Metal Containing Patents (Class 423/592.1)
  • Publication number: 20080260612
    Abstract: Multi-step metal compound oxidation process to produce compounds and enhanced metal oxides from various source materials, e.g. metal sulfides, carbides, nitrides and other metal containing materials with metal oxides from secondary reaction steps being utilized as an oxidation agent in the first reactions.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Applicant: Orchard Material Technology, LLC
    Inventor: Lawrence F. McHugh
  • Patent number: 7432015
    Abstract: The negative active material for a rechargeable lithium battery of the present invention includes a carbonaceous material and a silicon-based compound represented by Formula 1: Si(1-y)MyO1+x ??(1) where 0<y<1, ?0.5?x?0.5, and M is selected from the group consisting of Mg, Ca, and mixtures thereof.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: October 7, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Goo-Jin Jeong, Sang-Min Lee, Sung-Soo Kim, Yoshiaki Nitta
  • Publication number: 20080241054
    Abstract: A method for making the metal oxide includes the following steps: mixing a metal nitrate with a solvent of octadecyl amine, and achieving a mixture; agitating and reacting the mixture at a reaction temperature for a reaction period; cooling the mixture to a cooling temperature, and achieving a deposit; and washing the deposit with an organic solvent, drying the deposit at a drying temperature and achieving a metal oxide nanocrystal. The present method for making a metal oxide nanocrystal is economical and timesaving, and has a low toxicity associated therewith. Thus, the method is suitable for industrial mass production.
    Type: Application
    Filed: November 2, 2007
    Publication date: October 2, 2008
    Applicants: Tsinghua University, HON HAI Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Ding-Sheng Wang
  • Publication number: 20080233030
    Abstract: Process for manufacturing an electrochemical device including a cathode, an anode and at least one electrolyte membrane disposed between the anode and the cathode, wherein at least one of the cathode, the anode and the electrolyte membrane, contains at least a ceramic material.
    Type: Application
    Filed: March 30, 2004
    Publication date: September 25, 2008
    Applicant: PIRELLI & C.S.P.A.
    Inventors: Agustin Sin Xicola, A. Yuri Dubitsky, Enrico Albizzati, Evgeny Kopnin, Elena Roda
  • Publication number: 20080210444
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Application
    Filed: August 22, 2007
    Publication date: September 4, 2008
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Patent number: 7419529
    Abstract: An object of the present invention is to provide a method of forming fine particles on a substrate in which reoxidization of reduced fine particles is suppressed. Reduced fine particles (FeO fine particles) are formed by embedding metal oxide fine particles (Fe2O3 fine particles) fixed on a p type silicon semiconductor substrate into a silicon oxidized film, and carrying out a heat treatment in a reducing gas atmosphere. Presence of the silicon oxidized film enables suppression of reoxidization of the reduced fine particles (FeO fine particles) due to exposure to the ambient air.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: September 2, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shigeo Yoshii, Michihito Ueda, Nozomu Matsukawa, Ichiro Yamashita
  • Patent number: 7413724
    Abstract: Method for producing nano-particles from a precursor material. One embodiment of the method comprises vaporizing the precursor material to produce a vapor, directing the vapor into an isolation chamber, contacting the vapor contained in the isolation chamber with a quench fluid stream, the quench fluid stream cooling the vapor to produce the nano-particles, and removing the nano-particles from the isolation chamber.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 19, 2008
    Assignee: Cyprus Amax Minerals Company
    Inventors: Mohamed H. Khan, James A. Cole, Joel A. Taube
  • Publication number: 20080170984
    Abstract: The present invention provides a process for obtaining fullerene-like metal chalcogenide nanospheres, comprising: (a) feeding a metal halide, metal carbonyl, organo-metallic compound or metal oxyhalide vapor into a reacting chamber towards a reacting zone to interact with a flow of at least one chalcogen material in gas phase, the temperature conditions in said reacting zone being such enabling the immediate formation of spherical nucleation seeds of the product; (b) controllably varying the flow of said metal halide, metal carbonyl, organo-metallic compound or metal oxyhalide vapor into said reacting chamber thereby controlling the amount, morphology and size of the so-produced nanospheres, to obtain substantially non-hollow fullerene-like metal calcogenide nanospheres in solid form. The present invention further provides novel IF metal chalcogenides with substantially non-hollow, spherical shape, and having excellent tribological behaviour.
    Type: Application
    Filed: April 6, 2006
    Publication date: July 17, 2008
    Inventors: Reshef Tenne, Alexander Margolin, Ronit Popovitz-Biro, Lev Rapoport
  • Patent number: 7393516
    Abstract: A method of preparing metal chalcogenides from elemental metal or metal compounds has the following steps: providing at least one elemental metal or metal compound; providing at least one element from periodic table groups 13-15; providing at least one chalcogen; and combining and heating the chalcogen, the group 13-15 element and the metal at sufficient time and temperature to form a metal chalcogenide. A method of functionalizing the surface of semiconducting nanoparticles has the following steps: providing at least one metad compound; providing one chalcogenide having a cation selected from the group 13-15 (B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb and Bi); dissolving the chalcogenide in a first solution; dissolving the metal compound in a second solution; providing and dissolving a functional capping agent in at least one of the solutions of the metal compounds and chalcogenide; combining all solutions; and maintaining the combined solution at a proper temperature for an appropriate time.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 1, 2008
    Inventors: Dong-Kyun Seo, Nora Iancu, Liming Wu
  • Patent number: 7393517
    Abstract: The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro- and nano-templates of tailored shapes through the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use of chemical reactions.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: July 1, 2008
    Assignee: The Ohio State University
    Inventor: Kenneth H. Sandhage
  • Publication number: 20080138272
    Abstract: It is an object to provide a method for producing stable alkaline metal oxide sols having a uniform particle size distribution. The method comprises the steps of: heating a metal compound at a temperature of 60° C. to 110° C. in an aqueous medium that contains a carbonate of quaternary ammonium; and carrying out hydrothermal processing at a temperature of 110° C. to 250° C. The carbonate of quaternary ammonium is (NR4)2CO3 or NR4HCO3 in which R represents a hydrocarbon group, or a mixture thereof. The metal compound is one, or two or more metal compounds selected from a group of compounds based on a metal having a valence that is bivalent, trivalent, or tetravalent.
    Type: Application
    Filed: August 8, 2005
    Publication date: June 12, 2008
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Yoshinari Koyama, Kenji Yamaguchi
  • Patent number: 7381496
    Abstract: A composition having a formula LixMgyNiO2 wherein 0.9<x<1.3, 0.01<y<0.1, and 0.91<x+y<1.3 can be utilized as cathode materials in electrochemical cells. A composition having a core, having a formula LixMgyNiO2 wherein 0.9<x<1.3, 0.01<y<0.1, and 0.9<x+y<1.3, and a coating on the core, having a formula LiaCobO2 wherein 0.7<a<1.3, and 0.9<b<1.2, can also be utilized as cathode materials in electrochemical cells.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: June 3, 2008
    Assignee: Tiax LLC
    Inventors: Per T. Onnerud, Jay Jie Shi, Sharon L. Dalton, Christina Lampe-Onnerud
  • Publication number: 20080121584
    Abstract: Methods of making unique water treatment compositions are provided. In one embodiment, a method of making a doped metal oxide or hydroxide for treating water comprises: disposing a metal precursor solution and a dopant precursor solution in a reaction vessel comprising water to form a slurry; and precipitating the doped metal oxide or hydroxide from the slurry.
    Type: Application
    Filed: June 14, 2007
    Publication date: May 29, 2008
    Applicants: INFRAMAT CORPORATION, UNIVERSITY OF HOUSTON
    Inventors: Huimin Chen, Dennis A. Clifford
  • Publication number: 20080124265
    Abstract: An anode in a Direct Carbon Fuel Cell (DCFC) operating in a temperature range between 500 and 1200 degrees Celsius is provided. The anode material has high catalytic activity and selectivity for carbon oxidation, sufficient oxygen non-stoichiometry, rapid oxygen chemical diffusion, wide thermodynamic stability window to withstand reducing environment, sufficient electronic conductivity and tolerance to sulfur and CO2 environments. The anode has doped ruthenate compositions A1?xA?xRuO3, AB1?yRuyO3, or A1?xA?xB1?yRuyO3. A and A? may be divalent, trivalent, or tetravalent cation, and B is a multivalent cation. A is among lanthanide series elements La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er or Yb, and dopant A? is from Group IIA, IIIB, or IVB elements. The doped ruthenates can also be a (AB1?yRuyO3) structure or an ordered Ruddlesden-Popper series ((A1?xAx?)n+1(B1?yRuy)nO3n+1) structure where n=1 or 2. The dopant B is among Group IVB, VB, VIB, VIII, IB, and IIB elements.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 29, 2008
    Inventor: Turgut M. Gur
  • Publication number: 20080118421
    Abstract: The present invention is directed to the microwave treatment of a class of selected metal ores and concentrates, particularly those known as chalcopyrite, in a fluidized bed reactor. The end product is commonly a mixture of copper oxide and copper sulfate, both of which are liquid soluble and directly recoverable by known techniques. The ratio of the oxide-sulfate mixture end product may be controlled by suitable control of microwave parameters.
    Type: Application
    Filed: September 20, 2007
    Publication date: May 22, 2008
    Applicant: HW ADVANCED TECHNOLOGIES, INC.
    Inventor: James Tranquilla
  • Patent number: 7357910
    Abstract: Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 15, 2008
    Assignee: Los Alamos National Security, LLC
    Inventors: Jonathan Phillips, Daniel Mendoza, Chun-Ku Chen
  • Patent number: 7347983
    Abstract: Complex ceramic oxides of the general formula Mg2MM?O6+x where M=Rare metal ion or Yttrium or Lanthanum and M?=Sn, Sb, Zr, Hf, Ta, and Nb; and where ?0.5<x<0.5; having a defective pyrochlore structure are useful for active and passive electronic applications, as dielectrics, catalyst sensors, hosts for radioactive waste, etc. This process for the preparation of this class of compounds comprises: (i) mixing the compounds of magnesium, M and M? to get the molar ratio as 2:1:1 (ii) the mixture obtained in step (i) along with a wetting medium may be ball milled or mixed; (iii) the resultant slurry may be dried to obtain dry powder, (iv) the resultant mixture may be heated to a temperature in the range of 1000-1600° C. for the duration ranging from 3 hours to 50 hours, either in a single step or by taking out the reactant after heating, checking for the structure formation and heating again after grinding, if necessary.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 25, 2008
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jose James, Selvaraj Senthilkumar, Kallumelthekethil Vasudevan Pillaj Oonnikrishnan Nair
  • Publication number: 20080070146
    Abstract: This invention provides metal oxide particles surface-treated with a hydrophobicity-imparting agent, methods of making such, and toner compositions comprising the same.
    Type: Application
    Filed: July 6, 2007
    Publication date: March 20, 2008
    Applicant: Cabot Corporation
    Inventors: Dmitry Fomitchev, Joachim K. Floess, William R. Williams, Hairuo Tu
  • Patent number: 7338647
    Abstract: The present invention relates to a method for preparing an electroactive metal polyanion or a mixed metal polyanion comprising forming a slurry comprising a polymeric material, a solvent, a polyanion source or alkali metal polyanion source and at least one metal ion source; heating said slurry at a temperature and for a time sufficient to remove the solvent and form an essentially dried mixture; and heating said mixture at a temperature and for a time sufficient to produce an electroactive metal polyanion or electroactive mixed metal polyanion.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Valence Technology, Inc.
    Inventors: Biying Huang, Jeffrey Swoyer, M. Yazid Saidi, Haitao Huang
  • Publication number: 20080035898
    Abstract: Provided is a manufacturing method of a crystallized rare-earth thin films on a glass or a silicon substrate. This manufacturing method of a crystallized metal oxide thin film includes a step of retaining an metal organic thin film or a metal oxide film containing at least one type of rare-earth metal element selected from a group comprised of Y, Dy, Sm, Gd, Ho, Eu, Tm, Tb, Er, Ce, Pr, Yb, La, Nd and Lu formed on a substrate at a temperature of 250 to 600° C., and a step of crystallizing the organic metal thin film or the metal oxide film while irradiating ultraviolet radiation having a wavelength of 200 nm or less.
    Type: Application
    Filed: August 9, 2007
    Publication date: February 14, 2008
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Tetsuo Tsuchiya, Tomohiko Nakajima, Akio Watanabe, Toshiya Kumagai
  • Patent number: 7326398
    Abstract: A method for preparation for mesoporous oxide comprising a non silica oxide having a hexagonal pore structure periodicity and an average maximum pore length of from 2 nm to 5 nm, characterized by comprising blending 0.003 mol to 0.01 mol of TaCl5, NbCl5 or a mixture thereof and Al isopropoxide comprising 10 g of an aliphatic linear alcohol and 1 g of a template compound to prepare a mixture for forming a sol solution, adding 5 mol to 35 mol (based on the metal compounds) of water or an aqueous inorganic acid solution to the mixture followed by hydrolysis and polycondensation to give a sol solution, transferring the sol into an oxygen containing atmosphere followed by again at 40° C. to 100° C. to form a gel, and then calcinating the gel in an oxygen containing atmosphere at 350° C. to 550° C.; and the mesoporous oxide obtained by the method.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: February 5, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Tokumitsu Kato
  • Publication number: 20080025912
    Abstract: A process for the production of a valve metal oxide powder, in particular an Nb2O5 or Ta2O5 powder by continuous reaction of a fluoride-containing valve metal compound with a base in the presence of water and calcination of the resultant product, wherein the reaction is performed in just one reaction vessel and at a temperature of at least 45° C. Valve metal oxide powders obtainable in said manner which exhibit a spherical morphology, a D50 value of 10 to 80 ?m and an elevated BET surface area.
    Type: Application
    Filed: August 31, 2004
    Publication date: January 31, 2008
    Inventors: Karsten Beck, Hady Seyeda, Klaus Lerch, Bianca Agnes Balan
  • Patent number: 7309457
    Abstract: A chain antimony oxide fine particle group comprising antimony oxide fine particles which have an average particle diameter of 5 to 50 nm, are connected in the form of a chain and have an average connection number of 2 to 30 and preferably used for forming a hard coating film. The fine particle group can be prepared by a process comprising treating an alkali antimonate aqueous solution with a cation exchange resin to prepare an antimonic acid (gel) dispersion and then treating the dispersion with an anion exchange resin and/or adding a base to the dispersion. Also provided is a substrate with a film comprising a substrate and a hard coating film. The hard coating film includes a chain inorganic oxide fine particle group, in which inorganic oxide fine particles of 2 to 30 on the average are connected in the form of a chain, and a matrix.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 18, 2007
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Ryo Muraguchi, Masayuki Matsuda, Hiroyasu Nishida, Toshiharu Hirai, Mitsuaki Kumazawa
  • Patent number: 7297321
    Abstract: A new class of supermicroporous mixed oxides, with pore sizes in the 10-20 ? range has been prepared utilizing basic metal acetates. The reactions are carried out in non-aqueous solvent media to which an excess of amine is added. Hydrolysis of the reagents is effected by addition of a water-propanol mixture and refluxing. The amine and solvent are removed by thorough washing and/or calcining at temperatures as low as 200° C. Mixtures of transition metal oxides with either ZrO2, TiO2, La2O3, SiO2, Al2O3 or mixtures thereof were prepared. The surface area curves of the pure oxides are Type I with surface areas of 400-600 m2/g and up to 1100 m2/g for the mixed oxides.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: November 20, 2007
    Assignee: The Texas A&M University System
    Inventors: Boris G. Shpeizer, Abraham Clearfield
  • Patent number: 7291317
    Abstract: The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: November 6, 2007
    Assignee: United States of America as represented by the Department of Energy
    Inventors: Marie-Louise Saboungi, Benoit Glorieux
  • Patent number: 7285261
    Abstract: A process of reacting a metal chloride, especially chromium (III) chloride, with an alkali metal oleate at a temperature of from about 30° to about 300° C., and especially at about 70±1° C., in a solvent to form a metal oleate complex, especially a chromium-oleate complex, and reacting the complex with oleic acid at a reaction temperature of about 300° C. or above in a solvent having a boiling point of higher than the reaction temperature, and precipitating and isolating metal oxide nanocrystals, especially chromium (III) oxide nanocrystals, which are useful as a catalyst in hydrofluorination reactions. Other metal oxide nanocrystals produced by this process include nanocrystals of vanadium oxide, molybedenum oxide, rhodium oxide, palladium oxide, ruthenium oxide, zirconium oxide, barium oxide, magnesium oxide, and calcium oxide are also synthesized by similar process scheme using their respective chloride precursors.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 23, 2007
    Assignee: Honeywell International Inc
    Inventor: Sudip Mukhopadhyay
  • Publication number: 20070231250
    Abstract: Porous metal oxides are provided. The porous metal oxides are prepared by heat treating a coordination polymer. A method of preparing the porous metal oxide is also provided. According to the method, the shape of the particles of the metal oxide can be easily controlled, and the shape and distribution of pores of the porous metal oxide can be adjusted.
    Type: Application
    Filed: December 1, 2006
    Publication date: October 4, 2007
    Inventors: Dong-min Im, Yong-nam Ham
  • Patent number: 7276224
    Abstract: Methods of producing nanoporous particles by spray pyrolysis of a precursor composition including a reactive precursor salt and a nonreactive matrix salt are provided, wherein the matrix salt is used as a templating medium. Nanoporous aluminum oxide particles produced by the methods are also provided.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: October 2, 2007
    Assignee: Regents of the University of Minnesota
    Inventors: Michael R. Zachariah, Benjamin Y. H. Liu
  • Patent number: 7273904
    Abstract: Dendron ligands or other branched ligands with cross-linkable groups were coordinated to colloidal inorganic nanoparticles, including nanocrystals, and substantially globally cross-linked through different strategies, such as ring-closing metathesis (RCM), dendrimer-bridging methods, and the like. This global cross-linking reaction sealed each nanocrystal within a dendron box to yield box-nanocrystals which showed dramatically enhanced stability against chemical, photochemical and thermal treatments in comparison to the non-cross-linked dendron-nanocrystals. Empty dendron boxes possessing a very narrow size distribution were formed by the dissolution of the inorganic nanocrystals contained therein upon acid or other etching treatments.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 25, 2007
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Haiyan Chen, Wenzhou Guo, Y. Andrew Wang
  • Patent number: 7267810
    Abstract: A method of making nanocrystals involves adding a chalocogen source to a hot solution of a metal-containing non-organometallic compound, such as CdO, in a first ligand solvent, such as TOP, and preferably subsequently cooling the resulting mixture to a lower temperature to grow the nanocrystals at said lower temperature. The method can involve either one ligand or two-ligand systems.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: September 11, 2007
    Assignee: National Research Council of Canada
    Inventors: Kui Yu, John Ripmeester
  • Patent number: 7255962
    Abstract: Improved solid acid electrolyte materials, methods of synthesizing such materials, and electrochemical devices incorporating such materials are provided. The stable electrolyte material comprises a solid acid in a eulytine structure capable of undergoing rotational disorder of oxyanion groups and capable of extended operation at elevated temperatures, that is, solid acids having hydrogen bonded anion groups; a superprotonic disordered phase; and capable of operating at temperatures of ˜100° C. and higher.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 14, 2007
    Assignee: California Institute of Technology
    Inventors: Calum Chisholm, Sossina M. Haile
  • Patent number: 7238331
    Abstract: The present invention discloses a process for producing nano-powders and powders of nano-particle loose aggregate, which includes: (a) providing at least two reactant solutions A and B capable of rapidly reacting to form deposits; (b) supplying the at least two reactant solutions A and B at least at the reaction temperature into a mixing and reaction precipitator respectively, in which mixing reaction and precipitation are continuously carried out in sequence, the mixing and reaction precipitator being selected from at least one of a tubular ejection mixing reactor, a tubular static mixing reactor and an atomization mixing reactor; and (c) treating the deposit-containing slurry continuously discharged from the mixing reaction precipitator.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: July 3, 2007
    Assignee: Anshan University of Science and Technology
    Inventors: Yingyan Zhou, Shoushan Gao, Kaiming Wang, Chuangeng Wen, Xiaoqi Li
  • Patent number: 7235224
    Abstract: Disclosed is a process for preparing fine metal oxide particles, comprising the following steps of reacting a reactant mixture comprising i) water, ii) at least one water-soluble metal nitrate and iii) ammonia or ammonium salt at 250–700° C. under 180–550 bar for 0.01 sec to 10 min in a reaction zone to synthesize the metal oxide particles, the metal nitrate being contained at an amount of 0.01–20 wt % in the reactant mixture; and separating and recovering the metal oxide particles from the resulting reaction products. According to the present invention, nano-sized metal oxide particles are synthesized, while the harmful by-products generated concurrently therewith are effectively decomposed in the same reactor.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: June 26, 2007
    Assignee: Han-Wha Chemical Corporation
    Inventors: Wan-Jae Myeong, Jin-Soo Baik, Se-Woong Park, Chang-Mo Chung, Kyu-Ho Song
  • Patent number: 7232556
    Abstract: Nanoparticles comprising titanium, such as nanoscale doped titanium metal compounds, inorganic titanium compounds, and organic titanium compounds, their methods of manufacture, and methods of preparation of products from nanoparticles comprising titanium are provided.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 19, 2007
    Assignee: NanoProducts Corporation
    Inventor: Tapesh Yadav
  • Patent number: 7229602
    Abstract: A method of preparing metal chalcogenide particles. The method comprising the step of reacting an amine and metal complex precursors. The metal complex precursors comprising a chalcogenide and an electrophilic group. The reaction forming metal chalcogenide particles substantially free of the electrophilic group.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: June 12, 2007
    Assignee: National University of Singapore
    Inventors: Wee Shong Chin, Zhihua Zhang, Wen Pei Lim
  • Patent number: 7223377
    Abstract: The present invention is the method for preparation of transition metal oxide having micro-mesoporous structure whose average fine pores size is not less than 1 nm and not more than 2 nm comprising, adding and dissolving transition metal salt which is a precursor of transition metal oxide and/or metal alkoxide in the solution prepared by dissolving polymer surfactant in organic solvent, hydrolyzing said transition metal salt and/or metal alkoxide and preparing sol solution which is polymerized and self organized, then obtaining gel whose organization is stabilized from said sol solution and removing said polymer surfactant by using water of room temperature or water to which alkali metal or alkaline earth metal ion is added.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: May 29, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Byonjin Ri
  • Patent number: 7220397
    Abstract: Pressed material such as anodes are described and formed from oxygen reduced oxide powders using additives, such as binders and/or lubricants. Methods to form the pressed material are also described, such as with the use of atomizing, spray drying, fluid bed processing, microencapsulation, and/or coacervation.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: May 22, 2007
    Assignee: Cabot Corporation
    Inventors: Jonathon L. Kimmel, Randall V. Redd
  • Patent number: 7214643
    Abstract: A metal oxide which has a large pore volume, and is very useful as a catalyst support. An alkaline material is added to an aqueous solution in which a compound of a metal element for composing an oxide is dissolved, a resultant mixture is co-precipitated, an obtained precipitate is washed, a washed precipitate is stirred in water along with a surfactant, and is calcined. By adding the surfactant after washing, the pH is not changed so that the adding effect of the surfactant is achieved to its upper most limit, thereby obtaining a metal oxide which has a large pore volume and a large mean diameter of secondary particles, and exhibits excellent gas diffusion properties.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: May 8, 2007
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Kae Yamamura, Hideo Sobukawa
  • Patent number: 7211230
    Abstract: The present invention discloses a process for producing nanometer powders, comprising the following steps: (a) providing reactant solution A and reactant solution B that can rapidly react to form precipitate; (b) continuously adding said solution A and solution B into a mixing and reacting precipitator with a stator and a rotor in operation, respectively; and (c) post-treating the precipitate-containing slurry discharged continuously from the mixing and reacting precipitator. The present process could produce nanometer powders with adjustable particle size, good homogeneity in size and good dispersity. The method also has the characteristics of high production yield, simplicity in process and low consumption of energy. It could be applied to produce various nanometer powders of metals, oxides, hydroxides, salts, phosphides and sulfides as well as organic compounds.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: May 1, 2007
    Assignee: Anshan University of Science and Technology
    Inventors: Yingyan Zhou, Shoushan Gao, Hongxia Li, Kaiming Wang, Xiaoqi Li, Lixiang Li, Chuangeng Wen
  • Patent number: 7211236
    Abstract: Described is a method for the production of metal oxides by flame spray pyrolysis, in particular mixed metal oxides such as ceria/zirconia, and metal oxides obtainable by said method. Due to high enthalpy solvents with a high carboxylic acid content said metal oxides have improved properties. For example ceria/zirconia has excellent oxygen storage capacity at high zirconium levels up to more than 80% of whole metal content.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 1, 2007
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin J. Stark, Lutz Mädler, Sotiris E. Pratsinis
  • Patent number: 7208134
    Abstract: One aspect of the present invention relates to magnetic nanoparticles colloidally stabilized in aqueous milieu by association with an organic phase. The organic phase may be either a fluorinated polymer or an organic hydrocarbon bilayer, wherein the two layers are chemically bonded to each other. The stabilized particles are further non-toxic and provide useful enhancements in bioprocesses. Another aspect of the present invention relates to compositions comprising an oxygen-dissolving fluid vehicle and surface modified, nanometer-sized magnetic particles. The inventive compositions have utility in a wide range of applications, but are particularly suitable for use as recyclable oxygen carriers, separation and purification vehicles, and bioprocessing media, including fermentation processes.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Lev E. Bromberg, T. Alan Hatton, Daniel I. C. Wang, Jin Yin, Bernat Olle
  • Patent number: 7208131
    Abstract: Methods are described for the production of hydrogen-bis(chelato)borates of the general formula H[BL1L2] and of alkali metal-bis(chelato)borates of the general formula M[BL1L2] where M=Li, Na, K, Rb, Cs L1=—OC(O)—(CR1R2)n—C(O)O— or —OC(O)—(CR3R4)—O— where n=0 or 1, R1, R2, R3, R4 independently of one another denote H, alkyl, aryl or silyl, L2=—OC(O)—(CR5R6)n—C(O)O— or —OC(O)—(CR7R8)—O— where n=0 or 1, R5, R6, R7, R8 independently of one another denote H, alkyl, aryl or silyl, wherein the respective raw materials are mixed in solid form without the addition of solvents and are reacted. Lithium-bis(oxalato)borate, lithium-bis(malonato)borate, caesium-bis-(oxalato)borate, caesium-bis-(malonato)borate and the mixed salts lithium(lactato,oxalato)borate and lithium(glycolato,oxalato)borate for example may be produced in this way.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: April 24, 2007
    Assignee: Chemetall GmbH
    Inventors: Ulrich Wietelmann, Uwe Lischka, Klaus Schade, Jan-Christoph Panitz
  • Patent number: 7204971
    Abstract: The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: April 17, 2007
    Assignee: The Ohio State University
    Inventor: Kenneth H. Sandhage
  • Patent number: 7195749
    Abstract: The room temperature, low field intergrain magnetoresistance (IMR) of the double perovsktite SrFe0.5MO0.5O3 is found to be highly tunable by doping either Ca or Ba into the Sr site. The dopant exerts a chemical pressure, changing the Curie temperature and the magnetic softness. The IMR at optimal doping (Sr0.2Ba0.8Fe0.5Mo0.5O3) is approximately 3.5% in 100 Oe, and increases further in high fields. The unprecedented strength of the IMR in this highly spin polarized system provides new grounds for employing novel magnetic materials for new magnetic sensing applications and spin electronics.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: March 27, 2007
    Assignee: Rutgers University
    Inventors: Sang-Wook Cheong, Bog-Gi Kim
  • Patent number: 7186391
    Abstract: The present invention provides a lanthanum sulfide or cerium sulfide sintered compact usable as a thermoelectric conversion material having a high Seebeck coefficient. The sintered compact has a chemical composition of La2S3 or Ce2S3, and a crystal structure consisting of a mixture of beta and gamma phases having a Seebeck coefficient higher than that of the crystal structure otherwise being in gamma single-phase. The sintered compact is produced by preparing a beta-phase La2S3 or alpha-phase Ce2S3 powder of raw material having a high purity with a suppressed carbon impurity concentration and a given range of oxygen concentration, charging the raw material into a carbon die having an inner surface covered with an h-BN applied thereon, and hot-pressing the charged material under vacuum to form a mixture of beta and gamma phases having a high Seebeck coefficient.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: March 6, 2007
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Yoichiro Uemura, Mamoru Mitomo, Toshiyuki Nishimura, Shinji Hirai, Kazuyoshi Shimakage
  • Patent number: 7182929
    Abstract: A method for producing nanostructured multi-component or doped oxide particles and the particles produced therein. The process includes the steps of (i) dissolving salts of cations, which are either dopants or components of the final oxide, in an organic solvent; (ii) adding a dispersion of nanoparticles of a single component oxide to the liquid solution; (iii) heating the liquid solution to facilitate diffusion of cations into the nanoparticles; (iv) separating the solids from the liquid solution; and (v) heat treating the solids either to form the desired crystal structure in case of multi-component oxide or to render the homogeneous distribution of dopant cation in the host oxide structure. The process produces nanocrystalline multi-component or doped oxide nanoparticles with a particle size of 5–500 nm, more preferably 20–100 nm; the collection of particles have an average secondary (or aggregate) particle size is in the range of 25–2000 nm, preferably of less than 500 nm.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 27, 2007
    Assignee: NEI, Inc.
    Inventors: Amit Singhal, Ganesh Skandan, Mohit Jain
  • Patent number: 7172747
    Abstract: Spiral shaped fibers were utilized to prepare completely novel metal oxide nanotubes comprising solely metal oxides. The metal oxide nanotubes comprise solely a hollow cylinder shaped metal oxide which may contain hydroxyl groups constituting a double helix and having hole diameter distributions containing two peak hole diameters ranging from 1 to 2 nm and from 3 to 7 nm. The tubes may be obtained by forming spiral shaped fibers from a solution of compound 1 and compound 2 and using the fibers as a template for making the nanotubes. The hydrogen adsorption and storage capacity of the metal oxide nanotubes are extremely good.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: February 6, 2007
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Toshimi Shimizu, John Hwa Jung
  • Patent number: 7169375
    Abstract: Disclosed is a method of preparing treated metal oxide nanoparticles from sols prepared from metal alkoxides and organosilanes. The treated nanoparticles are useful high refractive index additives in the manufacture of optical articles.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: January 30, 2007
    Assignee: General Electric Company
    Inventor: Bret Ja Chisholm
  • Patent number: 7135161
    Abstract: A method of forming metal oxide powders includes the steps of solid state mixing of at least one metal nitrate salt, such as Fe(NO3)3 or a combination of metal nitrate salts such as Zn(NO3)3,6H2O and Ga(NO3)3, xH2O, and at least one reducing organic acid, such as tartaric or citric acid. The mixture is heated to form a metal oxide powder, such as alpha-iron oxide (?-Fe2O3) or a mixed metal powder such as zinc gallate phosphor (ZnGa2O4). A metal oxide precursor intermediate can be formed and then heated to form the metal oxide powder.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: November 14, 2006
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Paul H. Holloway, Mostafa Abboudi
  • Patent number: 7125536
    Abstract: This invention relates to a composition comprising nano-structured metal oxide particles (particularly, zirconia) and at least one stabilizing agent, a method to produce the composition, and a method to produce the thermally stable nano-structured particles. The method to produce the nano-structured particles comprises first preparing a base solution and a nanoparticle precursor solution, then combining these solutions at a final pH 7 or greater to precipitate a colloidal hydrous oxide. The colloidal hydrous oxide is then treated with at least one silicate, phosphate, or aluminum phosphate stabilizing agent and dried. These nano-structured particle products have high thermal stability and are particularly advantageous in applications as catalysts or catalyst supports that operate at high temperatures.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 24, 2006
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, BillieJo Monk, Corinne Lehaut