Interconnections, Comprising Conductors And Dielectrics, For Carrying Current Between Separate Components Within Device (epo) Patents (Class 257/E21.575)

  • Patent number: 8664116
    Abstract: Ions of silicon are implanted into source/drain regions in a semiconductor wafer to amorphize an ion implantation region in the semiconductor wafer. A nickel film is deposited on the amorphized ion implantation region. First irradiation from a flash lamp is performed on the semiconductor wafer with the nickel film deposited thereon to increase the temperature of a front surface of the semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. Subsequently, second irradiation from the flash lamp is performed to maintain the temperature of the front surface of the semiconductor wafer within a ±25° C. range around the target temperature for a time period in the range of 1 to 100 milliseconds. This causes nickel silicide to grow preferentially in a direction perpendicular to the semiconductor wafer.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 4, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Kazuhiko Fuse, Shinichi Kato
  • Publication number: 20140048927
    Abstract: Structure and methods for forming a semiconductor structure. The semiconductor structure includes a plurality of layers comprising at least one copper interconnect layer. The copper interconnect layer provides an electrical conduit between one of physically adjacent layers in the semiconductor structure and an integrated circuit in the semiconductor structure and an electronic device. A plurality of studs is positioned within the at least one copper interconnect layer. The studs are spaced apart by a distance less than or equal to a Blech length of the at least one copper interconnect layer. The Blech length is a length below which damage due to electromigration of metal atoms within the at least one copper interconnect layer does not occur. The plurality of studs comprises copper atom diffusion barriers.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chad M. Burke, Baozhen Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20140042628
    Abstract: A secure electronic structure including a plurality of sub-lithographic conductor features having non-repeating random shapes as a physical unclonable function (PUF) and an integrated circuit including the same are provided. Some of the conductor features of the plurality of conductor features form ohmic electrical contact to a fraction of regularly spaced array of conductors that are located above or beneath the plurality of conductor features having the non-repeating shapes, while other conductor features of the plurality of conductor features do not form ohmic electrical contact with any of the regularly spaced array of conductors. Thus, a unique signature of electrical continuity is provided which can be used as a PUF within an integrated circuit.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Gregory M. Fritz, Stephen M. Gates, Dirk Pfeiffer
  • Patent number: 8648472
    Abstract: In a method for fabricating a semiconductor device, first, a first metal interconnect is formed in an interconnect formation region, and a second metal interconnect is formed in a seal ring region. Subsequently, by chemical mechanical polishing or etching, the upper portions of the first metal interconnect and the second metal interconnect are recessed to form recesses. A second insulating film filling the recesses is then formed above a substrate, and the upper portion of the second insulating film is planarized. Next, a hole and a trench are formed to extend halfway through the second insulating film, and ashing and polymer removal are performed. Subsequently to this, the hole and the trench are allowed to reach the first metal interconnect and the second metal interconnect.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: February 11, 2014
    Assignee: Panasonic Corporation
    Inventor: Shusuke Isono
  • Patent number: 8647991
    Abstract: A method for forming a dual damascene opening includes the following steps. Firstly, a first hard mask layer with a trench pattern is formed over a material layer. Then, a dielectric layer is formed over the first hard mask layer and filled into an opening of the trench pattern. Then, a second hard mask layer with a via opening pattern is formed over the first hard mask layer and the dielectric layer. Then, a first etching process is performed, so that a via opening is at least formed in the dielectric layer. After the second hard mask layer is removed, a second etching process is performed. Consequently, a trench opening is formed in the material layer and the via opening is further extended into the material layer, wherein the via opening is located within the trench opening.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Yu-Heng Liu, Seng-Wah Liau
  • Patent number: 8642464
    Abstract: A method of manufacturing a semiconductor device includes forming a first interconnection and a second interconnection above a semiconductor substrate, forming a first sidewall insulating film on a side wall of the first interconnection, and a second sidewall insulating film on a side wall of the second interconnection, forming a conductive film above the semiconductor substrate with the first interconnection, the first sidewall insulating film, the second interconnection and the second sidewall insulating film formed on, and selectively removing the conductive film above the first interconnection and the second interconnection to form in a region between the first interconnection and the second interconnection a third interconnection formed of the conductive film and spaced from the first interconnection and the second interconnection by the first sidewall insulating film and the second sidewall insulating film.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 4, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takeshi Kagawa
  • Patent number: 8637990
    Abstract: A semiconductor device includes a word line, a bit line crossing the word line, an active region arranged in an oblique direction at the word line and the bit line, and a contact pad contacting the active region, where the contact pad extends in the oblique direction.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: January 28, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Doo-Kang Kim, Dae-Young Seo
  • Publication number: 20140021600
    Abstract: An integrated circuit (IC) chip is disclosed including a plurality of metal vertical interconnect accesses (vias) in a back end of line (BEOL) layer, a redistribution layer (RDL) on the BEOL layer, the BEOL layer having a plurality of bond pads, each bond pad connected to at least one corresponding metal via through the RDL; and a solder bump connected to each bond pad, wherein each solder bump is laterally offset from the corresponding metal via connected to the bond pad towards a center of the IC chip by an offset distance, wherein the offset distance is non-uniform across the IC chip. In one embodiment, the offset distance for each solder bump is proportionate to a distance between the center of the IC chip and the center of the corresponding solder bump pad structure for that solder bump.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Brian M. Erwin, Jeffrey P. Gambino, Wolfgang Sauter, George J. Scott
  • Publication number: 20140021628
    Abstract: A method is used with an IC device including a stack of dielectric/conductive layers to form interlayer connectors extending from a surface of the device to the conductive layers. Contact openings are created through a dielectric layer to a first conductive layer. N etch masks, with 2N?1 being less than W, 2N being greater than or equal to W, have spaced apart open etch regions and mask regions elsewhere. The stack of layers are etched only through W?1 contact openings to create extended contact openings extending to W?1 conductive layers; 2n?1 conductive layers are etched for up to half of the contact openings for each etch mask n=1, 2 . . . N. The contact openings are etched with different combinations of the etch masks' open etch regions. Interlayer connectors are formed in the contact openings.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 23, 2014
    Applicant: Macronix International Co., Ltd.
    Inventors: Yen-Hao Shih, Shih-Hung Chen, Teng-Hao Yeh, Chih-Wei Hu, Feng-Nien Tsai, Lo-Yueh Lin
  • Patent number: 8633601
    Abstract: The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 21, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Nitesh Kumbhat, Abhishek Choudhury, Venkatesh V. Sundaram, Rao R. Tummala
  • Publication number: 20140015061
    Abstract: A memory device includes a storage unit formed using a substrate, a true bit line BL0 for carrying a bit of data, and a complementary bit line for carrying the bit of data carried by the first true bit line in complementary form. The true bit line is coupled to the storage unit and runs laterally over the substrate. The true bit line and the complementary bit line are adjacent to each other and are vertically stacked above the substrate.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Inventors: PERRY H. PELLEY, JAMES D. BURNETT
  • Patent number: 8624370
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting a device over an integrated circuit having a through via; attaching an interposer, having an opening, and the integrated circuit with the device within the opening; and forming an encapsulation at least partially covering the integrated circuit and the interposer facing the integrated circuit.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: January 7, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: HeeJo Chi, NamJu Cho, Taewoo Lee
  • Publication number: 20130344694
    Abstract: Probes are directly patterned on a test substrate, thereby eliminating a need for an interposer. Probe contact structures are formed as a two-level structure having a greater lateral dimension for a lower level portion than for an upper level portion. First cavities are formed in a masking layer applied to a test substrate, filling the cavities with a conductive material, and planarizing the top surfaces of the conductive material portions to form lower level portions. Another masking layer is applied over the lower level portions and patterned to define second cavities having a smaller lateral dimension that the lower level portions. The second cavities are filled with at least one conductive material to form upper level portions of the probe contact structures. The upper level portion of each probe contact structure can be employed to penetrate a surface oxide of solder balls.
    Type: Application
    Filed: July 20, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David M. Audette, Kevin Bocash, S. Jay Chey, Steven A. Cordes, Dustin M. Fregeau
  • Patent number: 8614515
    Abstract: A wiring method for a semiconductor integrated circuit has the steps of, separately from a first layer on which a first signal wiring pattern is mainly formed, laying out a first power-supply wiring pattern on a second layer so that a plurality of rows of the first power-supply wiring pattern are regularly arranged with vacant areas each interposed between the rows and making narrower a width of each vacant area than a narrowest width of a row among the rows of the first power-supply wiring pattern, and laying out a second signal wiring pattern electrically conductive to the first layer in two or more rows of the vacant areas on the second layer so that the second signal wiring pattern is not in contact with adjacent rows of the first power-supply wiring pattern on both sides.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tetsuaki Utsumi
  • Patent number: 8610176
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Prayag B. Patel, Pratyush Kamal, Foua Vang, Chock H. Gan, Pr Chidambaram, Chethan Swamynathan
  • Publication number: 20130328205
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, an integrated circuit includes a standard cell having a first boundary, a second boundary opposite the first boundary, a third boundary interconnecting the first and second boundaries, and a fourth boundary opposite the third boundary and interconnecting the first and second boundaries. The standard cell further includes parallel active areas extending from the first boundary to the second boundary. Also, the standard cell has parallel gate strips extending from the third boundary to the fourth boundary and over the active areas. A cut mask overlies the gate strips. An interconnect is positioned overlying the cut mask and forms an electrical connection with a selected gate strip.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicants: Globalfoundries Inc., STMircoelectronics Inc., International Business Machines Corporation
    Inventors: Globalfoundries Inc., International Business Machines Corporation, STMircoelectronics Inc.
  • Patent number: 8603905
    Abstract: An improved method for optimizing layer registration during lithography in the fabrication of a semiconductor device is disclosed. In one example, the method comprises optimizing contact layer registration of an SRAM device having a plurality of transistors having active and gate region features extending generally along a channel length (X) direction and a channel width (Y) direction, respectively. The method comprises aligning a contact layer to a gate layer in the channel length direction (X), using gate layer overlay marks to control the alignment of the contact layer in the channel length direction (X) of the semiconductor device. The method further includes aligning the contact layer to an active layer in the channel width direction (Y), using active layer overlay marks to control the alignment of the contact layer in the channel width direction (Y) of the semiconductor device.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: James Walter Blatchford
  • Patent number: 8598709
    Abstract: A method and a system for routing electrical connections are disclosed. A semiconductor device includes a first semiconductor chip and a routing plane having a plurality of routing lines. A first connecting line is electrically coupled to the first semiconductor chip and one of the plurality of routing lines and a second connecting line is electrically coupled to the one of the plurality of routing lines and to one of a second semiconductor chip or a first external contact element.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 3, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Gottfried Beer, Christian Geissler, Thomas Ort, Klaus Pressel, Bernd Waidhas, Andreas Wolter
  • Patent number: 8598677
    Abstract: Provided are a semiconductor device and a method for manufacturing the same. Since an additional space for forming a shield line is unnecessary, the critical dimension of metal lines is reduced, thereby improving data transfer characteristics, signaling characteristics and noise characteristics of the metal lines. The semiconductor device includes: a plurality of metal lines disposed on the semiconductor device; a plurality of insulation layers disposed on the metal lines; and a plurality of shield lines disposed between the insulation layers.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Hynix Semiconductor Inc
    Inventor: Sang Soo Lee
  • Patent number: 8598694
    Abstract: Various embodiments provide a chip-carrier including, a chip-carrier surface configured to carry a first chip from a first chip bottom side, wherein a first chip top side of the first chip is configured above the chip-carrier surface; and at least one cavity extending into the chip-carrier from the chip-carrier surface; wherein the at least one cavity is configured to carry a second chip from a second chip bottom side, wherein a second chip top side of the second chip is substantially level with the first chip top side. The second chip is electrically insulated from the chip-carrier by an electrical insulation material inside the cavity.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 3, 2013
    Assignee: Infineon Technologies AG
    Inventors: Khalil Hosseini, Joachim Mahler, Anton Prueckl
  • Publication number: 20130307032
    Abstract: One illustrative method disclosed herein involves forming a contact opening in a layer of insulating material, forming a layer of conductive material above the layer of insulating material that overfills the contact opening, performing at least one chemical mechanical polishing process to remove portions of the conductive material positioned outside of the contact opening and thereby define a conductive contact positioned in the contact opening and, after performing the chemical mechanical polishing process, performing a selective metal deposition process to selectively form additional metal material on an upper surface of the conductive contact.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Vimal Kamineni, Ruilong Xie
  • Patent number: 8587038
    Abstract: According to one embodiment, an electric component includes: a first insulating layer formed on a first wire; a second wire and a functional element formed on the first insulating layer; a second insulating layer formed on the first insulating layer; and a connection wire that connects the second wire and the first wire. In the connection wire, a first via, a second via, and an inter-via wire are integrally formed of the same material. The first via is formed in the second insulating layer. The second via is formed in the first and second insulating layers.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akihiro Kojima
  • Patent number: 8586471
    Abstract: A method is disclosed for depositing multiple seed layers for metallic interconnects over a substrate, the substrate includes a patterned insulating layer which comprises an opening surrounded by a field, said opening has sidewalls and top corners, and the method including: depositing a continuous seed layer over the sidewalls, using a first set of deposition parameters; and depositing another seed layer over the substrate, including inside the opening and over a portion of said field, using a second set of deposition parameters, wherein: the second set of deposition parameters includes one deposition parameter which is different from any parameters in the first set, or whose value is different in the first and second sets; the continuous seed layer has a thickness in a range from about 20 ? to not more than 250 ? over the field; and the combined seed layers leave sufficient room for electroplating inside the opening.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: November 19, 2013
    Inventor: Uri Cohen
  • Patent number: 8586469
    Abstract: A method of patterning a metal layer is disclosed. The method includes providing a substrate and forming a material layer over the substrate. The method includes forming a second material layer over the first material layer. The method includes performing a first patterning process to the second material layer to form a trench in the second material layer. The first patterning process defines a width size of the trench, the width size being measured in a first direction. The method includes performing a second patterning process to the trench to transform the trench. The second patterning process defines a length size of the transformed trench. The length size is measured in a second direction different from the first direction. The method also includes filling the transformed trench with a conductive material.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chen-Hao Yeh
  • Patent number: 8587037
    Abstract: A field effect transistor (FET) having a source, a drain and a gate includes a first connection electrically connected to the gate near a first end of the gate, a second connection electrically connected to the gate near the first end of the gate, a third connection electrically connected to the gate near a second end of the gate, and a fourth connection electrically connected to the gate near the second end of the gate. By performing gate resistance measurements at different ambient temperatures, a thermal coefficient of gate resistance can be derived and then used to monitor the gate temperature, which is representative of the channel temperature.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: November 19, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Tahir Hussain
  • Publication number: 20130299989
    Abstract: Chip connection structures and related methods of forming such structures are disclosed. In one case, an interconnect structure is disclosed, the structure including: a pillar connecting an integrated circuit chip and a substrate, the pillar including a barrier layer, a first copper layer over the barrier layer, and a first solder layer over the first copper layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8581387
    Abstract: A through wire interconnect for a semiconductor substrate includes a via extending through the semiconductor substrate from a first side to a second side thereof, and a wire in the via electrically insulated from the semiconductor substrate having a first end with a bonded connection to the substrate contact and a second end proximate to the second side of the semiconductor substrate. The through wire interconnect also includes a first contact on the wire proximate to the first side of the semiconductor substrate, a second contact on the second end of the wire, and a polymer layer on the first side at least partially encapsulating the wire while leaving the first contact exposed. The through wire interconnect can also include a bonding member bonded to the first end of the wire and to the substrate contact having a tip portion forming the first contact.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 8569160
    Abstract: Device fabrication is disclosed, including forming a first part of a device at a first fabrication facility as part of a front-end-of-the-line (FEOL) process, the first part of the device comprising a base wafer formed by FEOL processing, and subsequently performing one or more back-end-of-the-line (BEOL) processes at a second fabrication facility to form an IC, the one or more BEOL processes comprising finishing the forming of the device (e.g., an IC including memory) by depositing one or more memory layers on the base wafer. FEOL processing can be used to form active circuitry die (e.g., CMOS circuitry on a Si wafer) and BEOL processing can be used to form on top of each active circuitry die, one or more layers of cross-point memory arrays formed by thin film processing technologies that may or may not be compatible with or identical to some or all of the FEOL processes.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 29, 2013
    Assignee: Unity Semiconductor Corporation
    Inventors: Darrell Rinerson, Robin Cheung
  • Patent number: 8569154
    Abstract: A method includes patterning a photoresist layer on a structure to define an opening and expose a first planar area on a sacrificial substrate layer, etching to the exposed first planar area to form a cavity having a first depth in the structure, removing a portion of the photoresist to increase the size of the opening to define a second planar area on the sacrificial substrate layer, forming a doped portion in the sacrificial substrate layer, and etching the cavity to increase the depth of the cavity to expose a first conductor in the structure and to increase the planar area and depth of a portion of the cavity to expose a second conductor in the structure.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Emily R. Kinser, Richard Wise, Hakeem Yusuff
  • Patent number: 8569165
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 29, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Publication number: 20130277822
    Abstract: An embodiment of an interconnect structure for an integrated circuit may include a first conductor coupled to circuitry, a second conductor, a dielectric between the first and second conductors, and a conductive underpass under and coupled to the first and second conductors and passing under the dielectric or a conductive overpass over and coupled to the first and second conductors and passing over the dielectric. The second conductor would be floating but for its coupling to the conductive underpass or the conductive overpass. In other embodiments, another dielectric might be included that would electrically isolate the second conductor but for its coupling to the conductive underpass or the conductive overpass.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Tyler G. HANSEN, Ming-Chuan Yang, Vishal Sipani
  • Publication number: 20130280905
    Abstract: A computer-readable software product is provided for executing a method of determining the location of a plurality of power rail vias in a semiconductor device. The semiconductor device includes an active region and a power rail. Locations of a first via and a second via are assigned along the power rail. The spacing between the location of the first via and the location of the second via is a minimum spacing allowable. The spacing between the location of the second via and the locations of structures in the active region which may electrically interfere with the second via is determined. The location of the second via is changed in response to the spacing between the location of the second via and the location of one of the structures in the active region being less than a predetermined distance.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: David S. Doman, Mahbub Rashed, Marc Tarrabia
  • Publication number: 20130270694
    Abstract: Substrates and semiconductor chips are provided. The substrate or the semiconductor chip includes a body and a substantially pillar-shaped bump disposed on a first surface of the body. The pillar-shaped bump has a hole penetrating a portion thereof. Related semiconductor packages are also provided. Further, related methods are provided.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 17, 2013
    Applicant: SK HYNIX INC.
    Inventors: In Chul HWANG, Il Hwan CHO, Ki Young KIM
  • Patent number: 8552559
    Abstract: A new interconnection scheme is described, comprising both coarse and fine line interconnection schemes in an IC chip. The coarse metal interconnection, typically formed by selective electroplating technology, is located on top of the fine line interconnection scheme. It is especially useful for long distance lines, clock, power and ground buses, and other applications such as high Q inductors and bypass lines. The fine line interconnections are more appropriate to be used for local interconnections. The combined structure of coarse and fine line interconnections forms a new interconnection scheme that not only enhances IC speed, but also lowers power consumption.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: October 8, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Publication number: 20130256914
    Abstract: The described embodiments of forming bonding structures for package on package involves removing a portion of connectors and molding compound of the lower package. The described bonding mechanisms enable easier placement and alignment of connectors of an upper package to with connector of a lower package. As a result, the process window of the bonding process is wider. In addition, the bonding structures have smoother join profile and planar joint plane. As a result, the bonding structures are less likely to crack and also are less likely to crack. Both the yield and the form factor of the package on package structure are improved.
    Type: Application
    Filed: August 15, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung Wei CHENG, Tsung-Ding WANG, Chien-Hsun LEE, Chun-Chih CHUANG
  • Publication number: 20130256895
    Abstract: A method of manufacturing is provided that includes fabricating a first set of interconnect structures on a side of a first semiconductor substrate. The first semiconductor substrate is operable to have at least one of plural semiconductor substrates stacked on the side. The first set of interconnect structures is arranged in a pattern. Each of the plural semiconductor substrates has a second set of interconnect structures arranged in the pattern, one of the plural semiconductor substrates has a smallest footprint of the plural semiconductor substrates. The pattern has a footprint smaller than the smallest footprint of the plural semiconductor substrates.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Michael Su, Bryan Black, Joe Siegel, Neil McLellan, Michael Alfano
  • Patent number: 8541879
    Abstract: A number of first hard mask portions are formed on a dielectric layer to vertically shadow a respective one of a number of underlying gate structures. A number of second hard mask filaments are formed adjacent to each side surface of each first hard mask portion. A width of each second hard mask filament is set to define an active area contact-to-gate structure spacing. A first passage is etched between facing exposed side surfaces of a given pair of neighboring second hard mask filaments and through a depth of the semiconductor wafer to an active area. A second passage is etched through a given first hard mask portion and through a depth of the semiconductor wafer to a top surface of the underlying gate structure. An electrically conductive material is deposited within both the first and second passages to respectively form an active area contact and a gate contact.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 24, 2013
    Assignee: Tela Innovations, Inc.
    Inventor: Michael C. Smayling
  • Patent number: 8541306
    Abstract: A semiconductor device and a method of forming patterns on a semiconductor device are disclosed. The semiconductor device may include high-density patterns with a minimum size that may be less the resolution limit of a photolithography process, and may have a substrate including a memory cell region and an adjacent connection region, a plurality of first conductive lines extending from the memory cell region to the connection region in a first direction, a plurality of second conductive lines connected from respective first conductive lines to a plurality of pads having a width equal to twice the width of each of the first conductive lines. The method may include two levels of spacer formation to provide sub resolution line widths and spaces as well as selected multiples of the minimum line widths and spaces.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Song-yi Yang, Seung-pil Chung, Dong-hyun Kim, O-ik Kwon, Hong Cho
  • Publication number: 20130241072
    Abstract: A semiconductor device has 3n, 3n+1, and 3n+2 connector lines that are formed together. The 3n+1 connector line is located between the 3n connector line and the 3n+2 connector line. The first fringe pattern pad is located at the terminus of the 3n connector line and is formed with a wider space than the width of the 3n connector line. The second fringe pattern pad is located at the terminus of the 3n+1 connector line and is formed with a wider width than the width of the 3n+1 connector line. The third fringe pattern pad is located at the terminus of the 3n+2 connector line and is formed with a wider width than the width of the 3n+2 connector line. The second fringe pattern pad is positioned closer to a memory array as compared with the terminus of each connector line with the first and third fringe pattern pads.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichi SATO, Satoshi Nagashima
  • Patent number: 8530276
    Abstract: The invention pertains to a method for manufacturing a microelectronic device on a substrate comprising at least one first electrical component and one second electrical component distributed respectively in first and second levels stacked one on top of the other on the substrate, this method comprising: the manufacture of at least one first arm and one second arm of different lengths, each of these arms directly and mechanically linking an electrical pad to a fixed anchoring point on the substrate, and the electrical pad is made inside the first level and then shifted, prior to the electrical connection of the second component, to a position of connection wherein the upper face of the electrical pad is in contact with the interior of the second level parallel to the substrate.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 10, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Thierry Hilt, Herve Boutry, Remy Franiatte, Stephane Moreau
  • Publication number: 20130228894
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8525167
    Abstract: In a laminated chip package, a plurality of semiconductor plates each having a semiconductor device and a wiring electrode connected to the semiconductor device are laminated. On a side surface for wiring of the laminated chip package, an end face of an inner electrode for examination formed inside the side surface for wiring in the semiconductor plate is formed. The laminated chip package further has an outer electrode for examination connecting the end faces of the inner electrodes for examination along a lamination direction of the semiconductor plates, only for two adjacent semiconductor plates among the semiconductor plates.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: September 3, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8518819
    Abstract: A semiconductor contact structure and method provide contact structures that extend through a dielectric material and provide contact to multiple different subjacent materials including a silicide material and a non-silicide material such as doped silicon. The contact structures includes a lower composite layer formed using a multi-step ionized metal plasma (IMP) deposition operation. A lower IMP film is formed at a high AC bias power followed by the formation of an upper IMP film at a lower AC bias power. The composite layer may be formed of titanium. A further layer is formed as a liner over the composite layer and the liner layer may advantageously be formed using CVD and may be TiN. A conductive plug material such as tungsten or copper fills the contact openings.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 27, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih Chieh Chang, Chih-Chung Chang, Kei-Wei Chen, Ying-Lang Wang
  • Patent number: 8513124
    Abstract: Disclosed are methods of depositing a copper seed layer to be used for subsequent electroplating a bulk-layer of copper thereon. A copper seed layer may be deposited with different processes, including CVD, PVD, and electroplating. With electroplating methods for depositing a copper seed layer, disclosed are methods for depositing a copper alloy seed layer, methods for depositing a copper seed layer on the semi-noble metal layer with a non-corrosive electrolyte, methods of treating the semi-noble metal layer that the copper seed layer is deposited on, and methods for promoting a more uniform copper seed layer deposition across a semiconductor wafer.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: August 20, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Thomas A. Ponnuswamy, John H. Sukamto, Jonathan D. Reid, Steven T. Mayer
  • Publication number: 20130203240
    Abstract: A method of making an electronic device with a redistribution layer includes providing an electronic device having a first pattern of contact areas, and forming a redistribution layer on a temporary substrate. The temporary substrate has a second pattern of contact areas matching the first pattern of contact areas, and a third pattern of contact areas different than the second pattern of contact areas. The second pattern of contact areas is coupled to the third pattern of contact areas through a plurality of stacked conductive and insulating layers. The first pattern of contact areas is coupled to the second pattern of contact areas on the transferrable redistribution layer. The temporary substrate is then removed to thereby form a redistributed electronic device.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: Harris Corporation
    Inventors: THOMAS REED, DAVID HERNDON, SUZANNE DUNPHY
  • Publication number: 20130200521
    Abstract: Back-end-of-line (BEOL) wiring structures and inductors, methods for fabricating BEOL wiring structures and inductors, and design structures for a BEOL wiring structure or an inductor. A feature, which may be a trench or a wire, is formed that includes a sidewall intersecting a top surface of a dielectric layer. A surface layer is formed on the sidewall of the feature. The surface layer is comprised of a conductor and has a thickness selected to provide a low resistance path for the conduction of a high frequency signal.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Jeffrey P. Gambino, Zhong-Xiang He, Alvin J. Joseph, Anthony K. Stamper, Timothy D. Sullivan
  • Patent number: 8502383
    Abstract: An integrated circuit includes active circuitry disposed at a surface of a semiconductor body and an interconnect region disposed above the semiconductor body. A thermoelectric material is disposed in an upper portion of the interconnect region away from the semiconductor body. The thermoelectric material is configured to deliver electrical energy when exposed to a temperature gradient. This material can be used, for example, in a method for detecting the repackaging of the integrated circuit after it has been originally packaged.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 6, 2013
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Christian Rivero
  • Patent number: 8497201
    Abstract: A method of fabricating a semiconductor device is provided which includes providing a substrate. A material layer is formed over the substrate. A polymer layer is formed over the material layer. A nano-sized feature is self-assembled using a portion of the polymer layer. The substrate is patterned using the nano-sized feature.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 30, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Clement Hsingjen Wann, Ching-Yu Chang
  • Patent number: 8492270
    Abstract: A method for forming structure aligned with features underlying an opaque layer is provided for an interconnect structure, such as an integrated circuit. In one embodiment, the method includes forming an opaque layer over a first layer, the first layer having a surface topography that maps to at least one feature therein, wherein the opaque layer is formed such that the surface topography is visible over the opaque layer. A second feature is positioned and formed in the opaque layer by reference to such surface topography.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shom Ponoth, David V Horak, Elbert E Huang, Sivananda K Kanakasabapathy, Charles W Koburger, III, Chih-Chao Yang
  • Patent number: 8492269
    Abstract: In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 23, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Ralf Richter, Torsten Huisinga, Kai Frohberg