Imager Including Structural Or Functional Details Of The Device (epo) Patents (Class 257/E27.13)

  • Publication number: 20110242385
    Abstract: A solid-state imaging device includes: a pixel circuit including a photoelectric conversion device and an amp device that outputs electric charges, which are photoelectrically converted by the photoelectric conversion device, through electric potential modulation of an output signal line; and a reading section including an AD (analog digital) conversion circuit that compares an output level of the signal line with a reference signal which changes with a regular slope and digitalizes an output signal on the basis of a timing at which a previously-defined relationship is satisfied between the output signal and the reference signal.
    Type: Application
    Filed: February 18, 2011
    Publication date: October 6, 2011
    Applicant: Sony Corporation
    Inventor: Toshiyuki Nishihara
  • Patent number: 8030726
    Abstract: A solid-state image sensor and a method for manufacturing thereof and a semiconductor device and a method for manufacturing thereof are provided. A semiconductor substrate is made to be the thin film without using an SOI substrate and cost is reduced. An edge detection portion having hardness larger than that of a semiconductor substrate is formed in the thickness direction of the semiconductor substrate; the semiconductor substrate is made to be the thin film until a position where the edge detection portion is exposed by chemical mechanical polishing from the rear surface; and means Tr1 for reading out a signal from a photoelectric conversion element PD formed in the substrate are formed on the front surface of the semiconductor substrate, where incident light is acquired from the rear surface of the semiconductor substrate.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 4, 2011
    Assignee: Sony Corporation
    Inventor: Hirofumi Sumi
  • Publication number: 20110234865
    Abstract: According to one embodiment, in a solid-state imaging device having color pixels in which color filters are arranged for respective pixels, two blocks of two pixels in the row direction×two pixels in the column direction of an X1 color are arranged on one diagonal line, and a block of two pixels in the row direction×two pixels in the column direction of one of an X2 color and an X3 color and a block of two pixels of the other color and two pixels of an X4 color arranged diagonally are arranged on the other diagonal line, and magnitudes of wavelengths satisfy the following relationship: X3 color<X1 color<X4 color<X2 color.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 29, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Takayuki OGASAHARA
  • Publication number: 20110234873
    Abstract: Disclosed herein is a solid-state image pickup element, including: a photoelectric conversion region; a transistor; an isolation region of a first conductivity type configured to isolate the photoelectric conversion region and the transistor from each other; a well region of the first conductivity type having the photoelectric conversion region, the transistor, and the isolation region of the first conductivity type formed therein; a contact portion configured to supply an electric potential used to fix the well region to a given electric potential; and an impurity region of the first conductivity type formed so as to extend in a depth direction from a surface of the isolation region of the first conductivity type in the isolation region of the first conductivity type between the contact portion and the photoelectric conversion region, and having a sufficiently higher impurity concentration than that of the isolation region of the first conductivity type.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: SONY CORPORATION
    Inventor: Shinya Yamakawa
  • Publication number: 20110227186
    Abstract: An image sensor package includes an image sensor die having an active side and a backside, wherein an image sensor device region and a bond pad are provided on the active side. A through-silicon-via (TSV) structure extending through the thickness of the image sensor die is provided to electrically connect the bond pad. A multi-layer re-distributed interconnection structure is provided on the backside of the image sensor die. A solder mask or passivation layer covers the multi-layer re-distributed interconnection structure.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 22, 2011
    Inventors: Shu-Ming Chang, Tien-Hao Huang
  • Publication number: 20110228151
    Abstract: There are provided a semiconductor substrate; a photoelectric conversion film stacked on a layer that is disposed on the light incidence side of the semiconductor substrate; signal reading unit formed in a surface portion of the semiconductor substrate, for reading out, as shot image signals, signals corresponding to signal charge amounts detected by the photoelectric conversion film according to incident light quantities; a transparent substrate bonded to a layer that is disposed on the light incidence side of the photoelectric conversion film with a transparent resin as an adhesive; and electric connection terminals which are connected to the signal reading unit by interconnections and which penetrate through the semiconductor substrate and are exposed in a surface, located on the opposite side to the side where the photoelectric conversion film is provided, of the semiconductor substrate.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Hiroshi INOMATA, Eiji WATANABE
  • Publication number: 20110227182
    Abstract: A solid-state image sensor including an effective pixel portion in which a plurality of pixels including photodiodes formed on a semiconductor substrate are arranged, and a peripheral portion arranged around the effective pixel portion, includes a plurality of metal wiring layers arranged above the semiconductor substrate, and a planarizing film covering a patterned metal wiring layer that is a top layer among the plurality of metal wiring layers, wherein in the effective pixel portion, the plurality of metal wiring layers have openings configured to guide light to the photodiodes, and in the peripheral portion, an opening is provided in the top layer, and at least one metal wiring layer between the top layer and the semiconductor substrate has a pattern which blocks light incident on the photodiodes via the opening in the top layer.
    Type: Application
    Filed: February 24, 2011
    Publication date: September 22, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takeshi Aoki
  • Patent number: 8017944
    Abstract: There is provided an electronic device in which the deterioration of the device is prevented and an aperture ratio is improved without using a black mask and without increasing the number of masks. In the electronic device, a first electrode (113) is disposed on another layer different from the layer on which a gate wiring (145) is disposed as a gate electrode, and a semiconductor layer of a pixel switching TFT is superimposed on the gate wiring (145) so as to be shielded from a light. Thus, the deterioration of the TFT is suppressed, and a high aperture ratio is realized.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: September 13, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kazutaka Inukai
  • Publication number: 20110204468
    Abstract: Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 25, 2011
    Inventors: Jae-ho Song, Chan Park, Young-hoon Park, Sang-il Jung, Jong-wook Hong, Keo-sung Park, Eun-soo Kim, Won-je Park, Jin-Hyeong Park, Dae-cheol Seong, Won-jeong Lee, Pu-ra Kim
  • Publication number: 20110204207
    Abstract: A photodetector circuit is provided that includes: a first wiring connected to an input terminal; a second wiring connected to an output terminal; and first and second photosensors each including a first terminal connected to the first wiring and a second terminal connected to the second wiring, wherein the first wiring and the second wiring are arranged in parallel, and the sum of resistance values of a first path from the input terminal to the output terminal via the first wiring, the first photosensor, and the second wiring is identical to the sum of resistance values of a second path from the input terminal to the output terminal via the first wiring, the second photosensor, and the second wiring.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 25, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA, Hikaru TAMURA
  • Publication number: 20110204237
    Abstract: Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
    Type: Application
    Filed: May 5, 2011
    Publication date: August 25, 2011
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Alexander Kalnitsky, Dong Zheng, Joy Jones, Xijian Lin, Gregory Cestra
  • Publication number: 20110204208
    Abstract: An organic photoelectric conversion device having: a first electrode; a second electrode opposing to the first electrode; and an organic material-containing photoelectric conversion layer provided between the first electrode and the second electrode, wherein an electron spin number of the photoelectric conversion layer is not more than 1.0×1015/cm3.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 25, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Tetsuro MITSUI, Takashi KOMIYAMA, Takuro SUGIYAMA
  • Publication number: 20110202323
    Abstract: An infrared photodetector comprising a thin contact layer substantially transparent to infrared light; an absorption layer positioned such that light admitted through the substantially transparent thin contact area passes through the absorption layer; the absorption layer being configured to utilize resonance to increase absorption efficiency; at least one reflective side wall adjacent to the absorption layer; the at least one reflective side wall being substantially non-parallel to the incident light; the at least one sidewall operating to reflect light into the absorption layer for absorption of infrared radiation; a top contact layer positioned adjacent to the active layer.
    Type: Application
    Filed: April 8, 2011
    Publication date: August 18, 2011
    Applicant: U.S.Government as represented by the Secretary of the Army
    Inventor: KWONG-KIT CHOI
  • Patent number: 7998786
    Abstract: Multi-layered wiring for a larger flat panel display is formed by depositing molybdenum on a substrate in presence of a precursor gas containing at least one oxygen, nitrogen and carbon to form a molybdenum layer. An aluminum layer is deposited on the molybdenum layer. Another metal layer may be formed on the aluminum layer. The molybdenum layer has a face-centered cubic (FCC) lattice structure with a preferred orientation of (111).
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Hun Lee, Jae-Kyeong Lee, Chang-Oh Jeong, Beom-Seok Cho
  • Publication number: 20110186917
    Abstract: A semiconductor device includes a substrate, a region including a semiconductor element on the substrate, and at least one guard ring structure provided around the region. The guard ring structure includes a guard ring and at least one portion comprised of the substrate.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 4, 2011
    Applicant: SONY CORPORATION
    Inventors: Kentaro Akiyama, Masaaki Takizawa
  • Patent number: 7989859
    Abstract: A backside illuminated imaging sensor includes a semiconductor layer, a metal interconnect layer and a silicide light reflecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel that includes a photodiode region is formed within the semiconductor layer. The metal interconnect layer is electrically coupled to the photodiode region and the silicide light reflecting layer is coupled between the metal interconnect layer and the front surface of the semiconductor layer. In operation, the photodiode region receives light from the back surface of the semiconductor layer, where a portion of the received light propagates through the photodiode region to the silicide light reflecting layer. The silicide light reflecting layer is configured to reflect the portion of light received from the photodiode region.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 2, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Howard E. Rhodes
  • Publication number: 20110175187
    Abstract: Certain embodiments provide a solid-state imaging device including: a photoelectric converting unit that includes a semiconductor layer of a second conductivity type provided on a semiconductor substrate of a first conductivity type, converts incident light entering a first surface of the semiconductor substrate into signal charges, and stores the signal charges; a readout circuit that reads the signal charges stored by the photoelectric converting unit; an antireflection structure that is provided on the first surface of the semiconductor substrate to cover the semiconductor layer of the photoelectric converting unit, includes a fixed charge film that retains fixed charges being non-signal charges, and prevents reflection of the incident light; and a hole storage region that is provided between the photoelectric converting unit and the antireflection structure, and stores holes being non-signal charges.
    Type: Application
    Filed: September 3, 2010
    Publication date: July 21, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Risako Ueno, Kazuhiro Suzuki, Hideyuki Funaki, Yoshinori Iida, Tatsuo Shimizu, Masamichi Suzuki
  • Publication number: 20110175833
    Abstract: One object is to provide a new electronic device which is configured so that a user can read data regardless of a location, input data by directly touching a keyboard displayed on a screen or indirectly touching the keyboard with a stylus pen or the like, and use the input data. A first transistor electrically connected to a reflective electrode and a photo sensor are included over one substrate. A touch-input button displayed on a first screen region of the display portion is displayed as a still image, and a video signal is output so that a moving image is displayed on a second screen region of the display portion. A video signal processing portion supplying different signals between the case where a still image is displayed on the display portion and the case where a moving image is displayed on the display portion is included.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 21, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki Kurokawa, Takayuki Ikeda, Hikaru Tamura, Shunpei Yamazaki
  • Publication number: 20110169989
    Abstract: A solid-state imaging apparatus capable of suppressing blooming and color mixing includes a plurality of pixels, each including a photoelectric converting portion and a transferring portion for transferring signal electrons from the photoelectric converting portion, wherein a plurality of the photoelectric converting portions is formed in a first conductivity type well region formed on the semiconductor substrate; a second conductivity type first impurity region is arranged between the adjacent photoelectric converting portions; a first conductivity type second impurity region having an impurity concentration higher than that of the well region is arranged between the first impurity region and each of the photoelectric converting portions; and a first conductivity type third impurity region having an impurity concentration higher than that of the well region and decreasing from the semiconductor substrate toward the surface direction of the apparatus between the semiconductor substrate and the first impurity
    Type: Application
    Filed: March 25, 2009
    Publication date: July 14, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shoji Kono, Toru Koizumi
  • Publication number: 20110164159
    Abstract: A solid state imaging device including: a plurality of sensor sections formed in a semiconductor substrate in order to convert incident light into an electric signal; a peripheral circuit section formed in the semiconductor substrate so as to be positioned beside the sensor sections; and a layer having negative fixed electric charges that is formed on a light incidence side of the sensor sections in order to form a hole accumulation layer on light receiving surfaces of the sensor sections.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Applicant: SONY CORPORATION
    Inventor: Yuko Ohgishi
  • Publication number: 20110156196
    Abstract: An object is to provide a solid state image pickup device and a camera which do not worsen a sensor performance in terms of an optical property, a saturated charge amount and the like. A solid state image sensor including a pixel region having a plurality of pixels includes at least a photodiode and an amplifying portion amplifying photocharges outputted from the photodiode in the pixel region, and further includes a well electrode for taking well potential of a well region in which the amplifying portion is arranged. Between the well electrode and the photodiode, no element isolation regions by an insulation film are arranged. Moreover, on the surface of a first semiconductor region in which the photodiode stores the charges, a second semiconductor layer of a conductivity type reverse to that of the first semiconductor region is arranged.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Toru Koizumi
  • Patent number: 7968365
    Abstract: A method for manufacturing a solid-state imaging device in which a charge generator that detects an electromagnetic wave and generates signal charges is formed on a semiconductor substrate and a negative-charge accumulated layer having negative fixed charges is formed above a detection plane of the charge generator, the method includes the steps of: forming an oxygen-feed film capable of feeding oxygen on the detection plane of the charge generator; forming a metal film that covers the oxygen-feed film on the detection plane of the charge generator; and performing heat treatment for the metal film in an inactive atmosphere to thereby form an oxide of the metal film between the metal film and the oxygen-feed film on the detection plane of the charge generator, the oxide being to serve as the negative-charge accumulated layer.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 28, 2011
    Assignee: Sony Corporation
    Inventors: Susumu Hiyama, Tomoyuki Hirano
  • Publication number: 20110149136
    Abstract: A pixel array in an image sensor includes multiple pixels arranged in rows and columns with each column of pixels electrically connected to a column output line. A sample and hold circuit is electrically connected to each column output line. In one embodiment in accordance with the invention, each sample and hold circuit includes one capacitor for receiving and storing a signal voltage and a second capacitor for receiving and storing a reset voltage. The sample and hold circuits are divided into distinct groups, with each group including two or more sample and hold circuits. A pair of buffers is electrically connected to each distinct group. One global bus receives the signal voltages from at least a portion of buffers and another global bus receives the reset voltages from at least a portion of the other buffers. The global buses can include one or more signal lines.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Inventor: Bruce V. Johnson
  • Publication number: 20110140222
    Abstract: A pixel cell is formed by locating a first passivation layer over the final layer of metal lines. Subsequently, the uneven, non-uniform passivation layer is subjected to a planarization process such as chemical mechanical polishing, mechanical abrasion, or etching. A spin-on glass layer may be deposited over the non-uniform passivation layer prior to planarization. Once a uniform, flat first passivation layer is achieved over the final metal, a second passivation layer, a color filter array, or a lens forming layer with uniform thickness is formed over the first passivation layer. The passivation layers can be oxide, nitride, a combination of oxide and nitride, or other suitable materials. The color filter array layer may also undergo a planarization process prior to formation of the lens forming layer. The present invention is also applicable to other devices.
    Type: Application
    Filed: January 24, 2011
    Publication date: June 16, 2011
    Applicant: ROUND ROCK RESEARCH, LLC
    Inventor: Howard E. Rhodes
  • Publication number: 20110139966
    Abstract: A solid-state imaging element includes a light-receiving element portion disposed in a semiconductor layer, an insulating layer made of a material having a refractive index n0, disposed over the semiconductor layer, and an antenna structure disposed over the light-receiving element portion and surrounded by an insulating layer. The antenna structure is made of a material having a refractive index higher than the refractive index of the insulating layer. The energy of light having entered the antenna structure and the insulating layer is concentrated in the light-receiving element portion.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 16, 2011
    Applicant: SONY CORPORATION
    Inventor: Koji Kikuchi
  • Publication number: 20110139962
    Abstract: Disclosed herein is a solid-state image pickup device, including: a plurality of pixels each composed of a photoelectric conversion element formed in a semiconductor substrate for generating and accumulating signal electric charges corresponding to a light quantity of incident light, and an electric charge reading portion formed on a front surface side of the semiconductor substrate for reading out the signal electric charges generated and accumulated in the photoelectric conversion element; a wiring for a substrate potential formed on a back surface side, becoming a light receiving surface, of the semiconductor substrate for supplying a desired voltage to the semiconductor substrate; and a back surface side contact portion through which the wiring for a substrate potential and the semiconductor substrate are electrically connected to each other.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 16, 2011
    Applicant: SONY CORPORATION
    Inventor: Bairo Masaaki
  • Patent number: 7960769
    Abstract: In a CMOS image sensor, an N-type semiconductor layer is formed on a P-type semiconductor substrate. P-type semiconductor regions are formed in one part of the semiconductor layer over the entire length of the thickness direction of the semiconductor layer in a lattice-like shape as viewed from above to compartment the semiconductor layer into a plurality of regions. Furthermore, a red filter, a green filter and a blue filter are provided in a red picture element, a green picture element and a blue picture element, respectively. Moreover, an N-type buried semiconductor layer being in contact with the semiconductor layer is formed in an immediately lower region of the red filter in an upper layer part of the semiconductor substrate.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Gaku Sudo
  • Publication number: 20110133302
    Abstract: Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods are disclosed herein. One embodiment, for example, is directed to a method of processing a microelectronic workpiece including a semiconductor substrate having a plurality of microelectronic dies. The individual dies include integrated circuitry and a terminal electrically coupled to the integrated circuitry. The method can include forming a first opening in the substrate from a back side of the substrate toward a front side and in alignment with the terminal. The first opening has a generally annular cross-sectional profile and separates an island of substrate material from the substrate. The method can also include depositing an insulating material into at least a portion of the first opening, and then removing the island of substrate material to form a second opening aligned with at least a portion of the terminal.
    Type: Application
    Filed: February 3, 2011
    Publication date: June 9, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Marc Sulfridge
  • Publication number: 20110133057
    Abstract: An anti-eclipse circuit for an imager is formed from pixel circuitry over the same semiconductor substrate as the imaging pixels. More specifically, two adjacent pixel circuits are modified to form an amplifier. One input of the amplifier is adapted to receive a reset signal from one of the pixel circuits while another input is adapted to be set at a predetermined offset voltage from the output of the amplifier. The amplifier is preferably a unity gain amplifier, so that the output of the amplifier set to a voltage level equal to the predetermined offset from the voltage level of the reset signal. Accordingly, the anti-eclipse circuit outputs a reference voltage at predetermined level from the reset voltage of a pixel and does not need to be calibrated for fabrication related variances in reset voltages.
    Type: Application
    Filed: February 17, 2011
    Publication date: June 9, 2011
    Inventor: Espen A. Olsen
  • Publication number: 20110134296
    Abstract: In a photoelectric conversion device, groups of unit pixels are arranged in a well, where each of the unit pixels includes photoelectric conversion elements, an amplifier transistor, and transfer transistors. The photoelectric conversion device includes a line used to supply a voltage to the well, a well-contact part used to connect the well-voltage-supply line to the well, and transfer-control lines used to control the transfer transistors. The transfer-control lines are symmetrically arranged with respect to the well-voltage-supply line in respective regions of the unit-pixel groups.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 9, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yukihiro Kuroda, Takanori Watanabe
  • Patent number: 7956433
    Abstract: The invention provides an image detector capable of improving the quality of detected images by reducing electronic noise, the image detector comprising, a plurality of scan lines disposed in parallel, a plurality of data lines provided so as to cross with the scan lines, thin film transistors connected with the scan and data lines and provided in matrix, sensor sections connected to the thin film transistor and provided in a matrix and a plurality of common lines disposed so as to apply bias voltage commonly to the sensor sections provided in matrix. Each of the scan lines, data lines and common lines are formed by metal layers different from each other and provided with insulating film(s) disposed therebetween.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 7, 2011
    Assignee: FUJIFILM Corporation
    Inventors: Yoshihiro Okada, Takuya Yoshimi
  • Publication number: 20110127629
    Abstract: A solid state imaging device including a semiconductor layer, an insulating material in an opening penetrating a surface of the semiconductor layer, and a protective film that is resistant to etching covering one end of the insulating material on an interior side of the semiconductor layer.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 2, 2011
    Applicant: SONY CORPORATION
    Inventors: Yuhi Yorikado, Shinji Miyazawa, Takeshi Yanagita
  • Publication number: 20110127409
    Abstract: A solid-state image pickup device including: a pixel array portion; a differential circuit; a reset voltage supplying section; and a common phase feedback circuit.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 2, 2011
    Applicant: SONY CORPORATION
    Inventors: Masaki Sakakibara, Yusuke Oike
  • Patent number: 7952096
    Abstract: An apparatus and method for fabricating an array of backside illuminated (“BSI”) image sensors is disclosed. Front side components of the BSI image sensors are formed into a front side of the array. A dopant layer is implanted into a backside of the array. The dopant layer establishes a dopant gradient to encourage photo-generated charge carriers to migrate towards the front side of the array. At least a portion of the dopant layer is annealed. A surface treatment is formed on the backside of the dopant layer to cure surface defects.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: May 31, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 7951629
    Abstract: A method of manufacturing a pixel structure is provided. A first patterned conductive layer including a gate and a data line is formed on a substrate. A gate insulating layer is formed to cover the first patterned conductive layer and a semiconductor channel layer is formed on the gate insulating layer above the gate. A second patterned conductive layer including a scan line, a common line, a source and a drain is formed on the gate insulating layer and the semiconductor channel layer. The scan line is connected to the gate and the common line is located above the data line. The source and drain are located on the semiconductor channel layer, and the source is connected to the data line. A passivation layer is formed on the substrate to cover the second patterned conductive layer. A pixel electrode connected to the drain is formed on the passivation layer.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 31, 2011
    Assignee: Au Optronics Corporation
    Inventors: Hsiang-Lin Lin, Sung-Kao Liu
  • Patent number: 7939358
    Abstract: In an example embodiment, an image sensor includes a semiconductor layer and isolation regions disposed in the semiconductor layer. The isolation regions define active regions of the semiconductor layer. The image sensor further includes photoelectric converters disposed in the semiconductor layer and at least one wiring layer disposed over a top surface of the semiconductor layer. The image sensor also includes color filters disposed below a bottom surface of the semiconductor layer and lenses disposed below the color filters. Each lens is arranged to concentrate incoming light into an area spanned by a corresponding photoelectric converter.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Young Choi
  • Publication number: 20110101479
    Abstract: A photovoltaic device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.
    Type: Application
    Filed: June 25, 2007
    Publication date: May 5, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Alexi Arango, Vladimir Bulovic, Vanessa Wood, Moungi G. Bawendi
  • Publication number: 20110101482
    Abstract: A method of manufacturing a backside illuminated image sensor includes providing a start material that has a layer of semiconductor material on a substrate. The layer of semiconductor material has a first face and a second, backside, face. The layer of semiconductor material is processed to form semiconductor devices in the layer adjacent the first face. At least a part of the substrate is removed to leave an exposed face. A passivation layer is formed on the exposed face, the passivation layer having negative fixed charges. The passivation layer can be Al2O3 (Sapphire). The passivation layer can have a thickness less than 5 ?m, advantageously less than 1 ?m, and more advantageously in the range 1 nm-150 nm. Another layer, or layers, can be provided on the passivation layer, including: an anti-reflective layer, a layer to improve passivation, a layer including a color filter pattern, a layer comprising a microlens.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 5, 2011
    Inventor: Guy MEYNANTS
  • Publication number: 20110089517
    Abstract: An image sensor includes a device wafer substrate of a device wafer, a device layer of the device wafer, and optionally a heat control structure and/or a heat sink. The device layer is disposed on a frontside of the device wafer substrate and includes a plurality of photosensitive elements disposed within a pixel array region and peripheral circuitry disposed within a peripheral circuits region. The photosensitive elements are sensitive to light incident on a backside of the device wafer substrate. The heat control structure is disposed within the device wafer substrate and thermally isolates the pixel array region from the peripheral circuits region to reduce heat transfer between the peripheral circuits region and the pixel array region. The heat sink conducts heat away from the device layer.
    Type: Application
    Filed: August 9, 2010
    Publication date: April 21, 2011
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Patent number: 7923732
    Abstract: Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-Gwang Jeong, Young-Wook Lee, Sang-Gab Kim, Woo-Geun Lee, Min-Seok Oh, Jang-Soo Kim, Kap-Soo Yoon, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Seung-Hwan Shim, Sung-Hoon Yang, Ki-Hun Jeong
  • Patent number: 7923727
    Abstract: This image sensor comprises a plurality of pixel electrodes, a photoelectric conversion film arranged on the plurality of pixel electrodes, a dummy electrode formed on an end of the photoelectric conversion film for ejecting charges generated in the vicinity of the end of the photoelectric conversion film and a first transistor for controlling ejection of charges flowing into the dummy electrode.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 12, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kaori Misawa
  • Publication number: 20110080511
    Abstract: An image sensor and a method of fabricating the same are provided. The image sensor includes a substrate having a pixel region including a plurality of unit pixels and a non-pixel region, at least one first well in the non-pixel region, an interconnect structure on a first side of the substrate, and a base well in the non-pixel region and between the first well and a second side of the substrate.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 7, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yun-Ki LEE, Duck-Hyung LEE
  • Patent number: 7919797
    Abstract: A trench isolation having a sidewall and bottom implanted region located within a substrate of a first conductivity type is disclosed. The sidewall and bottom implanted region is formed by an angled implant, a 90 degree implant, or a combination of an angled implant and a 90 degree implant, of dopants of the first conductivity type. The sidewall and bottom implanted region located adjacent the trench isolation reduces surface leakage and dark current.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 5, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Howard Rhodes, Chandra Mouli
  • Publication number: 20110073976
    Abstract: A color back-side illuminated image sensor including, on the side of the thin semiconductor layer opposite to the illuminated surface, periodic thickness unevennesses forming an optic network having characteristics which make it capable of reflecting a given wavelength chosen within the range of the wavelengths of an illuminating incident beam.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Applicant: STMicroelectronics S.A.
    Inventor: Jérôme Vaillant
  • Publication number: 20110073923
    Abstract: A solid-state imaging device includes a first-conductivity-type semiconductor well region, a plurality of pixels each of which is formed on the semiconductor well region and is composed of a photoelectric conversion portion and a pixel transistor, an element isolation region provided between the pixels and in the pixels, and an element isolation region being free from an insulation film and being provided between desired pixel transistors.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 31, 2011
    Applicant: SONY CORPORATION
    Inventors: Keiji Tatani, Fumihiko Koga, Takashi Nagano
  • Publication number: 20110068429
    Abstract: An image sensor array includes a substrate layer, a metal layer, an epitaxial layer, a plurality of imaging pixels, and a contact dummy pixel. The metal layer is disposed above the substrate layer. The epitaxial layer is disposed between the substrate layer and the metal layer. The imaging pixels are disposed within the epitaxial layer and each include a photosensitive element for collecting an image signal. The contact dummy pixel is dispose within the epitaxial layer and includes an electrical conducting path through the epitaxial layer. The electrical conducting path couples to the metal layer above the epitaxial layer.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 24, 2011
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Publication number: 20110068253
    Abstract: A photoelectric conversion apparatus of the present invention includes: a plurality of photoelectric conversion elements arranged on a substrate; a transistor for transferring a signal charge; and a plurality of transistors for reading out the signal charge transferred. The plurality of photoelectric conversion elements include a first photoelectric conversion element and a second photoelectric conversion element adjacent to each other. The photoelectric conversion apparatus of the present invention includes: a first semiconductor region having a first conductivity type arranged between the first photoelectric conversion element and the second photoelectric conversion element; and a second semiconductor region having the first conductivity type that is arranged on a region where the plurality of transistors are arranged and that has a width larger than that of the first semiconductor region of the first conductivity type.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 24, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yu Arishima, Yasuhiro Kawabata, Hideaki Takada, Seiichirou Sakai, Toru Koizumi
  • Publication number: 20110049664
    Abstract: Provided is an epitaxial substrate for a back-illuminated image sensor and a manufacturing method thereof that is capable of suppressing metal contaminations and reducing occurrence of a white spot defect of the image sensor, by maintaining a sufficient gettering performance in a device process. The present invention includes forming a gettering sink immediately below a surface of a high-oxygen silicon substrate, forming a first epitaxial layer on the surface of the high-oxygen silicon substrate, and forming a second epitaxial layer on the first epitaxial layer, in which the step of forming the gettering sink includes forming an oxygen precipitate region by applying a long-time heat treatment at a temperature of 650-1150° C. to the high-oxygen silicon substrate.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: SUMCO CORPORATION
    Inventor: Kazunari Kurita
  • Patent number: 7888150
    Abstract: The present invention provides a display comprising a panel having a display region for displaying an image and a peripheral region defined therein, a plurality of thin film transistors (TFTs) formed in the display region, p-type and n-type TFTs formed in the peripheral region, and at least one photo diode formed in a horizontal structure in the display or peripheral region; and a method of manufacturing the display. According to the present invention, n-type and p-type TFTs and a photo diode can be together formed without an additional process when forming the TFTs using a polycrystalline silicon thin film, and various peripheral circuits can be configured using such elements.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheol Min Kim, Gi Chang Lee, Yang Hwa Choi
  • Patent number: 7883928
    Abstract: An image sensor and fabricating method thereof are provided. The image sensor can include a color filter on a semiconductor substrate, a microlens on the color filter layer, and a carbon-doped low temperature oxide layer on the microlens.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 8, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Cheon Man Shim