Short Channel Insulated Gate Field Effect Transistor Patents (Class 257/327)
  • Patent number: 7402859
    Abstract: A field effect semiconductor comprises a semiconductor layer having a surface, a first and a second semiconductor region in the semiconductor layer, which are arranged next to one another at the surface of the semiconductor layer, an insulating layer between the first semiconductor region and the second semiconductor region, a semiconductor strip on the surface of the semiconductor layer, which semiconductor strip overlaps the first semiconductor region and the second semiconductor region and adjoins these. A gate overlaps the semiconductor strip at least in the region of the insulating layer. A gate dielectric insulates the gate from the semiconductor strip the first semiconductor region and the second semiconductor region. The semiconductor strip and the gate being formed such that the semiconductor strip is electrically insulating at a first predetermined gate voltage and is electrically conductive at a second predetermined gate voltagero.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: July 22, 2008
    Assignee: Infineon Technologies AG
    Inventors: Joerg Vollrath, Marcin Gnat, Ralf Schneider, Stephan Schroeder
  • Patent number: 7402856
    Abstract: A non-planar microelectronic device, a method of fabricating the device, and a system including the device. The non-planar microelectronic device comprises: a substrate body including a substrate base and a fin, the fin defining a device portion at a top region thereof; a gate dielectric layer extending at a predetermined height on two laterally opposing sidewalls of the fin, the predetermined height corresponding to a height of the device portion; a device isolation layer on the substrate body and having a thickness up to a lower limit of the device portion; a gate electrode on the device isolation layer and further extending on the gate dielectric layer; an isolation element extending on the two laterally opposing sidewalls of the fin up to a lower limit of the gate dielectric layer, the isolation element being adapted to reduce any fringe capacitance between the gate electrode and regions of the fin extending below the device portion.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack T. Kavalieros, Brian S. Doyle, Robert S. Chau
  • Publication number: 20080169503
    Abstract: A semiconductor structure is provided, which includes multiple sections arranged along a longitudinal axis. Preferably, the semiconductor structure comprises a middle section and two terminal sections located at opposite ends of the middle section. A semiconductor core having a first dopant concentration preferably extends along the longitudinal axis through the middle section and the two terminal sections. A semiconductor shell having a second, higher dopant concentration preferably encircles a portion of the terminal sections, but not at the middle section, of the semiconductor structure. It is particularly preferred that the semiconductor structure is a nanostructure having a cross-sectional dimension of not more than 100 nm.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 17, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joerg Appenzeller, Supratik Guha, Emanuel Tutuc
  • Publication number: 20080169504
    Abstract: Some embodiments include methods of recessing multiple materials to a common depth utilizing etchant comprising C4F6 and C4F8. The recessed materials may be within isolation regions, and the recessing may be utilized to form trenches for receiving gatelines. Some embodiments include structures having an island of semiconductor material laterally surrounded by electrically insulative material. Two gatelines extend across the insulative material and across the island of semiconductor material. One of the gatelines is recessed deeper into the electrically insulative material than the other.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Inventors: Larson Lindholm, Aaron R. Wilson, David K. Hwang
  • Patent number: 7400523
    Abstract: The present invention provides circuitry for writing to and reading from an SRAM cell core, an SRAM cell, and an SRAM device. In one aspect, the circuitry includes a write circuit coupled to the SRAM cell core that includes a write transistor gated by a write word line. The circuitry also includes a read buffer circuit coupled to the SRAM cell core to read the cell without disturbing the state of the cell. The read buffer circuit includes a read transistor gated by a read word line, the read transistor coupled between a read bit-line and a read driver transistor that is further coupled to a voltage source Vss. The read driver transistor and a first driver transistor of the cell core are both gated by one output of the cell core. The read transistor has an electrical characteristic that differs from that of the core cell first driver transistor.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: July 15, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore Warren Houston
  • Publication number: 20080157188
    Abstract: A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
    Type: Application
    Filed: February 26, 2008
    Publication date: July 3, 2008
    Inventors: Brent Alan Anderson, Andres Bryant, William F. Clark, Edward Joseph Nowak
  • Publication number: 20080157191
    Abstract: A semiconductor device having a recess channel structure includes a semiconductor substrate having a recess formed in a gate forming area in an active area; an insulation layer formed in the semiconductor substrate so as to define the active area and formed so as to apply a tensile stress in a channel width direction; a stressor formed in a surface of the insulation layer and formed so as to apply a compressive stress in a channel height direction; a gate formed over the recess in the active area; and source/drain areas formed in a surface of the active area at both side of the gate.
    Type: Application
    Filed: October 1, 2007
    Publication date: July 3, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventor: Kang Sik CHOI
  • Patent number: 7394117
    Abstract: A method of forming a fin field effect transistor on a semiconductor substrate includes forming an active region in the substrate, forming an epitaxial layer on the active region, and removing a portion of the epitaxial layer to form a vertical fin on the active region. The fin has a width that is narrower than a width of the active region. Removing a portion of the epitaxial layer may include oxidizing a surface of the epitaxial layer and then removing the oxidized surface of the epitaxial layer to decrease the width of the fin. The epitaxial layer may be doped in situ before removing a portion of the epitaxial layer. The method further includes forming a conductive layer on a top surface and on sidewalls of the fin. Related transistors are also discussed.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-Soo Jung, Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son
  • Patent number: 7391078
    Abstract: A non-volatile memory is provided. A substrate having a plurality of trenches and a plurality of select gates is provided. The trenches are arranged in parallel and extend in a first direction. Each of the select gates is disposed on the substrate between two adjacent trenches respectively. A plurality of select gate dielectric layers are disposed between the select gates and the substrate. A plurality of composite layers are disposed over the surface of the trenches and each composite layer has a charge trapping layer. A plurality of word lines are arranged in parallel in a second direction, wherein each of the word lines fills the trenches between adjacent select gates and is disposed over the composite layers.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: June 24, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wei-Zhe Wong, Ching-Sung Yang
  • Publication number: 20080142879
    Abstract: An integrated circuit system that includes: providing a substrate with an NFET device and a PFET device; forming an NFET first liner and an NFET first spacer over the NFET device; forming a PFET first liner and a PFET first spacer over the PFET device; forming a punch-through suppression layer within a PFET source/drain; forming an NFET differential spacer; and forming a PFET differential spacer.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Yung Fu Chong, Jae Gon Lee
  • Patent number: 7388258
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 17, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Publication number: 20080135924
    Abstract: A fully depleted MOSFET has a semiconductor-on-insulator substrate that includes a substrate material, a BOX positioned on the substrate material, and an active layer positioned on the BOX. The BOX includes a first layer of material with a first dielectric constant and a first thickness and a second layer of material having a second dielectric constant different than the first dielectric constant and a second thickness different than the first thickness. The first layer of material is positioned adjacent the substrate material and the second layer of material is positioned adjacent the active layer. Drain and source regions are formed in the active layer so as to be fully depleted. The drain and source regions are separated by a channel region in the active layer. A gate insulating layer overlies the channel region and a gate stack is positioned on the gate insulating region. It is anticipated that the structure is most useful for channel regions less than 90 nm long.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7385246
    Abstract: An integrated circuit device comprising a diode and a method of making an integrated circuit device comprising a diode are provided. The diode can comprise an island of a first conductivity type, a first region of a second conductivity type formed in the island, and a cathode diffusion contact region doped to the second conductivity type disposed in the first region. The diode can also comprise a cathode contact electrically contacting the cathode diffusion contact region, an anode disposed in the island, an anode contact electrically contacting the anode, and a first extension region doped to the first conductivity type disposed at a surface junction between the first region and the island.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: June 10, 2008
    Assignee: Intersil Americas Inc.
    Inventor: James Douglas Beasom
  • Publication number: 20080128795
    Abstract: A semiconductor device includes a gate insulation film provided on a semiconductor substrate, a gate electrode provided on the gate insulation film, a pair of first diffusion layers, a pair of second diffusion layers which are provided in the semiconductor substrate in such a manner that the gate electrode is interposed between the second diffusion layers, the second diffusion layers have a lower impurity concentration than the first diffusion layers, contact wiring lines provided on the first diffusion layers, respectively, and a first insulation layer which is an insulation layer formed in at least one of the second diffusion layers between the gate electrode and the contact wiring lines, the first insulation layer having a greater depth in the semiconductor substrate than the first diffusion layer and a less depth than the second diffusion layer.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 5, 2008
    Inventors: Teppei Higashitsuji, Toshifumi Minami
  • Publication number: 20080121985
    Abstract: Disclosed are embodiments of improved MOSFET and CMOS structures that provides for increased control over short channel effects. Also disclosed are embodiments of associated methods of forming these structures. The embodiments suppress short channel effects by incorporating buried isolation regions into a transistor below source/drain extension regions and between deep source/drain regions and the channel region and, particularly, between deep source/drain regions and the halo regions. Buried isolation regions between the deep source/drain regions and the channel region minimize drain induced barrier lowering (DIBL) as well as punch through. Additionally, because the deep source/drain regions and halo regions are separated by the buried isolation regions, side-wall junction capacitance and junction leakage are also minimized.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 29, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Xiangdong Chen, Dae-Gyu Park, Jae-Yoon Yoo
  • Patent number: 7378714
    Abstract: In a complete depletion type SOI transistor, the roll-off of a threshold value is suppressed, independently from the formation of an SOI film to be thinner. As for a semiconductor device (1), the impurity concentration in a channel formation portion (10) is implanted not uniformly along the length direction of a gate (2) in the complete depletion type silicon on insulation (SOI) transistor. In other words, high concentration regions (11) where impurity concentrations are higher than that at a central portion in the end parts of the channel formation portion (10) on the side of a source (4) and a drain (5).
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: May 27, 2008
    Assignee: Sony Corporation
    Inventor: Hiroshi Komatsu
  • Publication number: 20080111163
    Abstract: A field effect transistor with a fin structure having a first and a second source/drain region; a body region formed within the fin structure and between the first and the second source/drain region; a metallically conductive region formed within a part of the first source/drain region, the metallically conductive region being adjacent to the body region or to a lightly doped region disposed between the body region and the first source/drain region; and a current ballasting region formed within a part of the second source/drain region.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Christian Russ, Harald Gossner, Thomas Schulz
  • Publication number: 20080111184
    Abstract: A method of fabricating a plurality of FinFETs on a semiconductor substrate in which the gate width of each individual FinFET is defined utilizing only a single etching process, instead of two or more, is provided. The inventive method results in improved gate width control and less variation of the gate width of each individual gate across the entire surface of the substrate. The inventive method achieves the above by utilizing a modified sidewall image transfer (SIT) process in which an insulating spacer that is later replaced by a gate conductor is employed and a high-density bottom up oxide fill is used to isolate the gate from the substrate.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jochen Beintner, Gary B. Bronner, Ramachandra Divakaruni, Yujun Li
  • Patent number: 7372099
    Abstract: A semiconductor device, which can use silicon-germanium for a source/drain extension of pMOS, form a silicide layer on the source/drain, and realize a high-speed operation, is provided by comprising a gate electrode formed in a first conductive type region of a semiconductor substrate via an insulator, a first sidewall formed on a side face of the gate electrode, a second sidewall formed on a side face of the first sidewall, a semiconductor layer formed below the second sidewall, including a first impurity layer of a second conductive type and containing germanium, a second impurity layer formed in a region outside the second sidewall and containing impurities of the second conductive type with a higher concentration than those in the first impurity layer, and a silicide layer formed on the second impurity layer.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: May 13, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nobuaki Yasutake
  • Publication number: 20080105920
    Abstract: A semiconductor device has an insulated gate transistor provided with a semiconductor substrate and a gate electrode arranged on the semiconductor substrate via a gate insulating film. The gate electrode includes an electrically-conductive buffer film for preventing any damage, which would occur if a main gate electrode portion were formed directly over the gate insulating film, and the main gate electrode portion formed over the buffer film. A fabrication process for the semiconductor device is also disclosed.
    Type: Application
    Filed: March 6, 2007
    Publication date: May 8, 2008
    Inventors: Tomoyuki Hirano, Kaori Tai
  • Patent number: 7365390
    Abstract: Provided is a method of fabricating a recess transistor in an integrated circuit device. In the provided method, a device isolation region, which contacts to the sidewall of a gate trench and a substrate region remaining between the sidewall of the device isolation region and the sidewall of the gate trench, is etched to expose the remaining substrate region. Thereafter, the exposed portion of the remaining substrate region is removed to form a substantially flat bottom of the gate trench. The recess transistor manufactured by the provided method has the same channel length regardless of the locations of the recess transistor in an active region.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ji-Young Kim
  • Patent number: 7361953
    Abstract: A semiconductor apparatus comprises a gate electrode, a gate insulating layer, a drift region of a first conductivity type formed over a semiconductor substrate of the first conductivity type, a base region of a second conductivity type formed over the drift region, a source region of the first conductivity type formed on the base region and a column region formed in the drift region under the base region, the column region being divided into a plurality of divided portions in depth direction.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 22, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Yoshinao Miura
  • Patent number: 7358563
    Abstract: A CMOS image sensor and a method for fabricating the same can ensure isolation characteristics using a shallow trench isolation (STI) process and a selective epitaxy method. The CMOS image sensor and method for fabricating the same can also reduce pixel size. The CMOS image sensor includes a semiconductor substrate, a first photodiode, a first epitaxial layer, a second epitaxial layer, a plurality of device isolation layers formed in isolation regions formed at the second epitaxial layer, a second photodiode formed between the device isolation layers, and a third epitaxial layer.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: April 15, 2008
    Assignee: Dongbu Electronics Co., Ltd
    Inventor: Sang Gi Lee
  • Publication number: 20080083948
    Abstract: MOS transistors having localized stressors for improving carrier mobility are provided. Embodiments of the invention comprise a gate electrode formed over a substrate, a carrier channel region in the substrate under the gate electrode, and source/drain regions on either side of the carrier channel region. The source/drain regions include an embedded stressor having a lattice spacing different from the substrate. In a preferred embodiment, the substrate is silicon and the embedded stressor is SiGe or SiC. An epitaxy process that includes using HCl gas selectively forms a stressor layer within the crystalline source/drain regions and not on polycrystalline regions of the structure. A preferred epitaxy process dispenses with the source/drain hard mask required of conventional methods. The embedded SiGe stressor applies a compressive strain to a transistor channel region. In another embodiment, the embedded stressor comprises SiC, and it applies a tensile strain to the transistor channel region.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Inventors: Hsien-Hsin Lin, Li-Te S. Lin, Tze-Liang Lee, Ming-Hua Yu
  • Patent number: 7352037
    Abstract: A semiconductor device may include at least one pair of fins on a semiconductor substrate. A channel region may be formed in each fin. The semiconductor device may further include a gate electrode corresponding to each pair of channel regions, a source contact plug electrically connected to each of at least one source formed on a respective fin concurrently, and a drain contact plug electrically connected to each of at least one drain formed on a respective fin concurrently.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park, Eun-Hong Lee, Jae-woong Hyun, Jung-hoon Lee, Sung-jae Byun
  • Patent number: 7345340
    Abstract: A semiconductor integrated circuit that has a quick response to changes in source/drain electrode voltage having an LDMOS transistor. The transistor has a second conduction type first well region formed in a first conduction type semiconductor substrate; a first conduction type second well region formed in the first well region; a second conduction type third well region formed in the second well region; a drain region formed in the second well region; a source region formed in the third well region; a gate electrode formed through a gate insulating film over the third well region between the drain region and the source region; and an insulating layer formed between the gate electrode and the drain region. Parasitic capacitances between the semiconductor substrate and the source region and those between the substrate and the drain region are respectively in series.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: March 18, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Mitsuharu Hitani, Toshio Nagasawa, Akihiro Tamura
  • Patent number: 7345337
    Abstract: A semiconductor apparatus comprises a gate electrode, a gate insulating layer, a drift region of a first conductivity type formed over a semiconductor substrate of the first conductivity type, a base region of a second conductivity type formed over the drift region, a source region of the first conductivity type formed on the base region and a column region formed in the drift region under the base region, the column region being divided into a plurality of divided portions in depth direction.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 18, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Yoshinao Miura
  • Publication number: 20080054347
    Abstract: A semiconductor device includes a semiconductor substrate, a gate stack on the semiconductor substrate, and a stressor adjacent the gate stack and having at least a portion in the semiconductor substrate, wherein the stressor comprises an element for adjusting a lattice constant of the stressor. The stressor includes a lower portion and a higher portion on the lower portion, wherein the element in the lower portion has a first atomic percentage, and the element in the higher portion has a second atomic percentage substantially greater than the first atomic percentage.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventor: Yin-Pin Wang
  • Patent number: 7339230
    Abstract: Embodiments herein present a structure, method, etc. for making high density MOSFET circuits with different height contact lines. The MOSFET circuits include a contact line, a first gate layer situated proximate the contact line, and at least one subsequent gate layer situated over the first gate layer. The contact line includes a height that is less than a combined height of the first gate layer and the subsequent gate layer(s). The MOSFET circuits further include gate spacers situated proximate the gate layers and a single contact line spacer situated proximate the contact line. The gate spacers are taller and thicker than the contact line spacer.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 4, 2008
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7335944
    Abstract: A high-voltage transistor includes first and second trenches that define a mesa in a semiconductor substrate. First and second field plate members are respectively disposed in the first and second trenches, with each of the first and second field plate members being separated from the mesa by a dielectric layer. The mesa includes a plurality of sections, each section having a substantially constant doping concentration gradient, the gradient of one section being at least 10% greater than the gradient of another section. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: February 26, 2008
    Assignee: Power Integrations, Inc.
    Inventors: Sujit Banerjee, Donald Ray Disney
  • Patent number: 7332750
    Abstract: A power semiconductor device having high avalanche capability comprises an N+ doped substrate and, in sequence, N? doped, P? doped, and P+ doped semiconductor layers, the P? and P+ doped layers having a combined thickness of about 5 ?m to about 12 ?m. Recombination centers comprising noble metal impurities are disposed substantially in the N? and P? doped layers. A process for forming a power semiconductor device with high avalanche capability comprises: forming an N? doped epitaxial layer on an N+ doped substrate, forming a P? doped layer in the N? doped epitaxial layer, forming a P+ doped layer in the P? doped layer, and forming in the P? and N? doped layers recombination centers comprising noble metal impurities. The P+ and P? doped layers have a combined thickness of about 5 ?m to about 12 ?m.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 19, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Jifa Hao, John L. Benjamin, Randall L. Case, Jae J. Yun
  • Patent number: 7326975
    Abstract: In a method of manufacturing a buried channel type transistor, a trench is formed at a surface portion of a substrate. A first and a second threshold voltage control regions are formed at portions of the substrate beneath a bottom face of the trench and adjacent to a sidewall of the trench, respectively. A gate electrode filling the trench is formed. Source/drain regions are formed at portions of the substrate adjacent to the sidewall of the gate electrode. Stopper regions are formed at portions of the substrate beneath the source/drain regions and beneath the first and second threshold voltage control regions, respectively. The buried channel type transistor has a high breakdown voltage between the source/drain regions although a threshold voltage thereof is low.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 5, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Chang-Sub Lee
  • Publication number: 20080023753
    Abstract: A semiconductor device includes a device isolation structure, a recess channel structure, and a gate electrode. The device isolation structure is formed in a semiconductor substrate to define an active region. The recess channel structure is disposed in the semiconductor substrate under the active region. The gate electrode includes a holding layer disposed in a gate region to fill the recess channel structure. The holding layer prevents a seam and a shift of the seam occurring in the recess channel structure.
    Type: Application
    Filed: December 30, 2006
    Publication date: January 31, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Shin Gyu Choi, Seung Chul Oh
  • Publication number: 20080023752
    Abstract: An n-type field effect transistor (NFET) and methods of forming a halo for an NFET to control the short channel effect are disclosed. One method includes forming a gate over a silicon substrate; recessing the silicon adjacent to the gate; forming a halo by epitaxially growing boron in-situ doped silicon germanium (SiGe) in the recess; and epitaxially growing silicon over the silicon germanium. Alternatively, the halo can be formed by ion implanting boron into an embedded SiGe region within the silicon substrate. The resulting NFET includes a boron doped SiGe halo embedded within the silicon substrate. The embedded SiGe layer may be a relaxed layer without inserting strain in the channel. The high solid solubility of boron in SiGe and low diffusion rate allows formation of a halo that will maintain the sharp profile, which provides better control of the short channel effect and increasing control over NFET threshold voltage roll-off.
    Type: Application
    Filed: July 28, 2006
    Publication date: January 31, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, CHARTERED SEMICONDUCTOR MANUFACTURING LTD
    Inventors: Xiangdong Chen, Yung Fu Chong, Zhijiong Luo, Xinlin Wang, Haining S. Yang
  • Patent number: 7319255
    Abstract: A semiconductor device including a transistor and a method of forming thereof are provided. The semiconductor device comprises a metal gate electrode. A lower portion of the metal gate electrode fills a channel trench formed at a predetermined region of a substrate, and an upper portion of the metal gate electrode protrudes on the substrate. A gate insulating layer is interposed between inner sidewalls and a bottom surface of the channel trench, and the metal gate electrode. Source/drain regions are formed at the substrate in both sides of the metal gate electrode.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: January 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Wook Hwang, Chang-Jin Kang, Kyeong-Koo Chi, Sung-Hoon Chung
  • Patent number: 7317217
    Abstract: An apparatus and method are disclosed for an improved semiconductor interconnect scheme using a simplified process. In an embodiment of the apparatus, a polysilicon shape is formed on a silicon area. The polysilicon shape is created having a bridging vertex. When a spacer is created on the polysilicon shape, the spacer width is formed to be small enough near the bridging vertex to allow a silicide bridge to form that creates an electrical coupling between the silicon area and the bridging vertex. Semiconductor devices and circuits are created using the improved semiconductor interconnect scheme using the simplified process.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: January 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Todd Alan Christensen, Richard Lee Donze, William Paul Hovis, Terrance Wayne Kueper, John Edward Sheets, II
  • Publication number: 20080001213
    Abstract: Reverse narrow width effects are provided consistent with reduced spacing between field effect transistors by an impurity or dopant implantation perpendicular to a semiconductor substrate through gaps formed by selective removal of a layer of material deposited to a selected thickness rather than implantation at an angle in accordance with a patterned resist resulting in superior accuracy, controllability and repeatability of the location of the implanted region and avoidance of implantation at undesired locations. A multi-layer structure having at least three component materials which can be removed selectively to each other is preferred for forming the gaps for confining the implantation preferably performed through a layer of one of the component materials which also functions as an etch stop.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Byeong Y. Kim, Effendi Leobandung
  • Publication number: 20070296027
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) devices having a continuous dielectric stressor layer containing regions of opposite stresses. Specifically, each CMOS device of the present invention includes at least one n-channel field effect transistor (n-FET) and at least one p-channel field effect transistor (p-FET). A continuous dielectric stressor layer, which overlays both the at least one n-FET and the at least one p-FET, contains a first, tensilely stressed region that selectively overlays the at least one n-FET and a second, compressively stressed region that selectively overlays the at least one p-FET. Such a continuous dielectric stressor layer can be readily formed by first depositing a continuous, compressively stressed dielectric layer and then converting a selected region of such a layer from being compressively stressed to being tensilely stressed by ultraviolet (UV) exposure.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining Yang, Wai-Kin Li
  • Patent number: 7312500
    Abstract: An ideal step-profile in a channel region is realized easily and reliably, whereby suppression of the short-channel effect and prevention of mobility degradation are achieved together. A silicon substrate is amorphized to a predetermined depth from a semiconductor film, and impurities to become the source/drain are introduced in this state. Then the impurities are activated, and the amorphized portion is recrystallized, by low temperature solid-phase epitaxial regrowth. With the processing temperature required for the low temperature solid-phase epitaxial regrowth being within a range of 450° C.-650° C., thermal diffusion of the impurities into the semiconductor film is suppressed, thereby maintaining the initial steep step-profile.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: December 25, 2007
    Assignee: Fujitsu Limited
    Inventors: Toshihiko Miyashita, Kunihiro Suzuki
  • Publication number: 20070284654
    Abstract: A transistor device and method are disclosed for reducing parasitic resistance and enhancing channel mobility using a metal alloy layer over a conductive region. A transistor device may include a conductive region such as a source, drain and/or gate including at least one first conductive material, and a metal alloy layer disposed on substantially all of a surface of the conductive region, the metal alloy layer including a second conductive material different than the at least one first conductive materials. In one embodiment, the second conductive material includes a cobalt and/or nickel alloy. The metal alloy layer provides a non-epitaxial raised source/drain (and gate) to reduce the parasitic series resistance in, for example, nFETs fabricated on UTSOI. In addition, the metal alloy layer may include a stress to enhance mobility in a channel of the transistor device. The metal alloy layer may be formed using a selective electrochemical metal deposition process such as electroless or electrolytic plating.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 13, 2007
    Inventors: Judith M. Rubino, James Pan, Dinkar Singh, Jonathan Smith, Anna Topol
  • Patent number: 7307330
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: December 11, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito
  • Patent number: 7304336
    Abstract: A multiple-gate FET structure includes a semiconductor substrate. A gate region is formed on the semiconductor substrate. The gate region comprises a gate portion and a channel portion. The gate portion has at least two opposite vertical surfaces adjacent to the channel portion. A source region abuts the gate region at one end, and a drain diffusion region abuts the gate region at the other end.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: December 4, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri Antoniadis
  • Patent number: 7304347
    Abstract: A method is provided for forming a power semiconductor device. The method begins by providing a substrate of a first conductivity type and then forming a voltage sustaining region on the substrate. The voltage sustaining region is formed by depositing an epitaxial layer of a first conductivity type on the substrate and forming at least one terraced trench in the epitaxial layer. The terraced trench has a plurality of portions that differ in width to define at least one annular ledge therebetween. A barrier material is deposited along the walls of the trench. A dopant of a second conductivity type is implanted through the barrier material lining the annular ledge and said trench bottom and into adjacent portions of the epitaxial layer. The dopant is diffused to form at least one annular doped region in the epitaxial layer and at least one other region located below the annular doped region.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 4, 2007
    Assignee: Vishay General Semiconductor Inc.
    Inventors: Richard A. Blanchard, Jean-Michel Guillot
  • Publication number: 20070272975
    Abstract: A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 29, 2007
    Inventors: James K. Schaeffer, Rama I. Hegde, Srikanth B. Samavedam
  • Patent number: 7301199
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: November 27, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 7301219
    Abstract: An asymmetrically doped memory cell has first and second N+ doped junctions on a P substrate. A composite charge trapping layer is disposed over the P substrate and between the first and the second N+ doped junctions. A N? doped region is positioned adjacent to the first N+ doped junction and under the composite charge trapping layer. A P? doped region is positioned adjacent to the second N+ doped junction and under the composite charge trapping layer. The asymmetrically doped memory cell will store charges at the end of the composite charge trapping layer that is above the P? doped region. The asymmetrically doped memory cell can function as an electrically erasable programmable read only memory cell, and is capable of multiple level cell operations. A method for making an asymmetrically doped memory cell is also described.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: November 27, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Yen-Hao Shih, Ming-Hsiu Lee
  • Patent number: 7288814
    Abstract: A method for doping a polysilicon gate conductor, without implanting the substrate in a manner that would effect source/drain formation is provided. The inventive method comprises forming at least one polysilicon gate region atop a substrate; forming oxide seed spacers abutting the polysilicon gate; forming source/drain oxide spacers selectively deposited on the oxide seed spacers by liquid phase deposition, and implanting at least one polysilicon gate region, wherein the source/drain oxide spacers protect an underlying portion of the substrate. Multiple gate regions may be processed on a single substrate using conventional patterning. A block-mask provided by patterned photoresist can be used prior to implantation to pre-select the substrate area for gate conductor doping with one dopant type.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Toshiharu Furukawa, Steven J. Holmes
  • Patent number: 7279746
    Abstract: A semiconductor device structure includes at least two field effect transistors formed on same substrate, the first field effect transistor includes a spacer having a first width, the second field effect transistor includes a compressive spacer having a second width, the first width being different than said second width. Preferably, the first width is narrower than the second width. A tensile stress dielectric film forms a barrier etch stop layer over the transistors.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 9, 2007
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Dureseti Chidambarrao, Suk Hoon Ku
  • Patent number: 7279758
    Abstract: The present invention relates to a semiconductor device including at least one n-channel field effect transistor (n-FET). Specifically, the n-FET includes first and second patterned stressor layers that both contain a carbon-substituted and tensilely stressed single crystal semiconductor. The first patterned stressor layer has a first carbon concentration and is located in source and drain (S/D) extension regions of the n-FET at a first depth. The second patterned stressor layer has a second, higher carbon concentration and is located in S/D regions of the n-FET at a second, deeper depth. Such an n-FET with the first and second patterned stressor layers of different carbon concentration and different depths provide improved stress profile for enhancing electron mobility in the channel region of the n-FET.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: October 9, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jinghong H. Li, Yaocheng Liu, Zhijiong Luo, Anita Madan, Nivo Rovedo
  • Patent number: 7279743
    Abstract: Embodiments of the present invention provide an improved closed cell trench metal-oxide-semiconductor field effect transistor (TMOSFET). The closed cell TMOSFET comprises a drain, a body region disposed above the drain region, a gate region disposed in the body region, a gate insulator region, a plurality of source regions disposed at the surface of the body region proximate to the periphery of the gate insulator region. A first portion of the gate region and the gate oxide region are formed as parallel elongated structures. A second portion of the gate region and the oxide region are formed as normal-to-parallel elongated structures. A portion of the gate and drain overlap region are selectively blocked by the body region, resulting in lower overall gate to drain capacitance.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: October 9, 2007
    Assignee: Vishay-Siliconix
    Inventors: Deva N. Pattanayak, Robert Xu