Composed Of Oxide Or Glassy Oxide Or Oxide Based Glass (epo) Patents (Class 257/E21.271)
  • Publication number: 20090081885
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Inventors: David H. Levy, Roger S. Kerr, Jeffrey T. Carey
  • Patent number: 7488655
    Abstract: A metal film is deposited on a silicon region in a non-oxidizing atmosphere, after which the metal film is oxidized with radicals capable of oxidizing the metal film, such as oxygen radicals, to form a metal oxide film serving as a gate insulating film.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: February 10, 2009
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shigenori Hayashi, Kazuhiko Yamamoto
  • Publication number: 20090004885
    Abstract: An object of the present invention is to provide a method for fabricating a semiconductor device capable of implementing planarization of an insulating film formed on a semiconductor substrate formed thereon with a circuit pattern and inhibiting unevenness of a film thickness of the insulating film, and a device thereof. According to the present invention, when etching is progressed to an A-A line, a part of a BPSG film 14 is exposed from an SOG film 16. A point at which the part of the BPSG film 14 is exposed is an “exposure start point”. A change of a plasma emission intensity of oxygen atoms during etching is observed to detect the “exposure start point”. An EPD detection in which an “etching end point” is set using the “exposure start point” as a reference is performed. The etching is continued even after a start of exposure of the BPSG film 14. Before a B-B line at which an entire surface of the BPSG film 14 is exposed is reached, the etching is ended at a C-C line.
    Type: Application
    Filed: June 6, 2008
    Publication date: January 1, 2009
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventor: Koji Komatsu
  • Patent number: 7445953
    Abstract: The invention relates to low temperature curable spin-on glass materials which are useful for electronic applications, such as optical devices. A substantially crack-free and substantially void-free silicon polymer film is produced by (a) preparing a composition comprising at least one silicon containing pre-polymer, a catalyst, and optionally water; (b) coating a substrate with the composition to form a film on the substrate, (c) crosslinking the composition by heating to produce a substantially crack-free and substantially void-free silicon polymer film, having a a transparency to light in the range of about 400 nm to about 800 nm of about 95% or more.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 4, 2008
    Assignee: Honeywell International Inc.
    Inventors: Victor Lu, Lei Jin, Arlene J. Suedmeyer, Paul G. Apen, Peter Alfred Smith, JingHong Chen
  • Patent number: 7439154
    Abstract: A method for fabricating an interconnect structure is described. A substrate with a conductive part thereon is provided, a first porous low-k layer is formed on the substrate, and then a first UV-curing step is conducted. A damascene structure is formed in the first porous low-k layer to electrically connect with the conductive part, and then a first UV-absorption layer is formed on the first porous low-k layer and the damascene structure. A second porous low-k layer is formed on the first UV-absorption layer, and a second UV-curing step is conducted.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: October 21, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Feng-Yu Hsu, Chih-Chien Liu, Jim-Jey Huang, Jei-Ming Chen
  • Publication number: 20080246368
    Abstract: A device including a layered heterostructure with an oxygen-containing material, with a carbon layer and an amorphous oxygen diffusion barrier protecting the carbon layer from etching by oxygen. One or more of a metal, a carbide or an oxide may be in contact with the amorphous oxygen diffusion barrier that has the lowest free energy of oxide formation in the device. Various devices are disclosed as are varieties of carbon allotropes. Methods of protecting carbon, such as diamond from the oxygen etching in processes such as device manufacture are also disclosed.
    Type: Application
    Filed: November 30, 2006
    Publication date: October 9, 2008
    Applicant: UChicago Argonne, LLC
    Inventors: Orlando Auciello, John Carlisle, Jennifer Gerbi, James Birrell
  • Publication number: 20080233675
    Abstract: Provided is a method of fabricating a nano-wire array, including the steps of: depositing a nano-wire solution, which contains nano-wires, on a substrate; forming a first etch region in a stripe shape on the substrate and then patterning the nano-wires; forming drain and source electrode lines parallel to each other with the patterned nano-wires interposed therebetween; forming a plurality of drain electrodes which have one end connected to the drain electrode line and contact at least one of the nano-wires, and forming a plurality of source electrodes, which have one end connected to the source electrode line and contact the nano-wires that contact the drain electrodes; forming a second etch region between pairs of the drain and source electrodes so as to prevent electrical contacts between the pairs of the drain and source electrodes; forming an insulating layer on the substrate; and forming a gate electrode between the drain and source electrodes contacting the nano-wires on the insulating layer.
    Type: Application
    Filed: October 30, 2007
    Publication date: September 25, 2008
    Applicants: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, KOREA UNIVERSITY INDUSTRIAL & ACADEMIC COLLABORATION FOUNDATION
    Inventors: Hong Yeol Lee, Seung Eon Moon, Eun Kyoung Kim, Jong Hyurk Park, Kang Ho Park, Jong Dae Kim, Gyu Tae Kim, Jae Woo Lee, Hye Yeon Ryu, Jung Hwan Huh
  • Patent number: 7416955
    Abstract: A method of manufacturing a semiconductor device, includes forming a first insulating film containing silicon oxide as a main ingredient, on an underlying region, adhering water to the first insulating film, forming a polymer solution layer containing a silicon-containing polymer on the water-adhered first insulating film, and forming a second insulating film containing silicon oxide as a main ingredient from the polymer solution layer, wherein forming the second insulating film includes forming silicon oxide by a reaction between the polymer and water adhered to the first insulating film.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: August 26, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Osamu Arisumi, Masahiro Kiyotoshi
  • Patent number: 7410916
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: August 12, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Patent number: 7407895
    Abstract: Provided is a method for producing, in a simple manner, a general-purpose dielectric insulating thin film that has a varying dielectric constant and accepts an accurate film thickness control and a control of the composition, the structure and the thickness thereof. The process includes a step (A) of making a substrate having a hydroxyl group in its surface or having a hydroxyl group introduced into its surface, adsorb a metal compound having a functional group capable of reacting with a hydroxyl group for condensation and capable of forming a hydroxyl group through hydrolysis, a step (B) of removing the excessive metal compound from the substrate surface, a step (C) of hydrolyzing the metal compound to form a metal oxide layer, and a step (D) of treating the metal oxide layer according to any one treating method selected from the group consisting of oxygen plasma treatment, ozone oxidation treatment, firing treatment and rapid thermal annealing treatment to thereby obtain a dielectric insulating thin film.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 5, 2008
    Assignee: Riken
    Inventors: Toyoki Kunitake, Yoshitaka Aoki
  • Publication number: 20080096363
    Abstract: An integrated circuit can be formed with a high-k dielectric layer. A first titanium oxide layer is deposited over a substrate using a first ALD process. A first metal oxide layer is also deposited over the substrate using a second ALD process. A second titanium oxide layer is deposited over the substrate using a third ALD process and a second metal oxide layer is deposited over the substrate using a fourth ALD process. The first and second metal oxides are preferably selected either SrO and/or Al2O3.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 24, 2008
    Inventor: Shrinivas Govindarajan
  • Patent number: 7294909
    Abstract: A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, James G. Balz, Michael Berger, Jerome Cohen, Charles Hendricks, Richard Indyk, Mark LaPlante, David C. Long, Lori A. Maiorino, Arthur G. Merryman, Glenn A. Pomerantz, Robert A. Rita, Krystyna W. Semkow, Patrick E. Spencer, Brian R. Sundlof, Richard P. Surprenant, Donald R. Wall, Thomas A. Wassick, Kathleen M. Wiley
  • Patent number: 7265009
    Abstract: A method of forming an HDP-CVD pre-metal dielectric (PMD) layer to reduce plasma damage and/or preferential sputtering at a reduced a thermal budget including providing a semiconductor substrate comprising at least two overlying semiconductor structures separated by a gap; forming a PMD layer according to an HDP-CVD process over the at least two overlying semiconductor structures without applying a chucking bias Voltage to hold the semiconductor substrate.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: September 4, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Yao-Hsiang Chen
  • Patent number: 7160819
    Abstract: A method for selective ALD of ZnO on a wafer preparing a silicon wafer; patterning the silicon wafer with a blocking agent in selected regions where deposition of ZnO is to be inhibited, wherein the blocking agent is taken from a group of blocking agents includes isopropyl alcohol, acetone and deionized water; depositing a layer of ZnO on the wafer by ALD using diethyl zinc and H2O at a temperature of between about 140° C. to 170° C.; and removing the blocking agent from the wafer.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: January 9, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: John F. Conley, Jr., Yoshi Ono, David R. Evans
  • Patent number: 7141503
    Abstract: A method for forming a pre-metallization layer on an underlying micro-structure, and a corresponding micro-structure formed by the method. The micro-structure may be a semiconductor circuit and/or a Micro-Electro-Mechanical Systems (MEMS) device. A first layer of undoped silicate glass is deposited on a micro-structure. Then, a layer of phospho silicate glass is deposited on the first layer of undoped silicate glass. This combination is then densified by applying a temperature to the combination that is sufficient to densify the layer of phospho-silicate glass, while being below the glass flow temperature. After densification, a second layer of undoped silicate glass is deposited on the densified layer of phospho silicate glass. Finally, the upper surface of the second layer of undoped silicate glass is polished using a chemical mechanical polishing process. The result is a dielectric layer of high density and low stress, and that reduces soft errors and defects.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 28, 2006
    Assignee: AMI Semiconductor, Inc
    Inventors: John Naughton, Mark M. Nelson
  • Patent number: 6899857
    Abstract: A method for forming a region of low dielectric constant nanoporous material is disclosed. In one embodiment, the present method includes the step of preparing a microemulsion. The method of the present embodiment then recites applying the microemulsion to a surface above which it is desired to form a region of low dielectric constant nanoporous material. Next, the present method recites subjecting the microemulsion, which has been applied to the surface, to a thermal process such that the region of low dielectric constant nanoporous material is formed above the surface.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: May 31, 2005
    Assignee: Chartered Semiconductors Manufactured Limited
    Inventors: Soo Choi Pheng, Lap Chan, Wang Cui Yang, Siew Yong Kong, Alex See