20120112331
    Abstract: A semiconductor package and a method for making the same are provided. In the method, a clip is used to conduct a lead frame and at least one chip. The clip has at least one second connection segment, at least one third connection segment, and at least one intermediate connection segment. The second connection segment is electrically connected to a second conduction region of the chip and a second pin of the lead frame respectively, and the third connection segment is electrically connected to a third conduction region of the chip and a third pin of the lead frame respectively. The intermediate connection segment connects the at least one second connection segment and the at least one third connection segment, and is removed in a subsequent process. Thereby, the present invention does not need to use any gold wire, which effectively saves the material cost and the processing time.
    Type: Application
    Filed: September 9, 2011
    Publication date: May 10, 2012
    Applicant: SILICONIX ELECTRONIC CO., LTD.
    Inventors: Frank Kuo, Suresh Belani
  • Publication number: 20120112360
    Abstract: A semiconductor chip includes a semiconductor chip body including a peripheral region, a first region and a second region, and having a plurality of memory banks formed in each of the first region and the second region; a plurality of first through electrodes formed in the peripheral region; and a plurality of second through electrodes formed in the first and second regions along a direction parallel to a minor axis of the semiconductor chip body.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 10, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Ho Young SON
  • Publication number: 20120104621
    Abstract: Disclosed herein are a power package module and a method for fabricating the same, including: a base substrate; a plurality of high power chips and a plurality of low power chips electrically connected to the base substrate; and a plurality of metal lead plates electrically connecting the plurality of high power chips and the plurality of low power chips to the base substrate.
    Type: Application
    Filed: June 1, 2011
    Publication date: May 3, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Bum Sik Jang
  • Publication number: 20120104585
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming signal contacts; forming a power bar having a power bar terminal, the power bar terminal formed in a staggered position relative to the signal contacts; depositing a terminal pad on the power bar terminal; depositing a contact pad on one of the signal contacts; coupling an integrated circuit die to the power bar terminal and the signal contacts; and forming a package body on the integrated circuit die.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Inventors: Emmanuel Espiritu, Henry Descalzo Bathan, Zigmund Ramirez Camacho
  • Publication number: 20120104581
    Abstract: The present invention provide a heat dissipation structure on the active surface of the die to increase the performance of the heat conduction in longitude direction of the semiconductor package device, so that the heat dissipating performance can be improved when the semiconductor package device is associated with the exterior heat dissipation mechanism.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 3, 2012
    Applicant: Global Unichip Corporation
    Inventors: Chia-Feng Yeh, Chung-Hwa Wu, Shao-Kang Hung
  • Publication number: 20120104603
    Abstract: The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 3, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: Nitesh Kumbhat, Abhishek Choudhury, Venky Sundaraman, Rao R. Tummala
  • Publication number: 20120104594
    Abstract: A semiconductor device includes a substrate having a seal ring region and a circuit region, at least one corner bump disposed in the circuit region, a seal ring structure disposed in the seal ring region, and a connector electrically coupling a metal layer of the seal ring structure to the at least one corner bump. The at least one corner bump is configured to be coupled to a signal ground. A method of fabricating a semiconductor device includes providing a substrate having a seal ring region and a circuit region, providing at least one corner bump in a triangular corner bump zone in the circuit region, providing a seal ring structure in the seal ring region, electrically coupling a metal layer of the seal ring structure to the at least one corner bump, and electrically coupling the at least one corner bump to a signal ground.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Wei Chen, Chung-Ying Yang
  • Publication number: 20120104583
    Abstract: A semiconductor device includes a lead frame that has a die interconnect portion and at least first and second die pads. The die interconnect portion is isolated from the die pads. The device also includes a first die and a second die attached to the first and second die pads and electrically connected to each other by way of the die interconnect portion. The first die is encapsulated in a first medium and the second die is encapsulated in a second medium, the first medium being different from the second medium.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Beng Siong Lee, Guat Kew Teh, Wai Keong Wong
  • Patent number: 8168475
    Abstract: Provided are a semiconductor package which is small in size but includes a large number of terminals disposed at intervals equal to or greater than a minimum pitch, and a method of fabricating the semiconductor package. The semiconductor package includes a semiconductor chip having a bottom surface on which a plurality of bumps are formed, redistribution layer patterns formed under the semiconductor chip and each including a first part electrically connected to at least one of the bumps and a second part electrically connected to the first part, an encapsulation layer surrounding at least a top surface of the semiconductor chip, and a patterned insulating layer formed below the redistribution layer patterns and exposing at least parts of the second parts of the redistribution layer patterns.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 1, 2012
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Seung-yong Choi, Min-hyo Park
  • Publication number: 20120098116
    Abstract: A multi-chip module (MCM) includes chip sub-modules that are fabricated as self-contained testable entities. The chip sub-modules plug into respective sockets in a frame of the MCM. Each chip sub-module may be tested before being plugged into the MCM. A chip sub-module may include an IC chip, such as a processor, mounted to an sub-module organic substrate that provides interconnects to the chip. The frame into which each chip sub-module plugs sits on a mini-card organic substrate that interconnects the chip sub-modules together. The MCM may include a downstop between the mini-card organic substrate and a system board to limit or prevent solder creep of solder connections between the mini-card organic substrate and the system board.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jon Alfred Casey, John Lee Colbert, Paul Marlan Harvey, Mark Kenneth Hoffmeyer, Charles L. Reynolds
  • Publication number: 20120098120
    Abstract: A low-stress chip package is disclosed. The package includes two substrates. The first substrate includes an array of first conductive structures in the corner area of the chip, and an array of second conductive structures in the peripheral edge area of the chip. The first and second conductive structures each has a conductive pillar having elongated cross section in the plane parallel to the first substrate and a solder bump over the pillar. The package also includes a second substrate having an array of metal traces. The elongated pillars each form a coaxial bump-on-trace interconnect with a metal trace respectively. The long axis of the elongated cross section of a pillar in the corner area of the chip points to chip's center area, and the long axis of the elongated cross section of a pillar in chip's peripheral edge area aligns perpendicular to the edge.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Hao-Yi Tsai, Jiun Yi Wu, Tin-Hao Kuo
  • Patent number: 8163601
    Abstract: A method of making a chip-exposed semiconductor package comprising the steps of: plating a plurality of electrode on a front face of each chip on a wafer; grinding a backside of the wafer and depositing a back metal then separating each chips; mounting the chips with the plating electrodes adhering onto a front face of a plurality of paddle of a leadframe; adhering a tape on the back metal and encapsulating with a molding compound; removing the tape and sawing through the leadframe and the molding compound to form a plurality of packaged semiconductor devices.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 24, 2012
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yuping Gong, Yan Xun Xue
  • Patent number: 8163643
    Abstract: A semiconductor device is disclosed that has a die and a substrate having a die attachment area with a perimeter. A layer of solder connects the substrate and the die, the solder layer having at least one vent channel connected to the perimeter of the die attachment area, wherein the maximum distance from any point in the solder layer to the nearest free surface of the solder at a vent channel or at the perimeter of the die is less than the distance from the center of the die to the nearest edge of the die.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 24, 2012
    Assignee: Linear Technology Corporation
    Inventors: Maurice O. Othieno, Ramaswamy Ranganathan, Frederick E. Beville, David A. Pruitt, William D. Griffitts
  • Patent number: 8163598
    Abstract: In one or more embodiments, a method comprising applying thermo compression to a package assembly including a lid, a die, and a package substrate to assemble the package assembly is disclosed. The method may include assembling the package assembly without coupling a biasing mechanism to the lid. Heat may be applied to a bond head coupled with a pick and place tool. Heat may be applied to a bond stage coupled to a carrier for holding the package assembly during processing. An adhesive applied to the lid or package substrate may be allowed to at least partially cure. The method may further include, in an oven, reflowing a thermal interface material (TIM) coupled to the lid and the die, curing the TIM, and/or curing the adhesive, without using clips.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 24, 2012
    Assignee: Intel Corporation
    Inventors: George Kostiew, Raj Bahadur, James Mellody, George Vakanas, Leonel Arana
  • Publication number: 20120094442
    Abstract: A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting a first adhesive on the ledge including inserting the bump into an opening in the first adhesive, mounting a conductive layer on the first adhesive including aligning the bump with an aperture in the conductive layer, then flowing the first adhesive between the bump and the conductive layer, solidifying the first adhesive, then providing a heat spreader that includes the bump, a base and the ledge, then mounting a second adhesive on the ledge, mounting a conductive trace that includes a pad and a terminal on the second adhesive, then mounting a semiconductor device on the bump in a cavity in the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Application
    Filed: December 26, 2011
    Publication date: April 19, 2012
    Inventors: Charles W.C. Lin, Chia-Chung Wang
  • Publication number: 20120094438
    Abstract: A frame includes heat slug pads coupled together in a N×M matrix such that singulation of the heat slug pads consists of one or more parallel passes across the frame. Each heat slug pad has a top exposed surface and a bottom interfacing surface. The bottom interfacing surface typically interfaces with a package. In some embodiments, the top exposed surface is modified. Alternatively, the bottom interfacing surface is modified. Alternatively, both surfaces are modified. A modified top exposed surface can include a pattern to increase the top exposed surface area. A modified bottom interfacing surface can include a pattern to increase the bottom interfacing surface area, provide reference points, or both. Alternatively or in addition to, the modified bottom interfacing surface can be plated to increase the bottom interfacing surface area. A patterned surface can be obtained via a stamping process or an etching process.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: UTAC THAI LIMITED
    Inventor: Saravuth Sirinorakul
  • Publication number: 20120091597
    Abstract: A stacked semiconductor package has a first semiconductor package including a first package substrate and a first semiconductor chip mounted on the first package substrate, a second semiconductor package including a second package substrate and a second semiconductor chip mounted on the second package substrate, and a plurality of connections electrically connecting the first and second semiconductor packages. The connections are disposed on an outer region of the first package substrate outside the first semiconductor chip. The connections are disposed along opposite first longer sides and opposite shorter second sides of the first package substrate. The heights of those connections disposed along each longer first side gradually vary from a central to an outer region (i.e., the ends) of the longer first side.
    Type: Application
    Filed: September 22, 2011
    Publication date: April 19, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Heung-kyu Kwon, Su-chang Lee
  • Publication number: 20120086117
    Abstract: A package embedded with a chip and a method of fabricating the package of embedded chip. The package of embedded chip includes a dielectric layer having a first surface and a second surface opposing the first surface; a plurality of conductive pillars formed in the dielectric layer and exposed from the second surface of the dielectric layer; a chip embedded in the dielectric layer; a circuit layer formed on the first surface of the dielectric layer; a plurality of conductive blind vias formed in the dielectric layer, allowing the circuit layer to be electrically connected via the conductive blind vias to the chip and each of the conductive pillars; and a first solder mask layer formed on the first surface of the dielectric layer and the circuit layer, thereby using conductive pillars to externally connect with other electronic devices as required to form a stacked structure. Therefore, the manufacturing process can be effectively simplified.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 12, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Hsin-Yi Liao, Shih-Kuang Chiu
  • Publication number: 20120088334
    Abstract: Disclosed herein is a method for manufacturing a semiconductor package which uses a base member 120 in which a first metal layer 113, a barrier layer 115, and a second metal layer 117 are stacked on both surface thereof in sequence based on an adhesive member 111 to simultaneously manufacture two printed circuit boards through a single sheet process, thereby making it possible to improve manufacturing efficiency; electrically connects a semiconductor chip 300 to a printed circuit board through a solder bump 250, thereby making it possible to implement a high-density package substrate; and forms a metal post 140 instead of a through hole to required in an interlayer circuit connection, thereby making it possible to reduce costs required in the processing/plating of the through hole.
    Type: Application
    Filed: January 14, 2011
    Publication date: April 12, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Mi Sun HWANG, Keung Jin SOHN, Eung Suek LEE, Myung Sam KANG
  • Patent number: 8153473
    Abstract: A module having a discrete passive element and a semiconductor device, and method of forming the same. In one embodiment, the module includes a patterned leadframe, a discrete passive element mounted on an upper surface of the leadframe, and a thermally conductive, electrically insulating material formed on an upper surface of the discrete passive element. The module also includes a semiconductor device bonded to an upper surface of the thermally conductive, electrically insulating material.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 10, 2012
    Assignee: Empirion, Inc.
    Inventors: Ashraf W. Lotfi, Douglas Dean Lopata, John David Weld, Mathew A. Wilkowski
  • Publication number: 20120083072
    Abstract: Performing electrolysis plating to a wiring is made possible, aiming at the increasing of pin count of a semiconductor device. Package substrate 3 by which ring shape common wiring 3p for electric supply was formed in the inner area of bonding lead 3j in device region 3v of main surface 3a is used. Since a plurality of first plating lines 3r and fourth plating lines 3u for electric supply connected to common wiring 3p can be arranged by this, the feeder for electrolysis plating can be arranged to all the land parts on the back. Hereby, it becomes possible to perform electrolysis plating to the wiring of main surface 3a of package substrate 3, and the back surface.
    Type: Application
    Filed: September 7, 2011
    Publication date: April 5, 2012
    Inventor: Tetsuharu TANOUE
  • Publication number: 20120083071
    Abstract: A semiconductor die package. The semiconductor die package comprises a semiconductor die and a molded clip structure comprising a clip structure and a first molding material covering at least a portion of the clip structure. The first molding material exposes an outer surface of the clip structure. The clip structure is electrically coupled to the semiconductor die. The semiconductor die package further comprises a leadframe structure comprising a die attach pad and a plurality of leads extending from the die attach pad. The semiconductor die is on the die attach pad of the leadframe structure. A second molding material covers at least a portion of the semiconductor die and the leadframe structure. The semiconductor die package also includes a heat slug and a thermally conductive material coupling the heat slug to the exposed surface of the clip structure.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 5, 2012
    Inventors: Maria Clemens Y. Quinones, Maria Cristina B. Estacio
  • Publication number: 20120074556
    Abstract: A semiconductor power module according to the present invention includes a base member, a semiconductor power device having a surface and a rear surface with the rear surface bonded to the base member, a metal block, having a surface and a rear surface with the rear surface bonded to the surface of the semiconductor power device, uprighted from the surface of the semiconductor power device in a direction separating from the base member and employed as a wiring member for the semiconductor power device, and an external terminal bonded to the surface of the metal block for supplying power to the semiconductor power device through the metal block.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 29, 2012
    Applicant: ROHM CO., LTD.
    Inventor: Toshio HANADA
  • Publication number: 20120074552
    Abstract: In a hybrid integrated circuit device, a circuit board on which an island portion of a lead is fixedly attached and a control board on which a control element and the like are mounted are disposed in an overlapping manner. The circuit board and the control board are integrally encapsulated with an encapsulating resin. A transistor disposed on an upper surface of the circuit board and a control element mounted on an upper surface of the control board are also covered by the encapsulating resin. Thus, a module in which an inverter circuit and a control circuit are integrally encapsulated with resin is provided.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 29, 2012
    Applicant: ON Semiconductor Trading, Ltd.
    Inventors: Shigeki Mashimo, Fumio Horiuchi, Kiyoaki Kudo, Akira Sakurai, Yuhki Inagaki
  • Publication number: 20120074548
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a package paddle; forming a lead adjacent the package paddle, the lead having a lead overhang protruding from a lead non-horizontal side and a lead ridge protruding from the lead non-horizontal side; mounting an integrated circuit over the package paddle; connecting an electrical connector to the lead and the integrated circuit; and forming an encapsulation over the integrated circuit, the lead, and the package paddle, the encapsulation under the lead overhang.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Zigmund Ramirez Camacho, Emmanuel Espiritu, Henry Descalzo Bathan
  • Publication number: 20120077316
    Abstract: An electrical connection includes a first wire having one end stitch bonded to a surface, such as the lead finger of a lead frame or the connection pad of a substrate. A second wire has a first end attached to the surface on a first side of the first wire and a second end attached to the surface on a second, opposing side of the first wire. The second wire acts as a brace that prevents the first wire from lifting off of the surface. If necessary, a third wire can be added that, like the second wire, acts as a brace to prevent the first wire from lifting off of the surface.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 29, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Meiquan HUANG, Hejin Liu, Hanmin Zhang
  • Publication number: 20120074547
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a package paddle; forming a lead adjacent the package paddle, the lead having a hole in a lead body top side and a lead ridge protruding from a lead non-horizontal side; mounting an integrated circuit over the package paddle; connecting an electrical connector to the lead and the integrated circuit; and forming a fill layer within the hole.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Byung Tai Do, Reza Argenty Pagaila, Linda Pei Ee Chua, Arnel Senosa Trasporto
  • Publication number: 20120077311
    Abstract: In one embodiment, a semiconductor package includes a first insulating body and a first semiconductor chip having a first active surface and a first back surface opposite the first active surface. The first semiconductor chip is disposed within the first insulating body. The first active surface is exposed by the first insulating body. The first back surface is substantially surrounded by the first insulating body. The semiconductor package includes a post within the first insulating body and adjacent to a side of the first semiconductor chip.
    Type: Application
    Filed: December 8, 2011
    Publication date: March 29, 2012
    Inventors: Pyoung-Wan Kim, Teak-Hoon Lee, Chul-Yong Jang
  • Publication number: 20120068341
    Abstract: A method for providing a known good integrated circuit die having enhanced planarity from a prepackaged integrated circuit die having a surface warpage such as in a ball grid array (BGA) package is provided. A partially-depackaged integrated circuit package is affixed to a substrate with a spacer element there between such that the active surface of the die within the partially depackaged integrated circuit die is “bowed” slightly upwardly to define a convex surface. The exposed encapsulant on the now-convex surface of the mounted, partially-depackaged integrated circuit package is then lapped or ground away to a predetermined depth so that an integrated circuit die is provided having an enhanced planarity and surface uniformity.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 22, 2012
    Applicant: Irvine Sensors Corporation
    Inventors: Peter Lieu, W. Eric Boyd
  • Publication number: 20120068318
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a package paddle having a hole, a recess, and a pad, the hole over the recess; mounting an integrated circuit to the package paddle; forming a lead having a bottom surface coplanar with a bottom surface of the pad, the lead isolated from the package paddle; attaching connectors directly on the integrated circuit, the lead, and the package paddle; and forming an encapsulation covering the integrated circuit and within the hole and the recess.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Publication number: 20120068317
    Abstract: A semiconductor device of an illustrative embodiment includes a die, a lead frame including a plurality of leads having substantial portions arranged in a lead plane and electrically connected to the die. Most preferably, the package includes at least a substantial portion of one conductive element arranged in a plane positioned adjacent the lead frame and substantially parallel to the lead plane, the conductive element being capacitively coupled to the leads such that the conductive element and at least one of the leads cooperatively define a controlled-impedance conduction path, and an encapsulant which encapsulates the leads and the conductive element. The leads and, desirably, the conductive element have respective connection regions which are not covered by the encapsulant.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Belgacem Haba, Brian Marcucci
  • Publication number: 20120068331
    Abstract: At least one microspring has applied thereover a laminate structure to provide: mechanical protection during handling and wafer processing, a spring spacer layer, strengthening of the anchor between spring and substrate, provision of a gap stop during spring deflection, and moisture and contaminant protection. A fully-formed laminate structure may be applied over the microspring structure or a partly-formed laminate structure may be applied over the microspring structure then cured or hardened. The tip portion of the microspring may protrude through the laminate structure and be exposed for contact or may be buried within the contact structure. The laminate structure may remain in place in the final microspring structure or be removed in whole or in part. The laminate structure may be photolithographically patternable material, patterned and etched to remove some or all of the structure, forming for example additional structural elements such as a gap stop for the microspring.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, Eric Peeters
  • Patent number: 8138079
    Abstract: A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 20, 2012
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Ying-Chih Chen, Mou-Shiung Lin
  • Publication number: 20120061835
    Abstract: A die structure includes a die and a metallization layer disposed over the front side of the die. The metallization layer includes copper. At least a part of the metallization layer has a rough surface profile. The part with the rough surface profile includes a wire bonding region, to which a wire bonding structure is to be bonded.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Khalil Hosseini, Frank Kahlmann, Josef Hoeglauer, Ralf Otremba, Georg Meyer-Berg
  • Publication number: 20120061814
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias formed through the substrate and first conductive layer formed over the substrate. A first semiconductor die is mounted over the substrate. A second semiconductor die can be mounted over the first semiconductor die. A leadframe interposer has a base plate and a plurality of base leads extending from the base plate. An etch-resistant conductive layer is formed over a surface of the base plate opposite the base leads. The leadframe is mounted to the substrate over the first semiconductor die. An encapsulant is deposited over the substrate and first semiconductor die. The base plate is removed while retaining the etch-resistant conductive layer and portion of the base plate opposite the base leads to electrically isolate the base leads. An interconnect structure is formed over a surface of the substrate opposite the base leads.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Henry D. Bathan, Emmanuel A. Espiritu
  • Publication number: 20120061811
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a heat sink plate and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the heat sink plate. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Peter Nelle, Matthias Stecher
  • Publication number: 20120061813
    Abstract: A package structure for DC-DC converter disclosed herein can reduce the number of encapsulated elements as a low-side MOSFET chip can be stacked above the high-side MOSFET chip of a first die pad, through die pads of different thicknesses or interposers with joint parts of different thicknesses; moreover, it further reduces the size of the entire semiconductor package as a number of bond wires are contained in the space between the controller and the low-side MOSFET chip. Moreover, electrical connection between the top source electrode pin and the bottom source electrode pin of the low-side MOSFET chip is realized with a metal joint plate, such that when the DC-DC converter is sealed with plastic, the metal joint plate can be exposed outside to improve the thermal performance and effectively reduce the thickness of the semiconductor package.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Inventors: Yueh-Se Ho, Yan Xun Xue, Jun Lu
  • Publication number: 20120064671
    Abstract: The invention relates to a method for producing chip elements provided with a groove, comprising the following steps: on an interconnect substrate, providing a conductive track arranged to connect a contact area of an active surface of a chip to an area corresponding to a first wall of the groove; growing a contact bump by electrodeposition on the conductive track at the level of the area corresponding to the first wall of the groove; assembling the chip on the substrate via its active surface so that a side wall of the chip forms the bottom of the groove; machining the chip via its rear surface in parallel to the substrate while measuring the distance between the rear surface of the chip and the contact bump; stopping machining when the measured distance reaches a required value; and assembling by bonding a plate to the rear surface of the chip so as to form a second wall of the groove.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Jean Brun, Régis Taillefer