Semiconductor Devices Responsive Or Sensitive To Electromagnetic Radiation (e.g., Infrared Radiation, Adapted For Conversion Of Radiation Into Electrical Energy Or For Control Of Electrical Energy By Such Radiation Processes, Or Apparatus Peculiar To Manufacture Or Treatment Of Such Devices, Or Of Parts Thereof) (epo) Patents (Class 257/E31.001)

  • Patent number: 8440496
    Abstract: Conductive material grids or lines embedded or partially embedded in a transparent substrate of a solar cell. The grids or lines can have a higher conductivity than the anode or they can have the same conductivity. The grids or lines increase the volume of the anode and, thus decrease sheet resistance of the same.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: May 14, 2013
    Assignee: Solarmer Energy, Inc.
    Inventors: Casey Scott Irvin, Vishal Shrotriya, Yue Wu
  • Patent number: 8431818
    Abstract: Improved photovoltaic devices and methods are disclosed. In one embodiment, an exemplary photovoltaic device includes a semiconductor layer and a light-responsive layer (which can be made, for example, of a semiconductor material) which form a junction, such as a p-n junction. The light-responsive layer can include a plurality of carbon nanostructures, such as carbon nanotubes, located therein. In many cases, the carbon nanostructures can provide a conductive pathway within the light-responsive layer. In another embodiment, an exemplary photovoltaic device can include a light-responsive layer made of a semiconductor material in which is embedded a plurality of semiconducting carbon nanostructures (such as p-type single-wall carbon nanotubes). The interfaces between the semiconductor material and the semiconducting carbon nanostructures can form p-n junctions.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 30, 2013
    Assignee: Vanguard Solar, Inc.
    Inventor: Dennis J. Flood
  • Patent number: 8426238
    Abstract: A method for manufacturing a solid-state image pickup device is provided. A first pixel isolation member is formed in a semiconductor substrate including pixels by implanting impurity ions in a first region of the substrate to separate pixels in the first region from each other when viewed from a surface of the substrate. A second pixel isolation member is also formed in the substrate by forming a trench in a second region of the substrate different from the first region to separate pixels in the second region from each other, and filling the trench with an electroconductive material harder to polish by CMP than the substrate. The thickness of the substrate is reduced by CMP on a rear surface of the substrate using the second pixel isolation member as a stopper.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: April 23, 2013
    Assignee: Sony Corporation
    Inventors: Kenichi Nishizawa, Hiroshi Takahashi
  • Patent number: 8426938
    Abstract: The image sensor includes a substrate, an insulating structure formed on a first surface of the substrate and including a first metal wiring layer exposed by a contact hole penetrating the substrate, a conductive spacer formed on sidewalls of the contact hole and electrically connected to the first metal wiring layer, and a pad formed on a second surface of the substrate and electrically connected to the first metal wiring layer.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung Jun Park, Yong Woo Lee, Chang Rok Moon
  • Patent number: 8426980
    Abstract: A chip-to-chip multi-signaling communication system with common conductive layer, which comprises a first chip, a second chip, and a common conductive layer, is disclosed. The first chip has at least a first metal pad and a second metal pad. The second chip has at least a first metal pad and a second metal pad. The common conductive layer is to a conductive material and glued directly to the first chip and the second chip. Wherein, the first metal pad of the second chip is aligned with the first metal pad of the first chip for receiving the signal from the first metal pad of the first chip through the common conductive layer. The interference generated by other pads of the first and the second chips is suppressed by the design of the pads and the common conductive layer.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 23, 2013
    Assignee: National Chiao Tung University
    Inventors: Chau-Chin Su, Ying-Chieh Ho, Po-Hsiang Huang
  • Publication number: 20130093932
    Abstract: Provided is an organic pixel, which includes a semiconductor substrate including a pixel circuit, an interconnection layer having a first contact and a first electrode formed on a semiconductor substrate, and an organic photo-diode formed on the interconnection layer. For example, the organic photo-diode includes an insulation layer formed on the first electrode, a second electrode and a photo-electric conversion region formed between the first contact, the insulation layer and the second electrode. The photo-electric conversion region includes an electron donating organic material and an electron accepting organic material. The organic photo-diode may further include a second contact electrically connected to the first contact. The horizontal distance between the second contacts and the insulation layer may be less than or equal to a few micrometers, for example, 10 micrometers.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Inventors: Kyo Jin CHOO, Hirosige GOTO, Kyu Sik KIM, Yun Kyung KIM, Kyung Bae PARK, Jin Ho SEO, Sang Chul SUL, Kyung Ho LEE, Kwang Hee LEE
  • Publication number: 20130088626
    Abstract: A method of manufacturing a solid-state image sensor having a photoelectric conversion portion includes forming a silicon nitride film by a low-pressure chemical vapor deposition method using hexachlorodisilane (Si2Cl6) as a material gas such that the silicon nitride film covers at least a part of the photoelectric conversion portion.
    Type: Application
    Filed: September 24, 2012
    Publication date: April 11, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Publication number: 20130082341
    Abstract: It is possible to reduce resistance variations of a member connecting a through-silicon via to a line and improve wiring reliability. A hole through which the through-silicon via is to be stretched is created and an over-etching process is carried out on a wiring layer including the line. Then, by embedding copper in the hole, the through-silicon via made of the copper can be created. After the through-silicon via has been connected to the line made of aluminum through the member which is a connection area, the connection area is alloyed in a thermal treatment in order to electrically connect the through-silicon via to the line. Thus, it is possible to reduce variations of a resistance between the through-silicon via and the line and also improve wiring reliability as well. The present technology can be applied to a semiconductor device and a method for manufacturing the semiconductor device.
    Type: Application
    Filed: August 16, 2012
    Publication date: April 4, 2013
    Applicant: SONY CORPORATION
    Inventors: Kan SHIMIZU, Keishi INOUE
  • Patent number: 8410561
    Abstract: An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 2, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Akira Sato, Toru Watanabe, Shogo Inaba, Takeshi Mori
  • Patent number: 8399282
    Abstract: A method for forming a pad in a wafer with a three-dimensional stacking structure is disclosed. The method includes bonding a device wafer that includes an Si substrate and a handling wafer, thinning a back side of the Si substrate, depositing an anti-reflective layer on the thinned back side of the Si substrate, depositing a back side dielectric layer on the anti-reflective layer, forming vias that pass through the anti-reflective layer and the back side dielectric layer and contact back sides of super contacts which are formed on the Si substrate, and forming a pad on the back side dielectric layer such that the pad is electrically connected to the vias.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: March 19, 2013
    Assignee: Siliconfile Technologies Inc.
    Inventors: Heui Gyun Ahn, Se Jung Oh, In Gyun Jeon, Jun Ho Won
  • Publication number: 20130065345
    Abstract: A photovoltaic device, such as a solar cell, having improved performance is provided. In one embodiment, the photovoltaic device includes a multimetal semiconductor alloy layer located on exposed portions of a front side surface of a semiconductor substrate. The multimetal semiconductor alloy layer includes at least a first elemental metal that forms an alloy with a semiconductor material, and a second elemental metal that differs from the first elemental metal and that does not form an alloy with a semiconductor material at the same temperature as the first elemental metal. The photovoltaic device further includes a copper-containing layer located atop the multimetal semiconductor alloy layer.
    Type: Application
    Filed: September 1, 2012
    Publication date: March 14, 2013
    Applicant: International Business Machines Corporation
    Inventor: Qiang Huang
  • Publication number: 20130062502
    Abstract: A photodetector includes a substrate and an insulating arrangement formed in the substrate. The insulating arrangement electrically insulates a confined region of the substrate. The confined region is configured to generate free charge carriers in response to an irradiation. The photodetector further includes a read-out electrode arrangement configured to provide a photocurrent formed by at least a portion of the free charge carriers that are generated in response to the irradiation. The photodetector also includes a biasing electrode arrangement that is electrically insulated against the confined region by means of the insulating arrangement. The biasing electrode arrangement is configured to cause an influence on a spatial charge carrier distribution within the confined region so that fewer of the free charge carriers recombine at boundaries of the confined region compared to an unbiased state.
    Type: Application
    Filed: June 29, 2012
    Publication date: March 14, 2013
    Applicant: Infineon Technologies AG
    Inventor: Thoralf Kautzsch
  • Patent number: 8395142
    Abstract: Provided is an infrared light detector 100 with a plurality of first electronic regions 10 which are electrically independent from each other and arranged in a specific direction, formed by dividing a single first electronic region. An outer electron system which is electrically connected to each of the plurality of first electronic regions 10 in a connected status is configured such that an electron energy level of excited sub-bands of each of the plurality of first electron regions 10 in a disconnected status is sufficiently higher than a Fermi level of each of second electronic regions 20 opposed to each of the first electronic regions 10 in a conduction channel 120.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: March 12, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Susumu Komiyama, Patrick Nickels
  • Patent number: 8394650
    Abstract: A laminated module or panel of solar cells and a laminating method for making same comprise a top layer of melt flowable optically transparent molecularly flexible thermoplastic and a rear sheet of melt flowable insulating molecularly flexible thermoplastic both melt flowing at a temperature between about 80° C. and 250° C. and having a low glass transition temperature. Solar cells are encapsulated by melt flowing the top layer and rear sheet, and electrical connections are provided between front and back contacts thereof. Light passing through the transparent top layer impinges upon the solar cells and the laminated module exhibits sufficient flexural modulus without cross-linking chemical curing. Electrical connections may be provided by melt flowable electrically conductive molecularly flexible thermoplastic adhesive or by metal strips or by both.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 12, 2013
    Assignee: Amerasia International Technology, Inc.
    Inventor: Kevin Kwong-Tai Chung
  • Publication number: 20130049149
    Abstract: Provided is a method of forming a pattern, including forming an actinic-ray- or radiation-sensitive resin composition into a film, the actinic-ray- or radiation-sensitive resin composition including a resin (A) including a repeating unit containing a group that when acted on by an acid, is decomposed to thereby produce a polar group and including an aromatic group, which resin when acted on by an acid, decreases its solubility in an organic solvent, a nonionic compound (B) that when exposed to actinic rays or radiation, generates an acid and a solvent (C), exposing the film to actinic rays or radiation, and developing the exposed film with a developer including an organic solvent to thereby form a negative pattern.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Keita KATO, Atsushi NAKAMURA
  • Publication number: 20130052773
    Abstract: A method for producing thin-film solar modules, comprising the following steps: providing flexible thin-film solar cells as separate segments in a container or on a web wound up to a roll, the flexible thin-film solar cells bearing with a first side against the web, wherein each of the flexible thin-film solar cells is designed to have a first electric pole and a second electric pole; transferring the flexible thin-film solar cells from the web to a first film web such that the first pole of a first flexible thin-film solar cell is positioned next to the second pole of a second thin-film solar cell; and applying electrically conductive contact strips to the first and second poles of the flexible thin-film solar cells in longitudinal and/or transverse direction relative to the conveying direction of the first film web.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 28, 2013
    Applicant: MUEHLBAUER AG
    Inventor: Volker Brod
  • Publication number: 20130052769
    Abstract: This invention comprises manufacture of photovoltaic cells by deposition of thin film photovoltaic junctions on metal foil substrates. The photovoltaic junctions may be heat treated if appropriate following deposition in a continuous fashion without deterioration of the metal support structure. In a separate operation, an interconnection substrate structure is provided, optionally in a continuous fashion. Multiple photovoltaic cells are then laminated to the interconnection substrate structure and conductive joining methods are employed to complete the array. In this way the interconnection substrate structure can be uniquely formulated from polymer-based materials employing optimal processing unique to polymeric materials. Furthermore, the photovoltaic junction and its metal foil support can be produced in bulk without the need to use the expensive and intricate material removal operations currently taught in the art to achieve series interconnections.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Inventor: Daniel Luch
  • Publication number: 20130048047
    Abstract: A method for producing a solar cell module is disclosed in which, in a step of bonding a tab wire to a given solar cell via an electrically conductive adhesive film, it is possible to prevent that the connection strength of the electrically conductive adhesive film to another solar cell to be connected to the tab wire is lowered. In the method for producing a solar cell module, a front surface electrode (11) of a given solar cell (2) and a reverse surface electrode (13) of another solar cell (2) are interconnected by a tab wire (3) affixed to the front surface electrode (11) and the reverse surface electrode (13) via thermally curable electrically conductive adhesive films (15).
    Type: Application
    Filed: September 5, 2011
    Publication date: February 28, 2013
    Applicant: SONY CHEMICAL & INFORMATION DEVICE CORPORATION
    Inventors: Takahiro Fujii, Yasuhiro Suga
  • Publication number: 20130049145
    Abstract: A radiation detector comprising a metal-carbon junction wherein a layer of carbon (11) is deposited on a layer of metal (12) having a work function higher than the work function of carbon (11), the junction having electrical characteristic of a diode.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Instytut Fizyki Jadrowej im. Henryka Niewodniczanskiego PAN
    Inventors: Jacek Andrzej JAWORSKI, Eric Fleury, Malgorzata Kac, Marzena Mitura-Nowak, Zaneta Swiatkowska-Warkocka
  • Patent number: 8378397
    Abstract: A solid-state imaging device includes an array of pixels, each pixel includes: a pixel electrode; an organic layer; a counter electrode; a sealing layer; a color filter; a readout circuit; and a light-collecting unit as defined herein, the photoelectric layer contains an organic p type semiconductor and an organic n type semiconductor, the organic layer further includes a charge blocking layer as defined herein, an ionization potential of the charge blocking layer and an electron affinity of the organic n type semiconductor in the photoelectric layer has a difference of at least 1 eV, and the sealing layer includes a first sealing sublayer formed by atomic layer deposition and a second sealing sublayer formed by physical vapor deposition and containing one of a metal oxide, a metal nitride, and a metal oxynitride.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: February 19, 2013
    Assignee: Fujifilm Corporation
    Inventors: Toshihiro Nakatani, Takashi Goto, Yoshiki Maehara, Hideyuki Suzuki
  • Patent number: 8377734
    Abstract: A method includes: a first step of forming a passivation film on a first surface of a crystalline silicon substrate of a first conductive type; a second step of diffusing an element of a second conductive type into a second surface of the crystalline silicon substrate by thermal diffusion to form a diffusion layer, whereby a pn junction is formed; a third step of forming an antireflection film on the diffusion layer; a fourth step of disposing a first electrode paste on the second surface of the crystalline silicon substrate; a fifth step of disposing a second electrode paste on the passivation film; and a sixth step of firing the first electrode paste and the second electrode paste to form electrodes.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: February 19, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoichiro Nishimoto
  • Patent number: 8377733
    Abstract: The present disclosure provides an image sensor device that exhibits improved quantum efficiency. For example, a backside illuminated (BSI) image sensor device is provided that includes a substrate having a front surface and a back surface; a light sensing region disposed at the front surface of the substrate; and an antireflective layer disposed over the back surface of the substrate. The antireflective layer has an index of refraction greater than or equal to about 2.2 and an extinction coefficient less than or equal to about 0.05 when measured at a wavelength less than 700 nm.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 8368163
    Abstract: A semiconductor component, especially a solar cell comprises a semiconductor substrate of a planar design having a first side and a second side lying opposite thereto, at least one contact structure arranged on at least one side of the semiconductor substrate, the at least one contact structure exhibiting a diffusion barrier to prevent the diffusion of ions from the contact structure into the semiconductor substrate.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 5, 2013
    Assignee: SolarWorld Innovations GmbH
    Inventors: Andreas Krause, Martin Kutzer, Michael Heemeier, Alexander Fülle, Holger Neuhaus
  • Publication number: 20130026589
    Abstract: A miniaturization active sensing module includes a substrate unit, an active sensing unit, and an optical unit. The substrate unit includes a substrate body, a plurality of first bottom conductive pads disposed on the bottom side of the substrate body, and a plurality of first conductive tracks embedded in the substrate body. The substrate body has at least one first groove formed therein. The active sensing unit includes at least one active sensing chip embedded in the first groove. The active sensing chip has at least one active sensing area and a plurality of electric conduction pads disposed on the top side thereof, and each first conductive track has two ends electrically contacted by one electric conduction pad and one first bottom conductive pad, respectively. The optical unit includes at least one optical element, disposed on the substrate body, for protecting the active sensing area.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 31, 2013
    Applicants: LITE-ON TECHNOLOGY CORPORATION, SILITEK ELECTRONIC (GUANGZHOU) CO., LTD.
    Inventors: YING-CHENG WU, KANG-WEI LEE
  • Publication number: 20130020663
    Abstract: A solid-state imaging device includes a semiconductor substrate and a photoelectric conversion layer above the semiconductor substrate. The photoelectric conversion layer includes a lower electrode having a side surface insulated with an insulating film, a photoelectric conversion film on the lower electrode, and an upper electrode. The upper electrode and the lower electrode sandwich the photoelectric conversion film. An upper surface of the lower electrode is lower than an upper surface of the insulating film.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventor: Kaori Takimoto
  • Patent number: 8357906
    Abstract: Charged particle beamlet lithography system for transferring a pattern to a surface of a target comprising a sensor for determining one or more characteristics of one or more charged particle beamlets. The sensor comprises a converter element for receiving charged particles and generating photons in response. The converter element comprises a surface for receiving one or more charged particle beamlets, the surface being provided with one or more cells for evaluating one or more individual beamlets. Each cell comprises a predetermined blocking pattern of one or more charged particle blocking structures forming multiple knife edges at transitions between blocking and non-blocking regions along a predetermined beamlet scan trajectory over the converter element surface. The converter element surface is covered with a coating layer substantially permeable for said charged particles and substantially impermeable for ambient light.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 22, 2013
    Assignee: Mapper Lithopraphy IP B.V.
    Inventor: Rabah Hanfoug
  • Patent number: 8357980
    Abstract: Various embodiments of the present invention are directed to photonic devices that can be used to collect and convert incident ER into surface plasmons that can be used to enhance the operation of microelectronic devices. In one embodiment of the present invention, a photonic device comprises a dielectric layer having a top surface and a bottom surface, and a planar nanowire network covering at least a portion of the top surface of the dielectric layer. The bottom surface of the dielectric layer is positioned on the top surface of a substrate, and the planar nanowire network is configured to convert incident electromagnetic radiation into surface plasmons that penetrate through the dielectric layer and into at least a portion of the substrate.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: January 22, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, David Fattal
  • Publication number: 20130000702
    Abstract: A photovoltaic device including a substrate, a first electrode layer over the substrate and a resistive p-type semiconductor layer over the first electrode layer. The device also includes a p-type absorber layer over the resistive p-type semiconductor layer, an n-type semiconductor layer over the p-type absorber layer and a second electrode layer over the n-type semiconductor layer. Additionally, a resistivity of the resistive p-type semiconductor layer is greater than a resistivity of the p-type absorber layer.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: MiaSole
    Inventors: Korhan Demirkan, Jochen Titus, Robert Tas
  • Publication number: 20130001730
    Abstract: A solid-state imaging device includes a semiconductor substrate, a connection portion, and one or more first photoelectric conversion units formed in the semiconductor substrate. The semiconductor substrate has a back side and a front side. The back side is a light incident surface, and the front side is a circuit-forming surface. The connection portion is connected to a contact plug that transfers signal charges generated on the back side of the semiconductor substrate into the semiconductor substrate. The connection portion has a peak of an impurity concentration distribution near an interface of the semiconductor substrate on the back side of the semiconductor substrate.
    Type: Application
    Filed: June 20, 2012
    Publication date: January 3, 2013
    Applicant: SONY CORPORATION
    Inventor: Yuki Miyanami
  • Publication number: 20120329202
    Abstract: The invention relates to the production of solar panels which comprise solar cells connected to one another. In this case, various layers are stacked onto one another, such as a film layer, bonding agent, insulating film, solar cells and a support layer. Combining all these layers to form the final panel is carried out on a carrier which stabilizes and supports the stack while it is conveyed past the various treatment stations. The turning over of the stack can also be carried out in a reliable manner by means of such a carrier without shifts between the various components with respect to one another occurring.
    Type: Application
    Filed: December 3, 2010
    Publication date: December 27, 2012
    Inventors: Jan Bakker, Abraham Jan Verschoor, Simon Den Hartigh
  • Publication number: 20120325318
    Abstract: A solar cell is provided that an extremely thin light absorber is formed between a n-type semiconductor layer and a p-type semiconductor layer such that the light absorber is used to absorb solar energy, while the p-type semiconductor layer may not absorb light. After separation of electrons and holes, the carriers will not recombine during the conduction, in order to avoid energy loss.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Hsin-Fei Meng, Hsiao-Wen Zan, Sheng-Fu Horng, Yu-Chiang Chao, Yuan-Pai Lin
  • Publication number: 20120325298
    Abstract: One aspect of the present invention includes method of making a photovoltaic device. The method includes disposing an absorber layer on a window layer, wherein the absorber layer includes a first region and a second region. The method includes disposing the first region adjacent to the window layer in a first environment including oxygen at a first partial pressure; and disposing the second region on the first region in a second environment including oxygen at a second partial pressure, wherein the first partial pressure is greater than the second partial pressure. One aspect of the present invention includes a photovoltaic device.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Neil Johnson, Bastiaan Arie Korevaar, Yu Zhao
  • Publication number: 20120325299
    Abstract: A photovoltaic cell for use in a solar cell panel and a method of forming a photovoltaic cell for use in a solar cell panel are disclosed. The photovoltaic cell includes a plurality of first layers of a first material having a first thickness and a first optical characteristic; a plurality of second layers of a second material having a second thickness and a second optical characteristic, each of the plurality of layers of the first material adjacent to two of the plurality of layers of the second material; wherein the second material includes a metal. In one aspect, the first material includes a semiconductor. In a further aspect, the plurality of first layers includes layers formed from two different semiconductor materials.
    Type: Application
    Filed: September 29, 2011
    Publication date: December 27, 2012
    Applicant: AEGIS TECHNOLOGIES GROUP, INC.
    Inventors: Domenico de Ceglia, Maria Antonietta Vincenti, Michael Scalora, Mirko Giuseppe Cappeddu
  • Publication number: 20120326260
    Abstract: A photodiode comprises a first terminal formed in a surface of a semiconductor substrate; a second terminal formed in the substrate surface and spaced apart from the first terminal; and a plurality of adjacent alternating N-type and P-type diffusion regions formed in the substrate surface between the first terminal and the second terminal.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: William French, Peter J. Hopper, Philipp Lindorfer, Vladislav Vashchenko
  • Patent number: 8338217
    Abstract: A method of fabricating a solar cell is provided. A first type semiconductor substrate having a first surface and a second surface is provided. A second type doped diffusion region is formed in parts of the first type semiconductor substrate. The second type doped diffusion region extends within the first type semiconductor substrate from the first surface. An anti-reflection coating (ARC) in contact with second type doped diffusion region is formed over the first surface. A conductive paste including conductive particles and dopant is formed over the ARC. A co-firing process for enabling the conductive paste to penetrate the ARC to form a first contact conductor embedded in the ARC is performed. During the co-firing process, the dopant diffuses into the second type doped diffusion region and a second type heavily doped diffusion region is formed. A second contact conductor is formed on the second surface.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: December 25, 2012
    Assignee: Au Optronics Corporation
    Inventors: Yen-Cheng Hu, Cheng-Chang Kuo, Jun-Wei Chen, Hsin-Feng Li, Jen-Chieh Chen, Zhen-Cheng Wu
  • Publication number: 20120318318
    Abstract: A photovoltaic module comprises a first bypass diode and a first group of solar cells connected to the first bypass diode. The first group of solar cells comprises a first solar cell, a second solar cell connected in series to the first solar cell, and a third solar cell connected in parallel to the first solar cell.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: SoloPower, Inc.
    Inventors: Burak Metin, Deepak Nayak, Mustafa Pinarbasi
  • Publication number: 20120305072
    Abstract: A method is provided for manufacturing a semiconductor device, wherein a p-type region and/or n-type pattern is formed on a surface of a semiconductor substrate, including ejecting at least one of etching paste, masking paste, doping paste, and electrode paste from an ejecting orifice of a nozzle toward the surface of the semiconductor substrate to form beads formed of the paste between the semiconductor substrate and the ejecting orifice and moving the semiconductor substrate relative to the nozzle thereby the paste is applied to the surface of the semiconductor substrate in a stripe shape.
    Type: Application
    Filed: December 9, 2010
    Publication date: December 6, 2012
    Applicant: Toray Industries, Inc.
    Inventors: Shigeo Fujimori, Yoshiyuki Kitamura, Takashi Ando, Tetsuya Goto
  • Patent number: 8324015
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 4, 2012
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David Smith, Peter Cousins
  • Patent number: 8324014
    Abstract: The present invention relates to a process for depositing films on a substrate by chemical vapour deposition (CVD) or physical vapour deposition (PVD), said process employing at least one boron compound. This process is particularly useful for fabricating photovoltaic solar cells. The invention also relates to the use of boron compounds for conferring optical and/or electrical properties on materials in a CVD or PVD deposition process. This process is also particularly useful for fabricating a photovoltaic solar cell.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: December 4, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Audrey Pinchart, Denis Jahan
  • Publication number: 20120301998
    Abstract: There is provided a method for manufacturing a solar cell, including the steps of: applying an antireflective-film-forming solution containing at least one of a metal oxide and a precursor of the metal oxide onto one main surface of a semiconductor substrate; and heating the semiconductor substrate having the antireflective-film-forming solution applied thereon, wherein in the step of applying an antireflective-film-forming solution, the antireflective-film-forming solution is applied in such an atmosphere that a water content is 0 g/m3 or more and 9.4 g/m3 or less.
    Type: Application
    Filed: December 21, 2010
    Publication date: November 29, 2012
    Inventor: Takahiro Hashimoto
  • Publication number: 20120301979
    Abstract: A system and method for preconditioning a photovoltaic device is described. One embodiment includes a method for preconditioning a photovoltaic device, the method comprising applying a forward-bias to the photovoltaic device, wherein a forward-bias current is equal to or greater than IMP(FB) for the photovoltaic device.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: ABOUND SOLAR, INC.
    Inventors: Michelle Propst, Lawrence J. Knipp
  • Publication number: 20120301978
    Abstract: There is provided a method for producing a photoelectric conversion device in which an object to be processed is processed by directing a light beam to a position determined based on information including temperature information and distortion information acquired in advance. There is also provided a light beam irradiation processing apparatus including a control portion capable of controlling a light beam generating portion and a drive portion in such a manner that a light beam can be directed to a position determined based on information including temperature information acquired by a temperature information acquiring portion and distortion information stored therein.
    Type: Application
    Filed: February 2, 2011
    Publication date: November 29, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Shinsuke Tachibana, Koji Shimada, Yoichi Shichijo
  • Publication number: 20120301989
    Abstract: A method for manufacturing a solid-state image pickup device that includes a pixel portion and a peripheral circuit portion, includes: forming a first insulating film in the pixel portion and the peripheral circuit portion, forming a second insulating film above the first insulating film, etching the second insulating film in photoelectric conversion elements, forming a metal film on the etched second insulating film in the photoelectric conversion elements and on the second insulating film in the peripheral circuit portion, and removing the metal film in the peripheral circuit portion and forming light-shielding films from the metal film in the photoelectric conversion elements.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 29, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kouhei Hashimoto, Masatsugu Itahashi
  • Patent number: 8318531
    Abstract: thermal management for large scale processing of CIS and/or CIGS based thin film is described. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, to at least initiate formation of a copper indium diselenide film.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 27, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8318526
    Abstract: A manufacturing method for manufacturing a light-sensing structure is provided. The manufacturing method includes the steps as follows. (a) A circuit layer is formed on an upper surface of a first substrate, wherein the first substrate includes at least one light-sensing device and the circuit layer includes at least one device structure and at least one release feature that is made of metal and is formed on part of the light-sensing device and the device structure. (b) A first light-filtering layer is formed on part of the circuit layer. (c) The release feature is removed by a wet-etching process.
    Type: Grant
    Filed: January 30, 2011
    Date of Patent: November 27, 2012
    Assignee: Memsor Corporation
    Inventors: Siew-Seong Tan, Yi-Hsiang Chiu, Jen-Chieh Chen
  • Publication number: 20120295394
    Abstract: A method for forming holes in the backside dielectric layer of solar cells for fabrication of rear point contact. The backside dielectric layer is coated with a layer of carbon. A shadow mask is placed over the carbon layer and reactive ion etch (RIE) is used to transfer the holes in the shadow mask to the carbon layer, to thereby form a carbon mask. The shadow mask is then removed and RIE is used to transfer the holes from the carbon mask to the dielectric layer. The carbon mask is then removed by, e.g., ashing.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventors: Young Kyu Cho, Judy Huang
  • Publication number: 20120291859
    Abstract: A photovoltaic device and methods of manufacturing a photovoltaic device are disclosed. A photovoltaic device includes a first photovoltaic cell, a second photovoltaic cell, a semiconductor layer, and a doped layer. The second photovoltaic cell is in electrical communication with the first photovoltaic cell. The semiconductor layer includes a textured portion. The doped layer is configured to create a back surface field, the doped layer disposed between a proximal layer of the second photovoltaic cell and the semiconductor layer.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Inventors: Christopher Vineis, Martin U. Pralle, James E. Carey
  • Publication number: 20120285520
    Abstract: A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Jeehwan Kim, Devendra K. Sadana, Kuen-Ting Shiu, Norma E. Sosa Cortes
  • Publication number: 20120285503
    Abstract: A first solar cell and a first solar cell are electrically connected to each other in such a manner that a conductive member made of a metal foil which is of the same type as that of the wiring member and one side portion of a wiring member are bonded together using a resin adhesive and the other side portion of the wiring member and the second solar cell are bonded together using a resin adhesive. A volume content of conductive particles in the resin adhesive is larger than a volume content of conductive particles in a resin adhesive bonding the wiring member and the solar cell together.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Yukihiro YOSHIMINE
  • Patent number: 8310003
    Abstract: A charge accumulation region of a first conductivity type is buried in a semiconductor substrate. A charge transfer destination diffusion layer of the first conductivity type is formed on a surface of the semiconductor substrate. A transfer gate electrode is formed on the charge accumulation region, and charge is transferred from the charge accumulation region to the charge transfer destination diffusion layer.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yusuke Kohyama