Integrated Circuit Structure With Electrically Isolated Components Patents (Class 257/499)
  • Publication number: 20110304994
    Abstract: An integrated circuit structure includes a first conductive layer (MET4) including a first forked conductive structure (310), an insulating layer (320, ILD45) substantially disposed over the first forked conductive structure (310), a plurality of conductive vias (331-334) through the insulating layer (ILD45) and electrically connecting with the first forked conductive structure (310), and a second conductive layer (MET5) including a second forked conductive structure (340) substantially disposed over at least a portion of the insulating layer (ILD45) and generally perpendicular to the first forked conductive structure (310), the plurality of conductive vias (331-334) electrically connecting with the second forked conductive structure (340). Other structures, devices, and processes are also disclosed.
    Type: Application
    Filed: May 5, 2011
    Publication date: December 15, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Hugh Thomas Mair
  • Patent number: 8076196
    Abstract: The semiconductor device includes: memory cells each having a first multilayer electrode including a first lower electrode made of a first conductive film and a first upper electrode made of a second conductive film formed one on the other with a first interface film therebetween; and a diode having a diode electrode made of the second conductive film and a second interface film as a silicon oxide film formed at the interface between the diode electrode and a substrate. The first interface film has a thickness with which electrical connection between the lower electrode and the upper electrode is maintained, and the second interface film has a thickness with which epitaxial growth between the substrate and the diode electrode is inhibited.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventor: Nobuyoshi Takahashi
  • Publication number: 20110298082
    Abstract: A transistor causes fluctuation in the threshold and mobility due to the factor such as fluctuation of the gate length, the gate width, and the gate insulating film thickness generated by the difference of the manufacturing steps and the substrate to be used. As a result, there is caused fluctuation in the current value supplied to the pixel due to the influence of the characteristic fluctuation of the transistor, resulting in generating streaks in the display image. A light emitting device is provided which reduces influence of characteristics of transistors in a current source circuit constituting a signal line driving circuit until the transistor characteristics do not affect the device and which can display a clear image with no irregularities. A signal line driving circuit of the present invention can prevent streaks in a displayed image and uneven luminance.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 8, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hajime Kimura, Jun Koyama
  • Patent number: 8072077
    Abstract: Disclosed herein is a semiconductor memory device for reducing a junction resistance and increasing amount of current throughout the unit cell. A semiconductor memory device comprises plural unit cells, each coupled to contacts formed in different shape at both sides of a word line in a cell array.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: December 6, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Min Hwang
  • Publication number: 20110291224
    Abstract: Pitch multiplied and non-pitch multiplied features of an integrated circuit, e.g., features in the array, interface and periphery areas of the integrated circuit, are formed by processing a substrate through a mask. The mask is formed by patterning a photoresist layer which simultaneously defines mask elements corresponding to features in the array, interface and periphery areas of the integrated circuit. The pattern is transferred to an amorphous carbon layer. Sidewall spacers are formed on the sidewalls of the patterned amorphous carbon layer. A layer of protective material is deposited and then patterned to expose mask elements in the array region and in selected parts of the interface or periphery areas. Amorphous carbon in the array region or other exposed parts is removed, thereby leaving a pattern including free-standing, pitch multiplied spacers in the array region.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 1, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Mark Fischer, Stephen Russell, H.Montgomery Manning
  • Publication number: 20110291229
    Abstract: A semiconductor integrated circuit includes: a semiconductor chip; a through-chip via passing through a conductive pattern disposed in the semiconductor chip and cutting the conductive pattern; and an insulation pattern disposed on an outer circumference surface of the through-chip via to insulate the conductive pattern from the through-chip via.
    Type: Application
    Filed: July 7, 2010
    Publication date: December 1, 2011
    Inventors: Sang-Jin BYEON, Jun-Gi Choi
  • Patent number: 8063467
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method includes removing a portion of a semiconductor material to form a first protrusion and a cavity having a boundary that is below a surface of the semiconductor material, wherein the first protrusion extends from the boundary of the cavity. The method further includes forming a non-conformal material over a first portion of the first protrusion using an angled deposition of the non-conformal material, wherein the angle of deposition of the non-conformal material is non-perpendicular to the surface of the semiconductor material. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 22, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Michael Albert Tischler
  • Publication number: 20110272775
    Abstract: A semiconductor fabrication system and method are presented. A three dimensional multilayer integrated circuit fabrication method can include forming a first device layer and forming a second device layer on top of the first device layer with minimal detrimental heat transfer to the first layer by utilizing a controlled laser layer formation annealing process. A controlled laser crystallization process can be utilized and the controlled laser can include creating an amorphous layer; defining a crystallization area in the amorphous layer, where in the crystallization area is defined to promote single crystal growth (i.e. prevent multi-crystalline growth); and applying laser to the crystallization area, wherein the laser is applied in a manner that prevents undesired heat transfer to another layer.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 10, 2011
    Inventors: Eunha KIM, Jeremy WAHL, Shenqing FANG, YouSeok SUH, Kuo-Tung CHANG, Yi MA, Rinji SUGINO, Jean YANG
  • Patent number: 8053346
    Abstract: A gate in a semiconductor device is formed to have a dummy gate pattern that protects a gate. Metal lines are formed to supply power for a semiconductor device and transfer a signal. A semiconductor device includes a quad coupled receiver type input/output buffer. The semiconductor device is formed with a gate line that extends over an active region, and a gate pad located outside of the active region. The gate line and the gate pad are adjoined such that the gate line and a side of the gate pad form a line. Dummy gates may also be applied. The semiconductor device includes a first metal line patterns supplying power to a block having a plurality of cells, a second metal line pattern transferring a signal to the cells, and dummy metal line patterns divided into in a longitudinal direction.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam Gyu Ryu, Ho Ryong Kim, Won John Choi, Jae Hwan Kim, Seoung Hyun Kang, Young Hee Yoon
  • Patent number: 8044394
    Abstract: The invention relates to an arrangement of contact areas and test areas on patterned semiconductor chips. The contact areas and the test areas are electrically connected to one another via a conduction web. Whereas the contact areas are arranged in a first region, which has no components of an integrated circuit, the test areas lie in a second region of the top side of the semiconductor chip, which region has components of an integrated circuit.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 25, 2011
    Assignee: Infineon Technologies AG
    Inventors: Werner Ertle, Bernd Goller, Michael Horn, Bernd Kothe
  • Publication number: 20110254094
    Abstract: A semiconductor device 20 formed on a semiconductor chip substrate 30 has a plurality of circuit blocks made up of circuits each containing at least a metal oxide semiconductor (MOS) transistor 36, the circuit blocks being covered on top with a protective film 41 to protect the circuits. A plurality of bumps 23a, 23b, 23c are formed, at least via the protective film 41, only on circuit blocks whose current-carrying ability and threshold voltage do not satisfy predetermined values and which are in need of performance enhancement. The bumps 23a, 23b, 23c impose stresses on the MOS transistors 36, increasing the mobility of the MOS transistors 36 and thereby improving the performance of the semiconductor device 20.
    Type: Application
    Filed: June 22, 2011
    Publication date: October 20, 2011
    Applicant: Panasonic Corporation
    Inventors: Takayuki Yoshida, Kimihito Kuwabara, Takuma Motofuji, Toshiyuki Fukuda
  • Publication number: 20110254119
    Abstract: A method of manufacturing semiconductor devices includes forming a tunnel insulating layer, a conductive layer for a floating gate, and a hard mask layer on a semiconductor substrate, forming a first trench in the semiconductor substrate by partially etching the hard mask layer, the conductive layer for the floating gate, the tunnel insulating layer, and the semiconductor substrate, forming a first ion implantation region having a first impurity concentration into the semiconductor substrate of inner walls of the first trench by performing a first ion implantation process, forming a second trench extending from the first trench by etching the semiconductor substrate of a bottom of the first trench, and forming a second ion implantation region having a second impurity concentration lower than the first impurity concentration into the semiconductor substrate of inner walls of the second trench by performing a second ion implantation process, wherein a depth of the first trench is shallower than that of a juncti
    Type: Application
    Filed: May 26, 2011
    Publication date: October 20, 2011
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Ji H. Seo
  • Patent number: 8039921
    Abstract: A semiconductor device with a high-strength porous modified layer having a pore size of 1 nm or less, which is formed, in a multilayer wiring forming process, by forming a via hole and a wiring trench in a via interlayer insulating film and a wiring interlayer insulting film and then irradiating an electron beam or an ultraviolet ray onto the opening side walls.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: October 18, 2011
    Assignee: NEC Corporation
    Inventors: Fuminori Ito, Yoshihiro Hayashi, Tsuneo Takeuchi
  • Patent number: 8035188
    Abstract: Plural I/O cells (14) having electrode pads for wire bonding (13) are disposed with spaces (55) between them in the vicinity of a corner of an I/O region (11) of a semiconductor substrate (10), and power supply separation cells (16) not to be wire bonded, on which ESD (electrostatic discharge) protection circuits (4) having ESD protection transistors are amounted, are disposed between the respective I/O cells (14), whereby the chip size is reduced upon consideration of layout of the electrode pads.
    Type: Grant
    Filed: May 30, 2005
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Segawa, Masanori Hirofuji
  • Patent number: 8035189
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Patent number: 8030731
    Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 4, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 8026570
    Abstract: A semiconductor integrated circuit device having a control signal system for avoiding failure to check an indefinite signal propagation prevention circuit, for facilitating a check included in an automated tool, and for facilitating a power shutdown control inside a chip. In the semiconductor integrated circuit device, power shutdown priorities are provided by independent power domains (Area A to Area I). A method for preventing a power domain having a lower priority from being turned OFF when a circuit having a high priority is turned ON is also provided.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 27, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Yoshihiko Yasu, Kenji Hirose, Takahiro Irita
  • Publication number: 20110227189
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming patterned features over the semiconductor substrate, wherein gaps are formed between the patterned features; filling the gaps with a first filling material, wherein the first filling material has a first top surface higher than top surfaces of the patterned features; and performing a first planarization to lower the top surface of the first filling material, until the top surfaces of the patterned features are exposed. The method further includes depositing a second filling material, wherein the second filling material has a second top surface higher than the top surfaces of the patterned features; and performing a second planarization to lower the top surface of the second filling material, until the top surfaces of the patterned features are exposed.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 22, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Kong-Beng Thei, Chiun-Han Yeh, Harry Chuang, Mong-Song Liang
  • Publication number: 20110227188
    Abstract: An integrated circuit includes a core area. The core area has at least one edge region and a plurality of transistors disposed in the edge region. A plurality of dummy structures are disposed outside the core area and adjacent to the at least one edge region. Each channel of the transistors in a channel width direction faces at least one of the dummy structures.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Hsun WANG, Chih-Sheng CHANG, Hsien-Hui MENG
  • Patent number: 8021989
    Abstract: One inventive aspect is related to a method for isolating structures of a semiconductor material, comprising providing a pattern of the semiconductor material comprising at least one elevated line, defining device regions in the pattern, the device regions each comprising at least said at least one elevated line, and modifying the conductive properties of the semiconductor material outside said device regions, such that the device regions are electrically isolated.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: September 20, 2011
    Assignee: IMEC
    Inventors: Staf Verhaegen, Axel Nackaerts
  • Patent number: 8022497
    Abstract: A semiconductor device capable of preventing an interlayer dielectric film from deterioration resulting from a liquid such as a chemical solution penetrating into the interlayer dielectric film and recovering the interlayer dielectric film from deterioration with a prescribed gas is obtained. This semiconductor device comprises a first insulating film formed on a substrate and a first gas-liquid separation film, formed on at least a part of the surface of the first insulating film, composed of a material hardly permeable by a liquid and easily permeable by a gas.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 20, 2011
    Assignees: Sanyo Electric Co., Ltd., NEC Corporation, Rohm Co., Ltd.
    Inventors: Yoshinori Shishida, Shinichi Chikaki, Ryotaro Yagi
  • Patent number: 8022498
    Abstract: Apparatus, systems, and methods may include managing electrostatic discharge events by using a semiconductor device having a non-aligned gate to implement a snap-back voltage protection mechanism. Such devices may be formed by doping a semiconductor substrate to form a first conductive region as a well, forming one of a source region and a drain region in the well, depositing a layer of polysilicon on the substrate to establish a gating area that does not overlap the one of the source region and the drain region, and forming an integrated circuit supported by the substrate to couple to the one of the source region and the drain region to provide snap-back voltage operation at a node between the integrated circuit and the source or drain region. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: September 20, 2011
    Assignee: Synopsys, Inc.
    Inventors: Cong Khieu, Yanjun Ma, Jaideep Mavoori
  • Publication number: 20110221029
    Abstract: Systems and methods of balanced adaptive body bias control. In accordance with a first embodiment of the present invention, a method of balanced adaptive body bias control comprises determining a desirable dynamic condition for circuitry of an integrated circuit. A first dynamic indicator corresponding to the desirable dynamic condition is accessed. Second and third dynamic indicators of the integrated circuit are accessed. A first body biasing voltage is adjusted by an increment so as to change the first dynamic indicator in the direction of the desirable dynamic condition. A second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 15, 2011
    Inventors: Vjekoslav Svilan, James B. Burr
  • Patent number: 8013415
    Abstract: A semiconductor device includes a shallow isolation trench (STI) structure on a silicon substrate for isolating element-forming regions from one another. The surface region of the silicon substrate in the element-forming regions, as viewed in the extending direction of the gate electrode lines, once falls and thereafter rises monotonically from the periphery toward the center of the element-forming regions.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: September 6, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Masahiko Ohuchi
  • Publication number: 20110210400
    Abstract: Some embodiments include formation of at least one cavity in a first semiconductor material, followed by epitaxially growing a second semiconductor material over the first semiconductor material and bridging across the at least one cavity. The cavity may be left open, or material may be provided within the cavity. The material provided within the cavity may be suitable for forming, for example, one or more of electromagnetic radiation interaction components, transistor gates, insulative structures, and coolant structures. Some embodiments include one or more of transistor devices, electromagnetic radiation interaction components, transistor devices, coolant structures, insulative structures and gas reservoirs.
    Type: Application
    Filed: April 28, 2011
    Publication date: September 1, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, Eric R. Blomiley
  • Publication number: 20110204470
    Abstract: An integrated circuit (IC) design method providing a circuit design layout having a plurality of functional blocks disposed a distance away from each other; identifying a local pattern density to an approximate dummy region, on the circuit design layout, within a predefined distance to one of the functional blocks; performing a local dummy insertion to the approximate dummy region according to the local pattern density; repeating the identifying and performing to at least some other of the functional blocks; and implementing a global dummy insertion to a non-local dummy region according to a global pattern density.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: TAIWAN SEMICONDOCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ying-Chou Cheng, Cheng-Lung Tsai, Tsong-Hua Ou, Cheng Kun Tsai, Ru-Gun Liu, Wen-Chun Huang
  • Publication number: 20110204449
    Abstract: A method of forming an integrated circuit structure on a chip includes extracting an active pattern including a diffusion region; enlarging the active pattern to form a dummy-forbidden region having a first edge and a second edge perpendicular to each other; and adding stress-blocking dummy diffusion regions throughout the chip, which includes adding a first stress-blocking dummy diffusion region adjacent and substantially parallel to the first edge of the dummy-forbidden region; and adding a second stress-blocking dummy diffusion region adjacent and substantially parallel to the second edge of the dummy-forbidden region. The method further includes, after the step of adding the stress-blocking dummy diffusion regions throughout the chip, adding general dummy diffusion regions into remaining spacings of the chip.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lee-Chung Lu, Chien-Chih Kuo, Jian-Yi Li, Sheng-Jier Yang
  • Patent number: 8003488
    Abstract: A deep trench is formed in a semiconductor-on-insulator (SOI) substrate and a pad layer thereupon. A conductive trench fill region is formed in the deep trench. A planarizing material layer having etch selectivity relative to the pad layer is applied. A portion of the pad layer having an edge that is vertically coincident with a sidewall of the deep trench is exposed by lithographic means. Exposed portion of the pad layer are removed selective to the planarizing material layer, followed by removal of exposed portion of a semiconductor layer selective to the conductive trench fill region by an anisotropic etch. The planarizing material layer is removed and a shallow trench isolation structure having a lower sidewall that is self-aligned to an edge of the original deep trench is formed. Another shallow trench isolation structure may be formed outside the deep trench concurrently.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Munir D. Naeem, David M. Dobuzinsky, Byeong Y. Kim
  • Patent number: 7999349
    Abstract: An electronic device is proposed. The device is integrated in a chip including at least one stacked layer having a front surface and a rear surface opposite the front surface, the device including: an insulating trench insulating an active region of the chip, the insulating trench having a section across each plane parallel to the front surface extending along a longitudinal line, and a front-rear contact electrically contacting the front surface to the rear surface in the active region, wherein the section of the insulating trench has a non-uniform width along the longitudinal line, and/or the device further includes at least one further insulating trench within the active region.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 16, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Pietro Montanini, Fabrizio Fausto Renzo Toia, Marta Mottura
  • Patent number: 7999348
    Abstract: A semiconductor on insulator (SOI) wafer includes a semiconductor substrate having first and second main surfaces opposite to each other. A dielectric layer is disposed on at least a portion of the first main surface of the semiconductor substrate. A device layer has a first main surface and a second main surface. The second main surface of the device layer is disposed on a surface of the dielectric layer opposite to the semiconductor substrate. A plurality of intended die areas are defined on the first main surface of the device layer. The plurality of intended die areas are separated from one another. A plurality of die access trenches are formed in the semiconductor substrate from the second main surface. Each of the plurality of die access trenches are disposed generally beneath at least a respective one of the plurality of intended die areas.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 16, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 7994609
    Abstract: A capacitor in an integrated circuit (“IC”) includes a core capacitor portion having first conductive elements electrically connected to and forming a part of a first node of the capacitor formed in a first layer and second conductive elements electrically connected to and forming a part of a second node of the capacitor formed in the first layer. The first and second conductive elements alternate in the first conductive layer. Third conductive elements electrically connected to and forming a part of the first node are formed in a second layer adjacent to the first layer. The capacitor also includes a shield capacitor portion having fourth conductive elements formed in at least first, second, third, and fourth layers. The shield capacitor portion is electrically connected to and forms a part of the second node of the capacitor and surrounds the first and third conductive elements.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 9, 2011
    Assignee: Xilinx, Inc.
    Inventor: Patrick J. Quinn
  • Patent number: 7994550
    Abstract: A semiconductor structure comprising: a substrate; a seed layer supported by the substrate; an elemental semiconductor layer disposed over a first portion of the seed layer; and a compound semiconductor layer disposed on a second portion of the seed layer. The first portion of the seed layer is electrically insulated from the second portion of the seed layer. A first semiconductor device is formed in the elemental semiconductor layer. A second semiconductor device is formed in the compound semiconductor layer. The second semiconductor device includes: a first electrode in contact with a first region of the compound semiconductor layer; a second electrode in contact with a second region of the compound semiconductor layer; and a third electrode. The third electrode controls carriers passing in a third region of the compound semiconductor layer disposed between the first region and the second region. A fourth electrode is in electrical contact with the second portion of the seed layer.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: August 9, 2011
    Assignee: Raytheon Company
    Inventors: Valery S. Kaper, John P. Bettencourt, Jeffrey R. LaRoche, Kamal Tabatabaie
  • Publication number: 20110175194
    Abstract: The present invention relates to a semiconductor device and a method of manufacturing the same. A high-resistance silicon wafer is manufactured in such a manner that a large-sized silicon wafer manufactured by the Czochralski method is irradiated with neutrons, and high-resistance and low-resistance elements are simultaneously formed on the high-resistance silicon wafer. Thus, the manufacturing cost can be remarkably saved, and the reliability of products can be enhanced.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 21, 2011
    Applicant: PETARI INCORPORATION
    Inventor: Young Jin PARK
  • Patent number: 7982279
    Abstract: A method of manufacturing a stacked-type semiconductor device, including the steps of: forming dividing grooves, having a depth corresponding to a finished thickness for a plurality of first chips formed on the face side of a wafer, on the face side of the wafer along planned dividing lines; stacking existing second chips on the first chips; covering the face-side surfaces of the second chips with a protective member; and grinding the back side of the wafer until the dividing grooves are exposed and the first chips are thinned to the finished thickness, to obtain semiconductor devices of a two-layer structure.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 19, 2011
    Assignee: Disco Corporation
    Inventor: Souu Kumagai
  • Patent number: 7977762
    Abstract: An integrated circuit (IC) is disclosed to include a central area of the IC that is partitioned into a first section containing at least one digital circuit and a second section containing at least one analog circuit; and a guard strip (or shield) that is within the central area and that is positioned within between the digital circuit and the analog circuit. The shield or guard strip comprises of n-well and p-tap regions that separate digital and analog circuits.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Alvand Technologies, Inc.
    Inventors: Mansour Keramat, Mehrdad Heshami, Syed S. Islam
  • Publication number: 20110133304
    Abstract: A chip includes a number a plurality of functional areas of a layer and a number of dummy structures within the layer. The dummy structures are spaced from the functional areas. Each dummy structure has a size that is a function of the size and density of the functional areas.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 9, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Sebastian Schmidt, Thomas Schafbauer, Hang Yip Liu, Yayi Wei
  • Publication number: 20110133303
    Abstract: A semiconductor component including a first integrated circuit in a substrate which is adapted to produce electrical signals with a high-frequency signal component, wherein the substrate is such that the high-frequency signal component can propagate on a substrate surface and/or in the substrate interior, a second integrated circuit in the same substrate which is such that its function can be compromised by high-frequency signals, and a countersignal circuit in the same substrate which is adapted to deliver an electrical countersignal which at least at a selected location of the substrate surface and/or the substrate interior attenuates or eliminates the high-frequency electrical signal component emanating from the first integrated circuit, wherein the countersignal circuit includes a receiver which is adapted to produce an electrical signal dependent on the instantaneous field strength of the high-frequency signal component, and a shielding transistor provided in the substrate and having a control electrode
    Type: Application
    Filed: April 8, 2005
    Publication date: June 9, 2011
    Inventors: Gunther Lippert, Gerald Lippert
  • Patent number: 7956437
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: June 7, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Jun-Wei Chen, Wai Tien Chan, HyungSik Ryu
  • Publication number: 20110127633
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Patent number: 7952160
    Abstract: Inductors packaged with a voltage regulator for an integrated circuit within the same package are deposited to a sufficient thickness to reduce resistance and improve the quality factor. Furthermore, the voltage regulator switches currents through the inductors at a relatively high frequency such that the overall size and inductances of the inductors may be reduced. As a consequence, integrating both the integrated circuits including a voltage regulator and associated inductor array in a single package is facilitated. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: May 31, 2011
    Assignee: Intel Corporation
    Inventors: Nicholas D. Triantafillou, Malay Trivedi, Erik A. McShane, James T. Doyle, Mark J. Kachmarek
  • Patent number: 7948051
    Abstract: A method for forming a self aligned pattern on an existing pattern on a substrate comprising applying a coating of a solution containing a masking material in a carrier, the masking material having an affinity for portions of the existing pattern; and allowing at least a portion of the masking material to preferentially assemble to the portions of the existing pattern. The pattern may be comprised of a first set of regions of the substrate having a first atomic composition and a second set of regions of the substrate having a second atomic composition different from the first composition. The first set of regions may include one or more metal elements and the second set of regions may include a dielectric. The first and second regions may be treated to have different surface properties. Structures made in accordance with the method. Compositions useful for practicing the method.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew E Colburn, Stephen M Gates, Jeffrey C Hedrick, Elbert Huang, Satyanarayana V Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian
  • Patent number: 7944016
    Abstract: According to one exemplary embodiment, a power managing semiconductor die with reduced power consumption includes a power island including an event detection block and an event qualification block. The event detection block is configured to activate the event qualification block in response to an input signal initiated by an external event. The input signal is coupled to the event detection block, for example, via a bond pad situated in an I/O region of the power managing semiconductor die. The event qualification block is configured to determine if the external event is a valid external event. The event qualification block resides in a thin oxide region and the event detection block resides in a thick oxide region of the semiconductor die. The power managing semiconductor die further includes a power management unit configured to activate the event qualification block in response to power enable signal outputted by the event detection block.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: May 17, 2011
    Assignee: Broadcom Corporation
    Inventor: Wenkwei Lou
  • Patent number: 7932295
    Abstract: A method of forming an organic silica-based film, including: applying a composition for forming an insulating film for a semiconductor device, which is cured by using heat and ultraviolet radiation, to a substrate to form a coating; heating the coating; and applying heat and ultraviolet radiation to the coating to effect a curing treatment, wherein the composition includes organic silica sol having a carbon content of 11.8 to 16.7 mol %, and an organic solvent, the organic silica sol being a hydrolysis-condensation product produced by hydrolysis and condensation of a silane compound selected from compounds shown by the general formulae (1): R1Si(OR2)3, (2): Si(OR3)4, (3): (R4)2Si(OR5)2, and (4): R6b(R7O)3-bSi—(R10)d—Si(OR8)3-cR9c.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: April 26, 2011
    Assignee: JSR Corporation
    Inventors: Hajime Tsuchiya, Hiromi Egawa, Terukazu Kokubo, Atsushi Shiota
  • Publication number: 20110089522
    Abstract: A semiconductor wafer has a main surface. A main chip region is formed on the main surface. A sub-chip region is smaller in area than the main chip region, and positioned on an edge side of the semiconductor wafer relative to the main chip region. The sub-chip region is identical to the main chip region in design pattern. Accordingly, a semiconductor device in which occurrence of a pattern failure at the edge of the wafer can be prevented when chips are arranged in the surface of the semiconductor wafer and a method of manufacturing the same can be obtained.
    Type: Application
    Filed: August 2, 2010
    Publication date: April 21, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Atsushi NARAZAKI
  • Publication number: 20110089523
    Abstract: Provided are systems and processes for forming a three-dimensional circuit on a substrate. A radiation source produces a beam that is directed at a substrate having an isolating layer interposed between circuit layers. The circuit layers communicate with reach other via a seed region exhibiting a crystalline surface. At least one circuit layer has an initial microstructure that exhibits electronic properties unsuitable for forming circuit features therein. After being controllably heat treated, the initial microstructure of the circuit layer having unsuitable properties is transformed into one that exhibits electronic properties suitable for forming circuit feature therein. Also provided are three-dimensional circuit structures optionally formed by the inventive systems and/or processes.
    Type: Application
    Filed: December 21, 2010
    Publication date: April 21, 2011
    Applicant: ULTRATECH, INC.
    Inventors: Arthur W. Zafiropoulo, Yun Wang, Andrew M. Hawryluk
  • Patent number: 7923820
    Abstract: A porous dielectric element is produced by forming a first dielectric and a second dielectric. The second dielectric is dispersed in the first dielectric. The second dielectric is then removed from the second dielectric by using a chemical dissolution. The removal of the second dielectric from the first dielectric leaves pores in the first dielectric. The pores, which are filled with air, improve the overall dielectric constant of the resulting dielectric element.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 12, 2011
    Assignee: STMicroelectronics S.A.
    Inventors: Simon Jeannot, Laurent Favennec
  • Patent number: 7916571
    Abstract: An apparatus comprising plurality of functional integrated circuit blocks, each manufactured with different oxide thicknesses on a monolithic integrated circuit die, is described. Using different gate oxide thicknesses for different functional integrated circuit blocks provides reduced power consumption and increases performance in processing systems. Several embodiments comprising different combinations of functional integrated circuit blocks, including processor cores and memory elements, are presented.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: March 29, 2011
    Assignee: QUALCOMM Incorporated
    Inventor: Ronald John Tessitore
  • Patent number: 7906383
    Abstract: By forming a stressed dielectric layer on different transistors and subsequently relaxing a portion thereof, the overall process efficiency in an approach for creating strain in channel regions of transistors by stressed overlayers may be enhanced while nevertheless transistor performance gain may be obtained for each type of transistor, since a highly stressed material positioned above the previously relaxed portion may also efficiently affect the underlying transistor.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 15, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf Richter, Andy Wei, Manfred Horstmann, Joerg Hohage
  • Patent number: 7906828
    Abstract: A high-voltage integrated circuit includes a low-voltage circuit region having a plurality of semiconductor devices, which operate with respect to a ground voltage, a high-voltage circuit region having a plurality of semiconductor devices, which operate with respect to a voltage that varies from the ground voltage to a high voltage, a junction termination and a first isolation region electrically isolating the low-voltage circuit region from the high-voltage circuit region, a high-voltage resistant diode formed between the low-voltage circuit region and the high-voltage circuit region, and a second isolation region surrounding the high-voltage resistant diode and electrically isolating the high-voltage resistant diode from the low-voltage circuit region and the high-voltage circuit region.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: March 15, 2011
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Sung-lyong Kim, Chang-ki Jeon
  • Patent number: 7902611
    Abstract: An integrated circuit is provided with transistor body regions that may be independently biased. Some of the bodies may be forward body biased to lower threshold voltages and increase transistor switching speed. Some of the bodies may be reverse body biased to increase threshold voltages and decrease leakage current. The integrated circuit may be formed on a silicon substrate. Body bias isolation structures may be formed in the silicon substrate to isolate the bodies from each other. Body bias isolation structures may be formed from shallow trench isolation trenches. Doped regions may be formed at the bottom of the trenches using ion implantation. Oxide may be used to fill the trenches above the doped region. A deep well may be formed under the body regions. The deep well may contact the doped regions that are formed at the bottom of the trenches.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 8, 2011
    Assignee: Altera Corporation
    Inventors: Irfan Rahim, Bradley Jensen, Peter J. McElheny