Electrically Programmable (eprom), I.e., Floating Gate Memory Structures (epo) Patents (Class 257/E21.68)
  • Patent number: 7807518
    Abstract: The present invention provides a semiconductor memory device having a capacitor electrode of a MOS capacitor formed in polygon and slanting faces enlarged toward an insulating film are provided therearound. A floating gate electrode is provided which extends from over a channel region of a MOSEFT to over corners of ends on the MOSFET side, of the capacitor electrode and which is opposite to the channel region and the capacitor electrode with a gate insulating film interposed therebetween.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 5, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Tomohiko Tatsumi
  • Publication number: 20100237398
    Abstract: A semiconductor storage device includes a semiconductor substrate, a first insulator, a laminated insulator including a second insulator having fixed charges more than those of the first insulator, a single-layer insulator, memory cells between the semiconductor substrate and the first insulator, each memory cells separated from an adjacent memory cell by a cavity portion and including a tunnel insulator, a charge accumulation layer, an insulator, and a control gate electrode, a first selection gate transistor between the semiconductor substrate and the first insulator, a second selection gate transistor between the semiconductor substrate and the first insulator, between one memory cell and the first selection gate transistor, and in contact with the laminated insulator on a first side face on a memory cell side thereof, and a high-voltage peripheral circuit transistor between the semiconductor substrate and the first insulator, and in contact with the single-layer insulator on a side face thereof.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 23, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi Kamigaichi, Satoshi Nagashima, Kenji Aoyama
  • Publication number: 20100227464
    Abstract: A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method subjects the second upper surface region to a chemical mechanical polishing process to remove the first elevated region, the second elevated region, and the third elevated region to cause formation of a substantially planarized second polysilicon layer free from the fill material.
    Type: Application
    Filed: December 24, 2009
    Publication date: September 9, 2010
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: LILY JIANG, MENG FENG CAI, JIAN GUANG CHANG
  • Publication number: 20100227465
    Abstract: A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region.
    Type: Application
    Filed: December 24, 2009
    Publication date: September 9, 2010
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: LILY JIANG, MENG FEN CAI, JIAN GUANG CHANG
  • Patent number: 7791127
    Abstract: A semiconductor memory includes: a first memory cell transistor including: a first floating gate electrode provided on and insulated from the substrate; and a first control gate electrode provided on and insulated from the first floating gate electrode; and a second memory cell transistor including: a second floating gate electrode provided on and insulated from the substrate, an upper surface being larger than a lower surface, and the upper surface being lower than an upper surface of the first floating gate electrode; and a second control gate electrode provided on and insulated from the second floating gate electrode.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Mizukami, Shigeru Kinoshita, Shigeyuki Takagi
  • Patent number: 7791126
    Abstract: A non-volatile memory device integrated on a semiconductor substrate of a first type of conductivity comprising a matrix of non-volatile memory cells organized in rows, called word lines, and columns, called bit lines, the device including a plurality of equidistantly spaced active areas with the non-volatile memory cells integrated therein, each non-volatile memory cell having a source region, a drain region and a floating gate electrode coupled to a control gate electrode, a group of the memory cells sharing a common source line of a second type of conductivity, an implanted region of said second type of conductivity inside at least one of the plurality of active areas in electric contact with the common source line, and at least one source contact aligned and in electric contact with the implanted region.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 7, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe Cina, Lorenzo Todaro
  • Patent number: 7776677
    Abstract: In one embodiment, an EEPROM device is formed to include a metal layer having an opening therethrough. The opening overlies a portion of a floating gate of the EEPROM device.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 17, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: John J. Naughton, Matthew Tyler
  • Patent number: 7772636
    Abstract: A nonvolatile semiconductor memory device includes a first dielectric layer formed on the major surface of a semiconductor substrate, a floating gate electrode layer formed on the first dielectric layer, a second dielectric layer obtained by sequentially forming, on the floating gate electrode layer, a lower dielectric film mainly containing silicon and nitrogen, an intermediate dielectric film, and an upper dielectric film mainly containing silicon and nitrogen, a control gate electrode layer formed on the second dielectric layer, and a buried dielectric layer formed by covering the two side surfaces in the gate width direction of the stacked structure including the above-mentioned layers. The nonvolatile semiconductor memory device further includes a silicon oxide film formed near the buried dielectric layer in the interface between the floating gate electrode layer and lower dielectric film.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirokazu Ishida, Masayuki Tanaka
  • Publication number: 20100187595
    Abstract: Nonvolatile memory devices and related methods of manufacturing the same are provided. A nonvolatile memory device includes a tunneling layer on a substrate, a floating gate on the tunneling layer, an inter-gate dielectric layer structure on the floating gate, and a control gate on the inter-gate dielectric layer structure. The inter-gate dielectric layer structure includes a first silicon oxide layer, a high dielectric layer on the first silicon oxide layer, and a second silicon oxide layer on the high dielectric layer opposite to the first silicon oxide layer The high dielectric layer may include first and second high dielectric layers laminated on each other, and the first high dielectric layer may have a lower density of electron trap sites than the second high dielectric layer and may have a larger energy band gap or conduction band-offset than the second high dielectric layer.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 29, 2010
    Inventors: Sung-Hae Lee, Byong-Sun Ju, Suk-Jin Chung, Young-Sun Kim
  • Publication number: 20100181620
    Abstract: A method of fabricating a memory device is provided that may begin with forming a layered gate stack overlying a semiconductor substrate and patterning a metal electrode layer stopping on the high-k gate dielectric layer of the layered gate stack to provide a first metal gate electrode and a second metal gate electrode on the semiconductor substrate. In a next process sequence, at least one spacer is formed on the first metal gate electrode overlying a portion of the high-k gate dielectric layer, wherein a remaining portion of the high-k gate dielectric is exposed. The remaining portion of the high-k gate dielectric layer is etched to provide a first high-k gate dielectric having a portion that extends beyond a sidewall of the first metal gate electrode and a second high-k gate dielectric having an edge that is aligned to a sidewall of the second metal gate electrode.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Chandrasekharan Kothandaraman, Chengwen Pei
  • Publication number: 20100184263
    Abstract: Flash memory devices include a pair of elongated, closely spaced-apart main active regions in a substrate. A sub active region is also provided in the substrate, extending between the pair of elongated, closely spaced-apart main active regions. A bit line contact plug is provided on, and electrically contacting, the sub active region and being at least as wide as the sub active region. An elongated bit line is provided on, and electrically contacting, the bit line contact plug remote from the sub active region.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 22, 2010
    Inventors: Jong-Sun Sel, Jung-Dal Choi
  • Patent number: 7759721
    Abstract: A non-volatile memory device comprises a substrate with the dielectric layer formed thereon. A control gate and a floating gate are then formed on top of the dielectric layer. Accordingly, a non-volatile memory device can be constructed using a single poly process that is compatible with conventional CMOS processes. In addition, an assist gate, or assist gates are formed on the dielectric layer next to and between the control gate and floating gate respectively. The assist gates are used to form inversion diffusion regions in the substrate. By using the assist gates to form inversion diffusion regions, the overall size of the device can be reduced, which can improve device density.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: July 20, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Chang Kuo, Chao-I Wu
  • Patent number: 7759722
    Abstract: When microfabrication is done, a reliable semiconductor device is offered. A semiconductor device has a semiconductor substrate which has a main front surface, a plurality of convex patterns formed on the main front surface of a semiconductor substrate so that each might have a floating gate and a control gate, a first insulating film formed so that the upper surface and the side surface of each of a plurality of convex patterns might be covered, and so that width might become large rather than the portion which covers the lower part side surface of a convex pattern in the portion which covers an upper part side surface, and a second insulating film that covers the upper surface and the side surface of the first insulating film so that the cavity between the adjacent convex patterns may be occluded. The position occluded by the second insulating film of a cavity is a position higher than the upper surface of a floating gate, and is a position lower than the upper surface of a control gate.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tatsunori Murata, Koyu Asai, Hiroaki Iuchi
  • Publication number: 20100176435
    Abstract: First gate electrodes of memory cell transistors are formed in series with each other on a semiconductor substrate. A second gate electrode of a first selection transistor is formed adjacent to one end of the first electrodes. A third gate electrode of a second selection transistor is formed adjacent to the second electrode. A fourth gate electrode of a peripheral transistor is formed on the substrate. First, second, and third sidewall films are formed on side surfaces of the second, third, and fourth gate electrodes, respectively. A film thickness of the third sidewall film is larger than that of the first and second sidewall films. A space between the first electrode and the second electrode is larger than a space between the first electrodes, and a space between the second electrode and the third electrode is larger than a space between the first electrode and the second electrode.
    Type: Application
    Filed: September 23, 2009
    Publication date: July 15, 2010
    Inventors: Atsuhiro Sato, Fumitaka Arai
  • Patent number: 7755132
    Abstract: In a nonvolatile memory using floating gates to store charge, individual floating gates are L-shaped. Orientations of L-shaped floating gates may alternate in the bit line direction and may also alternate in the word line direction. L-shaped floating gates are formed by etching conductive portions using etch masks of different patterns to obtain floating gates of different orientations.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: July 13, 2010
    Assignee: SanDisk Corporation
    Inventor: Nima Mokhlesi
  • Patent number: 7749837
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Patent number: 7749841
    Abstract: A method of fabricating a nonvolatile semiconductor memory device includes the steps of: (a) forming a layered dielectric film on the semiconductor substrate; (b) forming a first conductive film on the layered dielectric film; (c) forming a first dielectric film on the first conductive film; (d) patterning the first dielectric film and the first conductive film to form a layered pattern composed of first dielectric films and first conductive films; and (e) implanting a first impurity along a direction having an inclination angle to a normal direction to a principal plane of the semiconductor substrate by using the layered pattern as a mask to form a first impurity diffusion layer being the same in conductivity type as the semiconductor substrate, wherein, step (d) includes patterning the first dielectric film to form the first dielectric films having a shape with a width narrower in an upper surface than in a lower surface.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventor: Masatoshi Arai
  • Publication number: 20100163958
    Abstract: A single-poly EEPROM cell and a method for fabricating the same include a single floating gate formed in a single body; first and second read transistors sharing the single floating gate; and a control gate spaced apart from the first and second read transistors and overlapped with the floating gate. In the single-poly EEPROM structure, as a tunneling region is removed and a read PTR is additionally formed, a read margin can be enhanced without increase of overall area.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 1, 2010
    Inventor: Jong-Keon Choi
  • Patent number: 7741717
    Abstract: A metal line of a semiconductor device comprising contact plugs, a plurality of first trenches, first metal lines, a plurality of second trenches, and second metal lines. The contact plugs are formed over a semiconductor substrate and are insulated from each other by a first insulating layer. The plurality of first trenches are formed in the first insulating layer and are connected to first contact plugs of the contact plugs. The first metal lines are formed within the first trenches and are connected to the first contact plugs. The plurality of second trenches are formed over the first metal lines and the first insulating layer and comprise a second insulating layer connected to second contact plugs of the contact plugs. The second metal lines are formed within the second trenches and are connected to the second contact plugs.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Young Ok Hong, Dong Hwan Lee
  • Patent number: 7741177
    Abstract: A method of providing a memory cell comprises providing a semiconductor substrate including a body of a first conductivity type, first and second regions of a second conductivity type and a channel between the first and second regions; arranging a first insulator layer adjacent to the substrate; arranging a charge storage region adjacent to the first insulator layer; arranging a second insulator layer adjacent to the charge storage region; arranging a first conductive region adjacent to the second insulator layer; arranging a layer adjacent to the first conductive region; arranging a second conductive region adjacent to the layer; and increasing mechanical stress of at least one of the first and second conductive regions. The second conductive region overlaps the first conductive region at an overlap surface, and wherein a line perpendicular to the overlap surface intersects at least a portion of the charge storage region.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: June 22, 2010
    Inventor: Chih-Hsin Wang
  • Patent number: 7736973
    Abstract: Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming are provided. A charge storage layer is etched into strips extending across a substrate surface in a row direction with a tunnel dielectric layer therebetween. The resulting strips may be continuous in the row direction or may comprise individual charge storage regions if already divided along their length in the row direction. A second layer of dielectric material is formed along the sidewalls of the strips and over the tunnel dielectric layer in the spaces therebetween. The second layer is etched into regions overlaying the tunnel dielectric layer in the spaces between strips. An intermediate dielectric layer is formed along exposed portions of the sidewalls of the strips and over the second dielectric layer in the spaces therebetween. A layer of control gate material is deposited in the spaces between strips.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 15, 2010
    Assignee: SanDisk Corporation
    Inventors: Takashi Orimoto, George Matamis, James Kai
  • Patent number: 7736967
    Abstract: A structure and a manufacturing method for an OTP-EPROM in an embedded EEPROM integrated circuit structure. The structure has a substrate that includes a surface region. The structure has a gate dielectric is overlying the surface region. The structure also a first OTP-EPROM gate overlying the gate dielectric layer in a first cell region, and an EEPROM floating gate and a select gate overlying the gate dielectric layer in a second cell region. An insulating layer is overlying the first OTP-EPROM gate, the EEPROM floating gate and the select gate. An OTP-EPROM control gate is overlying the insulating layer and coupled to the first OTP-EPROM gate. An EEPROM control gate is overlying the insulating layer and coupled to the EEPROM floating gate.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: YiPeng Chan, ShengHe Huang, Jing Lu
  • Patent number: 7737483
    Abstract: A plug is formed by depositing a first material to partially fill an opening, leaving an unfilled portion with a lower aspect ratio than the original opening. A second material is then deposited to fill the remaining portion of the opening. The first material has good filling characteristics but has higher resistivity than the second material. The second material has low resistivity to give the plug low resistance.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 15, 2010
    Assignee: SanDisk Corporation
    Inventor: Masaaki Higashitani
  • Patent number: 7732261
    Abstract: In a memory cell array on a main surface of a semiconductor substrate, a floating gate electrode for accumulating charges for information is arranged. The floating gate electrode is covered with a cap insulating film and a pattern of a first insulating film formed thereon. Further, over the entire main surface of the semiconductor substrate, a second insulating film is deposited so that it covers the pattern of the first insulating film and a gate electrode. The second insulating film is formed by a silicon nitride film formed by a plasma CVD method. The first insulating film is formed by a silicon nitride film formed by a low-pressure CVD method. By the provision of such a first insulating film, it is possible to suppress or prevent water or hydrogen ions from diffusing to the floating gate electrode, and therefore, the data retention characteristics of a flash memory can be improved.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: June 8, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Kazuyoshi Shiba, Hideyuki Yashima
  • Patent number: 7728390
    Abstract: A method for preventing arcing during deep via plasma etching is provided. The method comprises forming a first patterned set of parallel conductive lines over a substrate and forming a plurality of semiconductor pillars on the first patterned set of parallel conductive lines and extending therefrom, wherein a pillar comprises a first barrier layer, an antifuse layer, a diode, and a second barrier layer, wherein an electric current flows through the diode upon a breakdown of the antifuse layer. The method further comprises depositing a dielectric between the plurality of semiconductor pillars, and plasma etching a deep via recess through the dielectric and through the underlying layer after the steps of forming a plurality of semiconductor pillars and depositing a dielectric. An embodiment of the invention comprises a memory array device.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: June 1, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Lan Kuo, Kern-Huat Ang
  • Patent number: 7728379
    Abstract: A semiconductor device includes: a semiconductor layer; an insulating film provided on the semiconductor layer; and a charge storage layer provided on the insulating film. The semiconductor layer has a channel formation region in its surface portion. The insulating film contains silicon, germanium, and oxygen. The charge storage layer is capable of storing charge supplied from the semiconductor layer through the insulating film. A method of manufacturing a semiconductor device includes: forming a silicon oxide film on a surface of a semiconductor layer; introducing germanium into the silicon oxide film; forming an insulating film containing silicon, germanium, and oxygen by heat treatment under oxidizing atmosphere; and forming a charge storage layer on the insulating film, the charge storage layer being capable of storing charge supplied from the semiconductor layer through the insulating layer.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 1, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takuya Konno, Yoshio Ozawa, Tetsuya Kai, Yasushi Nakasaki, Yuuichiro Mitani
  • Patent number: 7723188
    Abstract: A non-volatile memory device includes an upwardly protruding fin disposed on a substrate and a control gate electrode crossing the fin. A floating gate is interposed between the control gate electrode and the fin and includes a first storage gate and a second storage gate. The first storage gate is disposed on a sidewall of the fin, and the second storage gate is disposed on a top surface of the fin and is connected to the first storage gate. A first insulation layer is interposed between the first storage gate and the sidewall of the fin, and a second insulation layer is interposed between the second storage gate and the top surface of the fin. The second insulation layer is thinner than the first insulation layer. A blocking insulation pattern is interposed between the control gate electrode and the floating gate.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 25, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Gyun Kim, Ji-Hoon Park, Sang-Woo Kang, Sung-Woo Park
  • Patent number: 7723774
    Abstract: Nonvolatile flash memory systems and methods are disclosed having a semiconductor substrate of a first conductivity type, including non-diffused channel regions through which electron flow is induced by application of voltage to associated gate elements. A plurality of floating gates are spaced apart from one another and each insulated from the channel region. A plurality of control gates are spaced apart from one another and insulated from the channel region, with each control gate being located between a first floating gate and a second floating gate and capacitively coupled thereto to form a subcell. A plurality of spaced-apart assist gates are insulated from the channel region, with each assist gate being located between and insulated from adjacent subcells. The channel is formed of three regions, two beneath adjacent control gate elements as well as a third region between the first two and beneath an associated assist gate.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: May 25, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Changyuan Chen, Ya-Fen Lin, Dana Lee
  • Patent number: 7719050
    Abstract: A memory cell comprises a body of a semiconductor material having a first conductivity type. A conductor-filter system includes a first conductor having thermal charge carriers, and a filter contacting the first conductor and including dielectrics for providing a filtering function on the charge carriers of one polarity. The filter includes a first set of electrically alterable potential barriers. A conductor-insulator system includes a second conductor and a first insulator contacting the second conductor at an interface and having a second set of electrically alterable potential barriers. A first region is spaced-apart from the second conductor. A channel of the body is defined therebetween. A second insulator is adjacent to the first region. A charge storage region is disposed in between the first and the second insulators. A word-line has a first portion and a second portion comprising the first conductor disposed over and insulated from the body.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: May 18, 2010
    Inventor: Chih-Hsin Wang
  • Patent number: 7718488
    Abstract: Self-aligned split-gate flash memory cell array and process of fabrication in which erase and select gates are positioned on opposite sides of stacked floating and control gates, with source regions in the substrate beneath the erase gates, bit line diffusions which are partially overlapped by select gates at the ends of the rows of the cells. The floating and control gates are self-aligned with each other, and the erase and select gates are split from but self-aligned with the stacked gates. With the floating gates surrounded by the other gates and the source regions, high voltage coupling for both programming and erase operations is significantly enhanced. The memory cells are substantially smaller than prior art cells, and the array is biased so that all of the memory cells in it can be erased simultaneously, while programming is bit selectable.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chiou-Feng Chen, Prateep Tuntasood, Der-Tsyr Fan
  • Patent number: 7719049
    Abstract: The present invention relates to a flash memory device and a fabrication method thereof. A trench may be formed within a junction region between word lines by etching a semiconductor substrate between not only a word line and a select line, but also between adjacent word lines. Accordingly, the occurrence of a program disturbance phenomenon can be prevented as the injection of hot carriers into a program-inhibited cell is minimized in a program operation.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yoo Nam Jeon, Ki Seog Kim
  • Patent number: 7709321
    Abstract: A flash memory and a flash memory fabrication method for increasing the coupling ratio by HSG including forming a STI region on a silicon substrate to define an active region, forming a tunneling oxide layer on the active region, and depositing an amorphous silicon layer on the silicon substrate. The method also includes patterning the amorphous silicon layer along a bit line direction, forming an embossed silicon layer including HSGs on the patterned amorphous silicon layer, and sequentially depositing an ONO layer and a polysilicon layer for a control gate on the resulting structure. The method further includes forming a photoresist pattern on the polysilicon layer, and forming a control gate by etching the polysilicon layer using the photoresist pattern as a mask, and simultaneously forming a floating gate along the bit line.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: May 4, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jin Hyo Jung
  • Patent number: 7709307
    Abstract: A nonvolatile memory cell is disclosed, having first and second semiconductor islands at the same horizontal level and spaced a predetermined distance apart, the first semiconductor island providing a control gate and the second semiconductor island providing source and drain terminals; a gate dielectric layer on at least part of the first semiconductor island; a tunneling dielectric layer on at least part of the second semiconductor island; a floating gate on at least part of the gate dielectric layer and the tunneling dielectric layer; and a metal layer in electrical contact with the control gate and the source and drain terminals. In one advantageous embodiment, the nonvolatile memory cell may be manufactured using an “all-printed” process technology.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: May 4, 2010
    Assignee: Kovio, Inc.
    Inventors: Arvind Kamath, Patrick Smith, James Montague Cleeves
  • Patent number: 7704830
    Abstract: A self-aligned split gate bitcell includes first and second regions of charge storage material separated by a gap devoid of charge storage material. Spacers are formed along sidewalls of sacrificial layer extending above and on opposite sides of the bitcell stack, wherein the spacers are separated from one another by at least a gap length. Etching the bitcell stack, selective to the spacers, forms a gap that splits the bitcell stack into first and second gates which together form the split gate bitcell stack. A storage portion of bitcell stack is also etched, wherein etching extends the gap and separates the corresponding layer into first and second separate regions, the extended gap being devoid of charge storage material. Dielectric material is deposited over the gap and etched back to expose a top surface of the sacrificial layer, which is thereafter removed to expose sidewalls of the split gate bitcell stack.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: April 27, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Tushar P. Merchant, Ramachandran Muralidhar, Lakshmanna Vishnubhotla
  • Patent number: 7705395
    Abstract: Disclosed is a flash memory cell and method of manufacturing the same, and programming/erasing/reading method thereof. The flash memory cell comprises a first tunnel oxide film formed at a given region of a semiconductor substrate, a first floating gate formed on the first tunnel oxide film, a second tunnel oxide film formed over the semiconductor substrate and along one sidewall of the first floating gate, a second floating gate isolated from the first floating gate while contacting the second tunnel oxide film, a dielectric film formed on the first floating gate and the second floating gate, a control gate formed on the dielectric film, a first junction region formed in the semiconductor substrate below one side of the second tunnel oxide film, and a second junction region formed in the semiconductor substrate below one side of the first tunnel oxide film. Therefore, the present invention can implement 2-bit cell or 3-bit cell of a high density using the existing process technology.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: April 27, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Kee Park, Young Seon You, Yong Wook Kim, Yoo Nam Jeon
  • Publication number: 20100096685
    Abstract: In a method of making a semiconductor device, a gate dielectric is formed over the semiconductor body. A floating gate is formed over the gate dielectric, an insulating region over the floating gate, and a control gate over the insulating region. The gate dielectric, floating gate, insulating region, and control gate constitute a gate stack. A stress is caused in the gate stack, whereby the band gap of the gate dielectric is changed by the stress.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 22, 2010
    Inventors: Jiang Yan, Danny Pak-Chum Shum
  • Patent number: 7700473
    Abstract: A method for fabricating a gated semiconductor device, and the device resulting from performing the method. In a preferred embodiment, the method includes forming a hard mask for use in gate formation on one or more layers of alternately insulating and conducting material that have been formed on a substrate. The hard mask preferably includes three layers; a lower nitride layer, a middle oxide, and an upper nitride layer. In this embodiment, the middle oxide layer is formed with the rest of the hard mask, and then reduced in a lateral dimension, preferably using a DHF dip. A dielectric layer formed over the gate structure, including the hard mask, then etched back, self-aligns to be reduced-dimension oxide layer. In addition, where two conducting, that is gate layers are present, the lower layer is laterally reduced in dimension on at least one side to create an undercut.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chang Liu, Ming-Hui Shen, Chi-Hsin Lo, Chia-Shiung Tsai, Yi-Shin Chu
  • Patent number: 7696043
    Abstract: A method of manufacturing a flash memory device includes the steps of forming trenches by forming a tunnel oxide layer and a conductive layer for a floating gate over a semiconductor substrate, and then etching a portion of the conductive layer, the tunnel oxide layer and the semiconductor substrate to form the trenches, filling the trenches with an insulating layer to form isolation layers projecting above the floating gate, forming spacers on sidewalls of the isolation layers projecting above the floating gate, etching the conductive layer using the spacers as a mask, thereby forming a U-shaped conductive layer, removing the spacers, etching the top surface of the isolation layers, thereby controlling an Effective Field Height (EFH) of the isolation layer, and forming a dielectric layer and a conductive layer for a control gate on the resulting surface.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: April 13, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byoung Ki Lee
  • Publication number: 20100085811
    Abstract: A NAND flash memory cell string having scaled down select gates. The NAND flash memory cell string includes a first select gate that has a width of 140 nm or less and a plurality of wordlines that are coupled to the first select gate. Gates associated with the plurality of wordlines are formed of p+ polysilicon. A second select gate that has a width of 140 nm or less is coupled to the plurality of wordlines.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 8, 2010
    Inventors: YouSeok SUH, Shenqing FANG, Kuo-Tung CHANG
  • Patent number: 7692252
    Abstract: A semiconductor integrated circuit device includes a cell well, a memory cell array formed on the cell well and having a memory cell area and cell well contact area, first wiring bodies arranged in the memory cell area, and second wiring bodies arranged in the cell well contact area. The layout pattern of the second wiring bodies is the same as the layout pattern of the first wiring bodies. The cell well contact area comprises cell well contacts that have the same dopant type as the cell well and that function as source/drain regions of dummy transistors formed in the cell well contact area.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: April 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Sato, Kikuko Sugimae, Masayuki Ichige
  • Patent number: 7691710
    Abstract: A select gate structure for a non-volatile storage system include a select gate and a coupling electrode which are independently drivable. The coupling electrode is adjacent to a word line in a NAND string and has a voltage applied which reduces gate induced drain lowering (GIDL) program disturb of an adjacent unselected non-volatile storage element. In particular, an elevated voltage can be applied to the coupling electrode when the adjacent word line is used for programming. A reduced voltage is applied when a non-adjacent word line is used for programming. The voltage can also be set based on other programming criterion. The select gate is provided by a first conductive region while the coupling electrode is provided by a second conductive region formed over, and isolated from, the first conductive region.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: April 6, 2010
    Assignee: Sandisk Corporation
    Inventors: Nima Mokhlesi, Masaaki Higashitani
  • Patent number: 7687346
    Abstract: A semiconductor integrated circuit device includes first, second gate electrodes, first, second diffusion layers, contact electrodes electrically connected to the first diffusion layers, a first insulating film which has concave portions between the first and second gate electrodes and does not contain nitrogen as a main component, a second insulating film which is formed on the first insulating film and does not contain nitrogen as a main component, and a third insulating film formed on the first diffusion layers, first gate electrodes, second diffusion layers and second gate electrodes with the second insulating film disposed therebetween in a partial region. The second insulating film is formed to fill the concave portions and a portion between the first and second gate electrodes has a multi-layered structure containing at least the first and second insulating films.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: March 30, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Yoshio Ozawa
  • Patent number: 7687345
    Abstract: Disclosed are a flash memory device having a silicon-oxide-nitride-oxide-silicon (SONOS) structure and a method of manufacturing the same. The flash memory device includes source and drain diffusion regions separated from each other on opposite sides of a trench in an active region of a semiconductor substrate, a control gate inside the trench and protruding upward from the substrate, a charge storage layer between the control gate and an inner wall of the trench, and a pair of insulating spacers formed on opposite sidewalls of the control gate with the charge storage layer therebetween. Here, the charge storage layer has an oxide-nitride-oxide (ONO) structure. Further, the depth of the trench from the surface of the substrate is greater than that of each of the source and drain diffusion regions.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: March 30, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7683438
    Abstract: A nanocrystal memory element and a method for fabricating the same are proposed. The fabricating method involves selectively oxidizing polysilicon not disposed beneath and not covered with a plurality of metal nanocrystals, and leaving intact the polysilicon disposed beneath and thereby covered with the plurality of metal nanocrystals, with a view to forming double layered silicon-metal nanocrystals by self-alignment.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 23, 2010
    Assignee: Industrial Technology Research Institute
    Inventor: Pei-Ren Jeng
  • Patent number: 7679129
    Abstract: A memory device includes a substrate and a first dielectric layer formed over the substrate. At least two charge storage elements are formed over the first dielectric layer. The substrate and the first dielectric layer include a shallow trench filled with an oxide material. The oxide material formed in a center portion of the shallow trench is removed to provide a region with a substantially rectangular cross-section.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 16, 2010
    Assignees: Spansion LLC, GlobalFoundries
    Inventors: Angela T. Hui, Unsoon Kim, Hiroyuki Kinoshita, Kuo-Tung Chang
  • Patent number: 7670906
    Abstract: Embodiments relate to a flash memory device and to method of fabricating a flash memory device is disclosed. According to embodiments, a method may include forming a device isolation layer on a semiconductor substrate to define active regions, forming floating gate patterns on the active regions, forming the photoresist patterns on the device isolation layer such that the photoresist patterns have side walls higher than the floating gate patterns, forming spacer patterns at the side walls of the photoresist patterns such that the spacer patterns partially cover the floating gate patterns, and etching the floating gate patterns by a predetermined depth using the spacer patterns as an etching mask.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae-Woong Jeong
  • Publication number: 20100047981
    Abstract: There is provided a method of fabricating an EEPROM for forming a memory cell transistor and a selection transistor, the method includes: forming a first source region and a first drain region of the memory cell transistor; forming a first gate oxide film; forming a resist having at least one through hole on the first gate oxide film; adding conductivity type impurities through the through hole; partially removing the first gate oxide film and forming a tunnel oxide film in a region corresponding to the through hole; forming a floating gate electrode and a second gate oxide film formed on the floating gate electrode; forming a control gate electrode and a selection transistor gate electrode on the second gate oxide film and at a region in which the selection transistor is formed; and forming a second source region and a second drain region of the selection cell transistor.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 25, 2010
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Shinji Kyuutoku
  • Publication number: 20100041193
    Abstract: A nonvolatile semiconductor memory device includes a floating gate electrode which is selectively formed on a main surface of a first conductivity type with a first gate insulating film interposed therebetween, a control gate electrode formed on the floating gate electrode with a second gate insulating film interposed therebetween, and source/drain regions of a second conductivity type which are formed in the main surface of the substrate in correspondence with the respective gate electrodes. The first gate electrode has a three-layer structure in which a silicon nitride film is held between silicon oxide films, and the silicon nitride film includes triple coordinate nitrogen bonds.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 18, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Mitani, Daisuke Matsushita
  • Patent number: 7663172
    Abstract: Method and apparatus are described for a memory cell includes a substrate, a body extending vertically from the substrate, a first gate having a vertical member and a horizontal member and a second gate comprising a vertical member and a horizontal member. The first gate is disposed laterally from the body and the second gate is disposed laterally from the first gate.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: February 16, 2010
    Assignee: Intel Corporation
    Inventors: Jun-Fei Zheng, Pranav Kalavade
  • Patent number: 7655569
    Abstract: The invention prevents a wiring layer in a memory region from being exposed to prevent a change in wire resistance and degradation of reliability. A SiO2 film as an etching stopper film which transmits ultraviolet light is formed on pad electrodes and an interlayer insulation film. Then, the SiO2 film on the pad electrodes is etched selectively and the SiO2 film in an EPROM region is left. A silicon nitride film and a polyimide film are then formed on the SiO2 film and on the pad electrodes where the SiO2 film is removed, as a protection film which does not transmit ultraviolet light. The silicon nitride film and the polyimide film on the pad electrodes and in the EPROM region are then selectively removed by etching. Since the SiO2 film functions as an etching stopper at this time, the interlayer insulation film under the SiO2 film is prevented from being etched and a control gate line metal layer is prevented from being exposed.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: February 2, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Yuichi Inaba, Yutaka Yamada, Shigehiro Morikawa