Forming Bipolar Transistor By Formation Or Alteration Of Semiconductive Active Regions Patents (Class 438/309)
  • Publication number: 20100176362
    Abstract: Memory devices and methods for manufacturing are described herein. A memory device described herein includes a plurality of memory cells. Memory cells in the plurality of memory cells comprise respective bipolar junction transistors and memory elements. The bipolar junction transistors are arranged in a common collector configuration and include an emitter comprising doped polysilicon having a first conductivity type, the emitter contacting a corresponding word line in a plurality of word lines to define a pn junction. The bipolar junction transistors include a portion of the corresponding word line underlying the emitter acting as a base, and a collector comprising a portion of the single-crystalline substrate underlying the base.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicants: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Erh-Kun Lai, Bipin Rajendran, Chung H. Lam
  • Patent number: 7754540
    Abstract: A diode for alternating current (DIAC) electrostatic discharge (ESD) protection circuit is formed in a silicon germanium (SiGe) hetrojunction bipolar transistor (HBT) process that utilizes a very thin collector region. ESD protection for a pair of to-be-protected pads is provided by utilizing the base structures and the emitter structures of the SiGe transistors.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: July 13, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper
  • Patent number: 7755168
    Abstract: A semiconductor device has a first conductivity-type first semiconductor region, a second conductivity-type second semiconductor region and a second conductivity-type third semiconductor region both located on or above the first semiconductor region, a second conductivity-type fourth semiconductor region between the second semiconductor region and the third semiconductor region, and a first conductivity-type fifth semiconductor region between the third semiconductor region and the fourth semiconductor region. The fourth semiconductor region and the fifth semiconductor region are electrically connected by a conductive member. A distance between the fourth semiconductor region and the third semiconductor region is larger than a width of the fourth semiconductor region.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 13, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomohide Terashima, Shiori Uota
  • Patent number: 7755102
    Abstract: A multiple layer overvoltage protection device is provided. The method begins by providing a substrate having a first impurity concentration of a first conductivity type to define a mid-region layer. A dopant of a second conductivity type is introduced into the substrate with a second impurity concentration less than the first impurity concentration. An upper base region having a second type of conductivity is formed on the upper surface of the mid-region layer. A lower base region layer having a second type of conductivity is formed on a lower surface of the mid-region layer. A first emitter region having a first type of conductivity is formed on a surface of the upper base region layer. A first metal contact is coupled to the upper base region layer and a second metal contact is coupled to the lower base region layer.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: July 13, 2010
    Assignee: Vishay General Semiconductor LLC
    Inventors: Lung-Ching Kao, Pu-Ju Kung
  • Publication number: 20100167446
    Abstract: The present invention relates to a semiconductor device comprising a homojunction or a heterojunction with a controlled dopant (concentration) profile and a method of making the same. Accordingly, one aspect of the invention is a method for manufacturing a junction comprising forming a first semiconductor material comprising a first dopant having a first concentration and thereupon; forming a second semiconductor material comprising a second dopant, having a second concentration thereby forming a junction, and depositing by Atomic Layer Epitaxy or Vapor Phase Doping at least a fraction of a monolayer of a precursor suitable to form the second dopant on the first semiconductor material, prior to forming the second semiconductor material, thereby increasing the second concentration of the second dopant at the junction.
    Type: Application
    Filed: December 28, 2009
    Publication date: July 1, 2010
    Applicant: IMEC
    Inventors: Ngoc Duy Nguyen, Roger Loo, Matty Caymax
  • Publication number: 20100163872
    Abstract: A bipolar junction transistor and a method of manufacturing a bipolar junction transistor are disclosed. An exemplary bipolar junction transistor includes a second conductivity type base region in a first conductivity type substrate, step-shaped recesses in the base region, a polysilicon layer doped with a first conductivity type impurity in the step-shaped recesses, and a step-shaped emitter region between the polysilicon layer and the base region.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 1, 2010
    Inventor: Hyon Chol LIM
  • Patent number: 7745291
    Abstract: A method for fabricating a high-voltage transistor with an extended drain region includes forming in a semiconductor substrate of a first conductivity type, first and second trenches that define a mesa having respective first and second sidewalls partially filling each of the trenches with a dielectric material that covers the first and second sidewalls. The remaining portions of the trenches are then filled with a conductive material to form first and second field plates. Source and body regions are formed in an upper portion of the mesa, with the body region separating the source from a lower portion of the mesa. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 29, 2010
    Assignee: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 7718486
    Abstract: Methods and systems for fabricating integrated pairs of HBT/FET's are disclosed. One preferred embodiment comprises a method of fabricating an integrated pair of GaAs-based HBT and FET. The method comprises the steps of: growing a first set of epitaxial layers for fabricating the FET on a semi-insulating GaAs substrate; fabricating a highly doped thick GaAs layer serving as the cap layer for the FET and the subcollector layer for the HBT; and producing a second set of epitaxial layers for fabricating the HBT.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 18, 2010
    Assignee: Anadigics, Inc.
    Inventors: Oleh Krutko, Kezhou Xie, Mohsen Shokrani, Aditya Gupta, Boris Gedzberg
  • Patent number: 7719087
    Abstract: A semiconductor device includes: a GaAs chip; and a resin sealing the GaAs chip. The GaAs chip includes: a p-type GaAs layer; an n-type GaAs layer on the p-type GaAs layer; a metal electrode located on the n-type GaAs layer along an edge of the GaAs chip and to which a positive voltage is applied; a device region located in a central portion of the GaAs chip; a semi-insulating region located between the metal electrode and the device region and extending in the p-type GaAs layer and the n-type GaAs layer; and a connecting portion disposed outside the semi-insulating region and electrically connecting the p-type GaAs layer to the metal electrode.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 18, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Satoshi Suzuki
  • Patent number: 7719031
    Abstract: A bipolar transistor 120 comprises a substrate 1, a intrinsic base region 11 and an extrinsic base region 12. The intrinsic base region 11 comprises a silicon buffer layer 109 comprised of silicon which is formed on the substrate 1, and a composition-ratio graded base layer 111 which is formed on the silicon buffer layer and comprises silicon and at least germanium and where a composition ratio of the germanium to the silicon varies in a thickness direction of the composition-ratio graded base layer 111. The extrinsic base region 12 comprises an extrinsic base formation layer 113 comprised of silicon which is formed on the substrate and adjacent to the silicon buffer layer. And the thickness of the extrinsic base formation layer 113 is not less than 40 nm.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Tohru Saitoh, Takahiro Kawashima, Ken Idota, Yoshihiko Kanzawa, Teruhito Ohnishi
  • Patent number: 7713829
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7713887
    Abstract: A method for forming an isolation layer in a semiconductor device includes forming a trench in a semiconductor substrate, forming a first liner nitride layer on an exposed surface of the trench, forming a first high density plasma (HDP) oxide layer such that the first HDP oxide layer partially fills the trench to cover a bottom surface and a side surface of the trench and an upper surface of the first liner nitride layer, etching overhangs generated during the forming of the first HDP oxide layer by introducing a hydrofluoric acid (HF) solution into the semiconductor substrate, forming a second liner nitride layer over the first HDP oxide layer, removing the second liner nitride layer formed on the first HDP oxide layer while forming a second HDP oxide layer to fill the trench, and subjecting the second HDP oxide layer to planarization, so as to form a trench isolation layer.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 11, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 7709329
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: May 4, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Patent number: 7704824
    Abstract: The present invention provides a highly doped semiconductor layer. More specifically, the present invention provides a semiconductor layer that includes at least two impurities. Each impurity is introduced at a level below its respective degradation concentration. In this manner, the two or more impurities provide an additive conductivity to the semiconductor layer at a level above the conductivity possible with any one of the impurities alone, due to the detrimental effects that would be created by increasing the concentration of any one impurity beyond its degradation concentration.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: April 27, 2010
    Assignee: RF Micro Devices, Inc.
    Inventors: Matthew L. Seaford, Arthur E. Geiss, Wayne Lewis, Larry W. Kapitan, Thomas J. Rogers
  • Patent number: 7691716
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20100078724
    Abstract: A transistor-type protection device includes: a semiconductor substrate; a well including a first-conductivity-type semiconductor formed in the semiconductor substrate; a source region including a second-conductivity-type semiconductor formed in the well; a gate electrode formed above the well via a gate insulating film at one side of the source region; a drain region including the second-conductivity-type semiconductor formed within the well apart at one side of the gate electrode; and a resistive breakdown region including a second-conductivity-type semiconductor region in contact with the drain region at a predetermined distance apart from the well part immediately below the gate electrode, wherein a metallurgical junction form and a impurity concentration profile of the resistive breakdown region are determined so that a region not depleted at application of a drain bias when junction breakdown occurs in the drain region or the resistive breakdown region may remain in the resistive breakdown region.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: SONY CORPORATION
    Inventors: Tsutomu Imoto, Kouzou Mawatari
  • Patent number: 7687886
    Abstract: A heterojunction bipolar transistor (HBT) is provided with an improved on-state breakdown voltage VCE. The improvement of the on-state breakdown voltage for the HBT improves the output power characteristics of the HBT and the ability of the HBT to withstand large impedance mismatch (large VSWR). The improvement in the on-state breakdown voltage is related to the suppression of high electric fields adjacent a junction of a collector layer and a sub-collector layer forming a collector region of the HBT.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: March 30, 2010
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo
  • Patent number: 7678657
    Abstract: A system and method are disclosed for manufacturing an emitter structure in a complementary bipolar complementary metal oxide semiconductor (CBiCMOS) transistor manufacturing process. A protective layer is formed over an emitter layer in a transistor structure and lateral portions of the protective layer and the emitter layer are etched to form an emitter structure. An oxide layer is then deposited over the transistor structure and an etchback process is performed to remove portions of the oxide layer from the top of the protective layer. A source/drain implant process is then performed to implant an extrinsic base region of the transistor. The protective layer protects the emitter structure from the implant process. Then the protective layer is removed from the emitter structure.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: March 16, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Todd Patrick Thibeault, Steven J. Adler, Scott David Ruby
  • Patent number: 7674681
    Abstract: Disclosed are a semiconductor device and a method for manufacturing the same. The semiconductor device includes a semiconductor substrate including first and second well areas doped with second conductive ions, a third well area in the first well and doped with the second conductive ions, a base area in the third well and doped with first conductive ions, an emitter area in the third well and doped with the second conductive ions, an emitter electrode on the emitter area, a first contact plug in contact with the emitter electrode, a second contact plug in contact with the base area, a collector area in the second well and doped with the second conductive ions, and a third contact plug in contact with the collector area.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 9, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Woong Je Sung
  • Patent number: 7666749
    Abstract: Provided are a SiGe semiconductor device and a method of manufacturing the same.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 23, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hun Kim, Hyun Cheol Bae, Sang Heung Lee
  • Patent number: 7663220
    Abstract: A semiconductor module includes: a semiconductor element (13) having a working unit (11) and a guard ring unit (12); and heat radiation members (15, 14) arranged on an upper surface and a lower surface of the semiconductor element for cooling the semiconductor element. A passivation film (20) covers the guard ring but does not cover the working unit. The upper heat radiation member (15) is made of a flat metal plate connected to the working unit without contact with the passivation film. The upper heat radiation member is connected to the lower heat radiation member (14) in the thermo-conducting way.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: February 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Kitamura, Shinichi Yataka, Takao Endo, Yuujiro Tominaga, Toshihide Tanaka, Koichiro Sato
  • Patent number: 7655981
    Abstract: In accordance with an embodiment of the invention, a superjunction semiconductor device includes an active region and a termination region surrounding the active region. A central vertical axis of a boundary column of a second conductivity type material defines the boundary between the active region and the termination region. The active and termination regions include columns of first and second conductivity type material alternately arranged along a horizontal direction in a semiconductor region having top and bottom surfaces. At least one of the columns of the first conductivity type material in the termination region has a different width than a width of the columns of the first conductivity type material in the active region.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: February 2, 2010
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Jae-gil Lee, Jin-young Jung, Ho-cheol Jang
  • Publication number: 20100001290
    Abstract: A semiconductor crystal includes a recombination-inhibiting semiconductor layer (17) of a second conductive type that is disposed in the vicinity of the surface between a base contact region (16) and emitter regions (14) and that separates the semiconductor surface having a large number of surface states from the portion that primarily conducts the positive hole electric current and the electron current. Recombination is inhibited, and the current amplification factor is thereby improved and the ON voltage reduced.
    Type: Application
    Filed: June 9, 2006
    Publication date: January 7, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Ken-ichi Nonaka
  • Publication number: 20100001319
    Abstract: The invention concerns a heterojunction bipolar transistor comprising a support, and epitaxially grown from said support, at least: one collecting, respectively emitting, layer; at least one base layer; and at least one emitting, respectively collecting, layer. The collecting, respectively emitting, layer comprises: at least one first undercoat contacted with said base layer, substantially of similar composition as said emitting, respectively collecting, layer; and at least one second undercoat on the side opposite said base layer relative to said first undercoat.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 7, 2010
    Inventors: Jean-Luc Pélouard, Melania Lijadi, Christophe Dupuis, Fabrice Pardo, Philippe Bove
  • Publication number: 20090321879
    Abstract: High frequency performance of (e.g., silicon) bipolar devices (100, 100?) is improved by reducing the extrinsic base resistance Rbx. Emitter (160), base (161) and collector (190) are formed in or on a semiconductor substrate (110). The emitter contact (154) has a portion (154?) that overhangs a portion (1293, 293?) of the extrinsic base contact (129), thereby forming a cave-like cavity (181, 181?) between the overhanging portion (154?) of the emitter contact (154) and the underlying regions (1293, 1293?) of the extrinsic base contact (129). When the emitter contact and the extrinsic base contact are silicided, some of the metal atoms forming the silicide penetrate into the cavity (181, 181?) so that the highly conductive silicided extrinsic base contact extends under the edge of the emitter contact (154?) closer to the base (161, 163) itself, thereby reducing Rbx. Smaller Rbx provides transistors with higher fMAX.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jay P. John, James A. Kirchgessner, Vishal P. Trivedi
  • Patent number: 7638404
    Abstract: A method for forming a low temperature polysilicon thin film transistor with a low doped drain structure comprises: a) forming a polysilicon island on a substrate; b) forming a dielectric layer, a metal layer and a cap layer in sequence cover to the polysilicon island; c) forming a photo-resist patterened layer on the cap layer; d) removing the portion of the metal layer and the portion of the cap layer which are uncovered by the photo-resist patterned layer, and the remaining metal layer is uncovered by the remaining cap layer with a predetermined distance at the same side; e) performing a high concentration ion-doping using the metal layer as a mask; f) removing the portion of the metal layer uncovered by the remaining cap layer; and g) performing a low concentration ion-doping using the metal layer as a mask.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: December 29, 2009
    Assignee: AU Optronics Corp.
    Inventor: Yi-Sheng Cheng
  • Patent number: 7638820
    Abstract: Provided is a process for forming a contact for a compound semiconductor device without electrically shorting the device. In one embodiment, a highly doped compound semiconductor material is electrically connected to a compound semiconductor material of the, same conductivity type through an opening in a compound semiconductor material of the opposite conductivity type. Another embodiment discloses a transistor including multiple compound semiconductor layers where a highly doped compound semiconductor material is electrically connected to a compound semiconductor layer of the same conductivity type through an opening in a compound semiconductor layer of the opposite conductivity type. Embodiments further include metal contacts electrically connected to the highly doped compound semiconductor material. A substantially planar semiconductor device is disclosed. In embodiments, the compound semiconductor material may be silicon carbide.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: December 29, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Martin E. Kordesch, Howard D. Bartlow, Richard L. Woodin
  • Publication number: 20090315145
    Abstract: By providing a novel bipolar device design implementation, a standard CMOS process (105-109) can be used unchanged to fabricate useful bipolar transistors (80) and other bipolar devices having adjustable properties by partially blocking the P or N well doping (25) used for the transistor base (581). This provides a hump-shaped base (583, 584) region with an adjustable base width (79), thereby achieving, for example, higher gain than can be obtained with the unmodified CMOS process (101-104) alone. By further partially blocking the source/drain doping step (107) used to form the emitter (74) of the bipolar transistor (80), the emitter shape and effective base width (79) can be further varied to provide additional control over the bipolar device (80) properties. The embodiments thus include prescribed modifications to the masks (57, 62, 72, 46) associated with the bipolar device (80) that are configured to obtain desired device properties.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Bernhard H. Grote, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20090317983
    Abstract: In a bipolar silicon carbide semiconductor device in which an electron and a hole recombine with each other during current passage within a silicon carbide epitaxial film grown from a surface of a silicon carbide single crystal substrate, an object described herein is the reduction of defects which are the nuclei of a stacking fault which is expanded by current passage, thereby suppressing the increase of the forward voltage of the bipolar silicon carbide semiconductor device. In a method for producing a bipolar silicon carbide semiconductor device, the device is subjected to a thermal treatment at a temperature of 300° C. or higher in the final step of production. Preferably, the above-mentioned thermal treatment is carried out after the formation of electrodes and then the resulting bipolar silicon carbide semiconductor device is mounted in a package.
    Type: Application
    Filed: September 1, 2006
    Publication date: December 24, 2009
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Masahiro Nagano, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii
  • Patent number: 7633122
    Abstract: A trench MOSFET includes mesa regions between the trenches. The mesa regions are connected to an emitter electrode to fix the mesa region potential so that the mesa regions do not form a floating structure. P-type base regions are distributed in the mesa regions, and the distributed p-type base regions (e.g., the limited regions in the mesa regions) are provided with an emitter structure. The trench MOSFET can lower the switching losses, reducing the total losses while suppressing the ON-state voltage drop of the trench IGBT as low as the ON-state voltage drop of the IEGT, and improving the turn-on characteristics thereof. The trench MOSFET also can reduce the capacitance between the gates and the emitter thereof, since the regions where the gate electrode faces the emitter structure are reduced. The trench MOSFET can have trench gate structures set at a narrow interval to relax the electric field localization to the bottom portions of the trenches and obtain a high breakdown voltage.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: December 15, 2009
    Inventor: Masahito Otsuki
  • Patent number: 7622357
    Abstract: The present invention relates to a device structure that comprises a substrate with front and back surfaces, and at least one semiconductor device with a first conductive structure located in the substrate and a second conductive structure located thereover. A first conductive contact is located over the front surface of the substrate and laterally offset from the first conductive structure. The first conductive contact is electrically connected to the first conductive structure by a conductive path that extends: (1) from the first conductive structure through the substrate to the back surface, (2) across the back surface, and (3) from the back surface through the substrate to the first conductive contact on the front surface. Further, a second conductive contact is located over the front surface and is electrically connected to the second conductive structure. The conductive path can be formed by lithography and etching followed by metal deposition.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kunal Vaed, Jae-Sung Rieh, Richard P. Volant, Francois Pagette
  • Patent number: 7618871
    Abstract: For the production of an improved bipolar transistor comprising a low-resistance base terminal, a dielectric layer is deposited over the semiconductor substrate and is highly doped via an implantation mask. In a subsequent controlled thermal step, the dopant is then indiffused into the semiconductor substrate from the dielectric layer serving as a dopant repository. This gives rise to a low-resistance region with which the extrinsic base can be defined carefully.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 17, 2009
    Assignee: Austriamicrosystems AG
    Inventors: Gerald Meinhardt, Jochen Kraft
  • Patent number: 7615455
    Abstract: A bipolar transistor having a base region resting by its lower surface on a collector region and surrounded with a first insulating layer, a base contact conductive region in contact with an external upper peripheral region of the base region, a second insulating region in contact with an intermediary upper peripheral region of the base region, an emitter region in contact with the central portion of the base region. The level of the central portion is higher than the level of the intermediary portion.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 10, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Pascal Chevalier, Alain Chantre
  • Patent number: 7611953
    Abstract: A bipolar transistor has a collector that is contacted directly beneath a base-collector junction by metallization to reduce collector resistance. A conventional reach-through and buried layer, as well as their associated resistance, are eliminated. The transistor is well isolated, nearly eliminating well-to-substrate capacitance and device-to-device leakage current. The structure provides for improved electrical performance, including improved fT, Fmax and drive current.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: David C. Ahlgren, Gregory G. Freeman, Francois Pagette, Christopher M. Schnabel, Anna W. Topol
  • Patent number: 7605046
    Abstract: The invention relates to an active matrix structure and method for manufacturing the active matrix structure for a display device, wherein the structure includes: providing a matrix substrate with a number of row lines and a number of column lines, with each point of intersection between one of the row lines and one of the column lines being assigned a passage through the matrix substrate for generating a pixel, depositing a layer of p-silicon on the matrix substrate, for each pixel, creating an n+-doped region in the p-silicon, which n+-doped region is provided from the passage as far as a free surface of the p-silicon layer, and creating a p+-doped region within the n+-doped region such that a layer of the n+-doped region remains, and applying a layer made of a matrix material which has particles of electronic ink contained therein, or an organic light-emitting diode layer on a free surface of the final structure resulting from step c).
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 20, 2009
    Inventor: Ludger Marwitz
  • Patent number: 7598148
    Abstract: The present invention refers to a method for preparing a non-self-aligned heterojunction bipolar transistor comprising: preparing a patterned emitter metal on an emitter epi layer of a HBT epi structure on a substrate; preparing an emitter epitaxy below the emitter metal; applying a resist layer on the top surface covering the emitter metal and emitter epitaxy, and the base layer; applying lithography leaving the emitter epitaxy and the emitter metal covered by the resist vertically with a width pD and leaving a pattern according to the mask in the resist; removing the remaining resist and the base metal covering the resist defining a base metal, the base metal being spaced from the emitter epitaxy and the emitter metal by a distance xD. The present invention refers to a non-self-aligned heterojunction bipolar transistor as prepared by this method.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: October 6, 2009
    Inventor: Charles H. Fields
  • Publication number: 20090246928
    Abstract: Disclosed is a semiconductor device with a bipolar transistor and method of fabricating the same. The device may include a collector region in a semiconductor substrate. A base pattern may be disposed on the collector region. A hard mask pattern may be disposed on the base pattern. The hard mask pattern may include a buffering insulation pattern and a flatness stopping pattern stacked in sequence. An emitter electrode may be disposed in a hole that locally exposes the base pattern, penetrating the hard mask pattern. A base electrode may contact an outer sidewall of the hard mask pattern and may be disposed on the base pattern. The flatness stopping pattern may contain an insulative material with etching selectivity to the buffering insulation pattern, the emitter electrode, and the base electrode.
    Type: Application
    Filed: June 2, 2009
    Publication date: October 1, 2009
    Inventor: Bong-Gil Yang
  • Patent number: 7595249
    Abstract: A method for fabricating a bipolar transistor includes forming a vertical sequence of semiconductor layers, forming an implant mask on the last formed semiconductor layer, and implanting dopant ions into a portion of one or more of the semiconductor layers. The sequence of semiconductor layers includes a collector layer, a base layer that is in contact with the collector layer, and an emitter layer that is in contact with the base layer. The implanting uses a process in which the implant mask stops dopant ions from penetrating into a portion of the sequence of layers.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 29, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Young-Kai Chen, Lay-Lay Chua, Vincent Etienne Houtsma, Rose Fasano Kopf, Andreas Leven, Chun-Ting Liu, Wei-Jer Sung, Yang Yang
  • Publication number: 20090231034
    Abstract: Disclosed is a device structure using an inverse-mode cascoded Silicon-Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) beneficial in applications requiring radiation hardened circuitry. The device comprises a forward-mode common-emitter HBT cascoded with a common-base inverse-mode HBT, sharing a common sub-collector. An exemplary device was measured to have over 20 dB of current gain, and over 30 dB of power gain at 10 GHz, thus demonstrating the use of these circuits for high-frequency circuit applications. In addition, the radiation response and voltage limits were characterized and showed to have negligible performance effects in typical operating conditions. Due to the unique topology, the disclosed device has the benefit of being a more compact cascode design and the additional benefit of providing significantly improved radiation tolerance.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 17, 2009
    Inventors: Tushar K. Thrivikraman, Aravind Appaswamy, John D. Cressler
  • Patent number: 7579230
    Abstract: A high voltage BICMOS device and a method for manufacturing the same, which may improve the reliability of the device by securing a distance between adjacent DUF regions, are provided. The high voltage BICOMOS device includes: a reverse diffusion under field (DUF) region formed by patterning a predetermined region of a semiconductor substrate; a diffusion under field (DUF) region formed in the substrate adjacent to the reverse DUF region; a spacer formed at a sidewall of the reverse DUF region; an epitaxial layer formed on an entire surface of the substrate; and a well region formed in contact with the DUF region.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 25, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Publication number: 20090200641
    Abstract: The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region, a base region and a collector region (1, 2, 3) of, respectively, a first conductivity type, a second conductivity type opposite to the first conductivity type, and the first conductivity type. One of the emitter or collector regions (1, 3) comprises a nanowire (30). The base region (2) has been formed from a layer (20) at the surface of the semiconductor body (12); the other one (3, 1) of the emitter or collector regions (1, 3) has been formed in the semiconductor body (12) below the base region (2). The emitter or collector region (1, 3) comprising the nanowire (30) has been provided on the surface of the semiconductor body (12) such that its longitudinal axis extends perpendicularly to the surface.
    Type: Application
    Filed: July 7, 2005
    Publication date: August 13, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Godefridus Adrianus Maria Hurkx, Prabhat Agarwal, Abraham Rudolf Balkenende, Petrus Hubertus Cornelis Magnee, Melanie Maria Hubertina Wagemans, Erik Petrus Antonius Maria Bakkers, Erwin Hijzen
  • Patent number: 7564117
    Abstract: Methods of forming and structures of a relatively large bipolar transistor is provided. The method includes forming a collector in a semiconductor region. Forming a base contiguous with a portion of the collector. Forming a plurality of emitters contiguous with portions of the base. Forming a common emitter interconnect and forming ballast emitter resistors for select emitters. Each ballast emitter resistor is coupled between an associated emitter and the common emitter interconnect. Each ballast resistor is further formed to have a selected resistance value. The selected resistance value of each ballast resistor is selected so the values of the ballast resistors vary in a two dimensional direction in relation to a working surface of the bipolar transistor.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 21, 2009
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7563685
    Abstract: The invention relates to NPN and PNP bipolar transistors and to a method for the production thereof, said transistors being characterised by a particularly high collector-emitter and collector-base blocking voltage. The blocking voltage is increased by a particular doping profile. An NPN bipolar transistor comprises a p-doped substrate (1), a trenched n-doped layer (3) forming the collector, a p-doped layer (7) which is arranged above the trenched n-doped layer and is made of a base and an n-doped layer which is arranged within the p-doped layer and forms an emitter of the transistor. A spatial charge area (RLZ 1) is formed between the p-doped layer and the trenched n-doped layer and a second spatial charge area (RLZ 2) is formed between the trenched n-doped layer and the p-doped substrate, which expands in the vertical direction on the collector when the transistor is operated with an increasing potential.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: July 21, 2009
    Assignee: Prema-Semiconductor GmbH
    Inventors: Hartmut Grützediek, Michael Rammensee, Joachim Scheerer
  • Publication number: 20090179303
    Abstract: A vertical heterobipolar transistor comprising a substrate of semiconductor material of a first conductivity type and an insulation region provided therein, a first semiconductor electrode arranged in an opening of the insulation region and comprising monocrystalline semiconductor material of a second conductivity type, which is either in the form of a collector or an emitter, and which has a first heightwise portion and an adjoining second heightwise portion which is further away from the substrate interior in a heightwise direction, wherein only the first heightwise portion is enclosed by the insulation region in lateral directions perpendicular to the heightwise direction, a second semiconductor electrode of semiconductor material of the second conductivity type, which is in the form of the other type of semiconductor electrode, a base of monocrystalline semiconductor material of the first conductivity type, and a base connection region having a monocrystalline portion which in a lateral direction laterall
    Type: Application
    Filed: December 12, 2005
    Publication date: July 16, 2009
    Inventors: Bernd Heinemann, Holger Rücker, Jürgen Drews, Steffen Marschmayer
  • Patent number: 7550790
    Abstract: A D/A conversion circuit with a small area is provided. In the D/A conversion circuit, according to a digital signal transmitted from address lines of an address decoder, one of four gradation voltage lines is selected. A circuit including two N-channel TFTs is connected in series to a circuit including two P-channel TFT, and a circuit including the circuits connected in series to each other is connected in parallel to each of the gradation voltage lines. Further, an arrangement of the circuit including the two N-channel TFTs and the circuit including the two P-channel TFTs is reversed for every gradation voltage line. By this, the crossings of wiring lines in the D/A conversion circuit becomes small and the area can be made small.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: June 23, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Mitsuaki Osame, Yukio Tanaka, Munehiro Azami, Naoko Yano, Shou Nagao
  • Patent number: 7544572
    Abstract: A multiple operating mode transistor is provided in which multiple channels having different respective operational characteristics are employed. Multiple channels have threshold voltages that are independently adjustable. The independent adjustment of the threshold voltage includes providing at least one of different respective doping concentrations in the different channels, different respective gate dielectric thicknesses for the different gate dielectrics separating the channels, and different respective silicon channel thicknesses for the different channels.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: June 9, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James Pan, John Pellerin
  • Patent number: 7541248
    Abstract: An integrated semiconductor device containing semiconductor elements that have respective desired on-resistances and breakdown voltages achieves appropriate characteristics as a whole of the integrated semiconductor element. The integrated semiconductor device includes a plurality of semiconductor elements formed in a semiconductor layer and each having a source of an n type semiconductor, a drain of the n type semiconductor and a back gate of a p type semiconductor between the source and the drain. At least a predetermined part of the drain of one semiconductor element and a predetermined part of the drain of another semiconductor element have respective impurity concentrations different from each other.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: June 2, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Tetsuya Nitta, Tomohide Terashima
  • Patent number: 7538395
    Abstract: In one embodiment, the ESD device uses highly doped P and N regions deep within the ESD device to form a zener diode that has a controlled breakdown voltage.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 26, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Thomas Keena, Ki Chang, Francine Y. Robb, Mingjiao Liu, Ali Salih, John Michael Parsey, Jr., George Chang
  • Publication number: 20090108749
    Abstract: A transistor capable of modulating, at low voltages, a large current flowing between an emitter electrode and a collector electrode. A process of producing the transistor, a light-emitting device comprising the transistor, and a display comprising the transistor. The transistor comprises an emitter electrode and a collector electrode. Between the emitter electrode and the collector electrode are situated a semiconductor layer and a sheet base electrode. It is preferred that the semiconductor layer be situated between the emitter electrode and the base electrode and also between the collector electrode and the base electrode to constitute a second semiconductor layer and a first semiconductor layer, respectively. It is also preferred that the thickness of the base electrode be 80 nm or less. Furthermore, a dark current suppressor layer is situated at least between the emitter electrode and the base electrode, or between the collector electrode and the base electrode.
    Type: Application
    Filed: March 22, 2007
    Publication date: April 30, 2009
    Applicants: Osaka University, Sumitomo Chemical Company, Ltd., Dai Nippon Printing Co. Ltd., Ricoh Company Ltd.
    Inventors: Masaaki Yokoyama, Kenichi Nakayama
  • Patent number: 7521328
    Abstract: A bipolar transistor and method of fabricating the same is disclosed. Particularly, a bipolar transistor may have an emitter and a collector diffusion layer in the sidewalls and the bottom of a device isolation trench. A method includes the steps of: forming a device isolation trench in a substrate; forming a photoresist pattern and implanting ions into the sidewalls and the bottom of the trench to form an emitter and a collector; removing the photoresist pattern; and filling the trench with an insulation layer to form the device isolation structure. Accordingly, the transistor and method can minimize device area by forming the diffusion layer of an emitter and a collector in the sidewalls and the bottom of the trench, and can provide a deep impurity diffusion layer without a high temperature diffusion process. In addition, the transistor and method can provide both a high amplification factor and a high current driving force.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: April 21, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Yoo Seon Song