Interconnections, Comprising Conductors And Dielectrics, For Carrying Current Between Separate Components Within Device (epo) Patents (Class 257/E21.575)

  • Patent number: 8409987
    Abstract: Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and/or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 2, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Mirko Glass, Raashina Humayun, Michal Danek, Kaihan Ashtiani, Feng Chen, Lana Hiului Chan, Anil Mane
  • Patent number: 8409901
    Abstract: Microelectromechanical systems (MEMS) are small integrated devices or systems that combine electrical and mechanical components. It would be beneficial for such MEMS devices to be integrated with silicon CMOS electronics and packaged in controlled environments and support industry standard mounting interconnections such as solder bump through the provisioning of through-wafer via-based electrical interconnections. However, the fragile nature of the MEMS devices, the requirement for vacuum, hermetic sealing, and stresses placed on metallization membranes are not present in packaging conventional CMOS electronics. Accordingly there is provided a means of reinforcing the through-wafer vias for such integrated MEMS-CMOS circuits by in filling a predetermined portion of the through-wafer electrical vias with low temperature deposited ceramic materials which are deposited at temperatures below 350° C., and potentially to below 250° C.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 2, 2013
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mourad El-Gamal, Dominique Lemoine, Paul-Vahe Cicek, Frederic Nabki
  • Patent number: 8409924
    Abstract: An embodiment of the present invention is a technique to fabricate a metal interconnect. A first metal trace is printed on a die attached to a substrate or a cavity of a heat spreader in a package to electrically connect the first metal trace to a power contact in the substrate. A device is mounted on the first metal trace. The device receives power from the substrate when the package is powered.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 2, 2013
    Assignee: Intel Corporation
    Inventors: Yoshihiro Tomita, David Chau, Gregory M Chrysler, Devendra Natekar
  • Publication number: 20130075907
    Abstract: In order to achieve finer bump interconnect pitch for integrated circuit packaging, while relieving pressure-induced delamination of upper layer dielectric films, the under bump metallurgy of the present invention provides a pressure distribution pedestal upon which a narrower copper pillar is disposed. A solder mini-bump is disposed on the upper exposed portion of the copper pillar, wherein the solder is softer than the copper pillar. The radius of the copper pillars is selected such that lateral deformation of the solder mini-bumps during final assembly does not form undesired conductive bridges between adjacent pillars.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: Broadcom Corporation
    Inventor: Mengzhi PANG
  • Publication number: 20130078802
    Abstract: Ions of silicon are implanted into source/drain regions in a semiconductor wafer to amorphize an ion implantation region in the semiconductor wafer. A nickel film is deposited on the amorphized ion implantation region. First irradiation from a flash lamp is performed on the semiconductor wafer with the nickel film deposited thereon to increase the temperature of a front surface of the semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. Subsequently, second irradiation from the flash lamp is performed to maintain the temperature of the front surface of the semiconductor wafer within a ±25° C. range around the target temperature for a time period in the range of 1 to 100 milliseconds. This causes nickel silicide to grow preferentially in a direction perpendicular to the semiconductor wafer.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 28, 2013
    Inventors: Kazuhiko FUSE, Shinichi KATO
  • Patent number: 8404593
    Abstract: In a semiconductor device and a method of forming the same, the semiconductor device comprises: a first insulating layer on an underlying contact region of the semiconductor device, the first insulating layer having an upper surface; a first conductive pattern in a first opening through the first insulating layer, an upper portion of the first conductive pattern being of a first width, an upper surface of the first conductive pattern being recessed relative to the upper surface of the first insulating layer so that the upper surface of the first conductive pattern has a height relative to the underlying contact region that is less than a height of the upper surface of the first insulating layer relative to the underlying contact region; and a second conductive pattern contacting the upper surface of the first conductive pattern, a lower portion of the second conductive pattern being of a second width that is less than the first width.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongwon Hong, GeumJung Seong, Jongmyeong Lee, Hyunbae Lee, Bonghyun Choi
  • Patent number: 8404523
    Abstract: A method for fabricating a stacked semiconductor system with encapsulated through wire interconnects includes providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The method also includes stacking two or more substrates and electrically connecting the through wire interconnects on the substrates.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 26, 2013
    Assignee: Micron Technoloy, Inc.
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 8405206
    Abstract: A semiconductor module includes a module housing, at least one substrate, a number N of at least two controllable power semiconductor chips arranged inside the module housing and one after another in a lateral direction, a single main load terminal arranged outside the module housing and electrically connected to the first main electrodes, and an auxiliary terminal arranged outside the module housing and electrically connected to the first main electrodes via an auxiliary terminal connecting conductor.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 26, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thomas Duetemeyer, Thomas Auer, Georg Braeker, Ronny Herms
  • Patent number: 8399308
    Abstract: A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Yang-Soo Son, Min-Sung Song
  • Publication number: 20130062746
    Abstract: A semiconductor device includes a substrate having a first side and a second side, the second side having a mounting location for at least one semiconductor element, and the first side having a plurality of locations electrically connected to locations on the second side. A plurality of electrically conductive interconnects are provided at the locations, each having a first end attached at the location and a second end spaced from the substrate, and an encapsulant partially encapsulates the plurality of interconnects and has a surface lying in a first plane. The second ends are located on the side of the first plane opposite from the substrate first side, an annular space in the encapsulant surrounds each of the plurality of electrically conductive interconnects, and the annular space has a bottom located between the first plane and the substrate first side. Also a method for making such a semiconductor device.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventors: Mark Wendell Schwarz, Jianwen Xu
  • Patent number: 8395270
    Abstract: In an etching composition for an under-bump metallurgy (UBM) layer and a method of forming a bump structure, the etching composition includes about 40% by weight to about 90% by weight of hydrogen peroxide (H2O2), about 1% by weight to about 20% by weight of an aqueous basic solution including ammonium hydroxide (NH4OH) or tetraalkylammonium hydroxide, about 0.01% by weight to about 10% by weight of an alcohol compound, and about 2% by weight to 30% by weight of an ethylenediamine-based chelating agent. The etching composition may effectively etch the UBM layer including titanium or titanium tungsten and remove impurities. A method of forming a bump structure may employ such an etching composition.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: March 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Min Kang, Bo-Ram Kang, Young-Nam Kim, Young-Sam Lim
  • Publication number: 20130059436
    Abstract: Device fabrication is disclosed, including forming a first part of a device at a first fabrication facility as part of a front-end-of-the-line (FEOL) process, the first part of the device comprising a base wafer formed by FEOL processing, and subsequently performing one or more back-end-of-the-line (BEOL) processes at a second fabrication facility to form an IC, the one or more BEOL processes comprising finishing the forming of the device (e.g., an IC including memory) by depositing one or more memory layers on the base wafer. FEOL processing can be used to form active circuitry die (e.g., CMOS circuitry on a Si wafer) and BEOL processing can be used to form on top of each active circuitry die, one or more layers of cross-point memory arrays formed by thin film processing technologies that may or may not be compatible with or identical to some or all of the FEOL processes.
    Type: Application
    Filed: October 31, 2012
    Publication date: March 7, 2013
    Inventors: Darrell Rinerson, Robin Cheung
  • Patent number: 8389406
    Abstract: There is provided a method of manufacturing a semiconductor device including: preparing a semiconductor substrate, forming a first insulating layer, a first redistribution layer, a second insulating layer, a second redistribution layer, and at least one of first processing, in which, after the first electrically conductive material is filled in the first opening to form a first via interconnect, the first redistribution layer is formed on the first insulating layer with the first electrically conductive material such that the first redistribution layer is electrically connected to the first via interconnect; or second processing, in which, after the second electrically conductive material is filled in the second opening to form a second via interconnect, the second redistribution layer is formed on the second insulating layer with the second electrically conductive material such that the second redistribution layer is electrically connected to the second via interconnect.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 5, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Hideyuki Sameshima, Tomoo Ono
  • Patent number: 8390098
    Abstract: A semiconductor device 100 is provided with a multiplex through plug 111 that fills an opening extending through the silicon substrate 101. The multiplex through plugs 111 comprises a column-shaped and solid first through electrode 103, a first insulating film 105 that covers the cylindrical face of the first through electrode 103, a second through electrode 107 that covers the cylindrical face of the first insulating film 105 and a second insulating film 109 that covers the cylindrical face of the second through electrode 107, and these have a common central axis. The upper cross sections of the first insulating film 105, the second through electrode 107 and the second insulating film 109 are annular-shaped.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Satoshi Matsui
  • Publication number: 20130049781
    Abstract: Semiconductor devices with self-heating structures, methods of manufacture thereof, and testing methods are disclosed. In one embodiment, a semiconductor device includes a workpiece, an active electrical structure disposed over the workpiece, and at least one self-heating structure disposed proximate the active electrical structure.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia Yang Ko, Ying-Han Chiou, Ling-Sung Wang
  • Publication number: 20130049211
    Abstract: A semiconductor device having a conductive pattern includes a plurality of conductive lines extending in parallel, each having a first region extending in a first direction and a second region coupled to the first region and extending in a second direction crossing the first direction, and a plurality of contact pads, each coupled to a respective conductive line of the second regions, wherein the conductive lines are grouped and arranged in a plurality of groups, the first region of a first group is longer than the first region of a second group, and the second region of the first group and the second region of the second group are spaced apart from each other.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Inventor: Dae Sung EOM
  • Publication number: 20130049074
    Abstract: Methods are disclosed for forming connections to a memory array and a periphery of the array. The methods include forming stacks of conductive materials on the array and the periphery and forming a step between the periphery stack and the array stack. The step is removed during subsequent processing, and connections are formed from the conductive materials remaining on the array and the periphery. In some embodiments, the step is removed before any photolithographic processes.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Hung-Ming Tsai
  • Publication number: 20130049199
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Publication number: 20130049215
    Abstract: In one example, an integrated circuit includes a silicon on insulator (SOI) substrate including a plurality transistors disposed in a layer of the SOI substrate and a base oxide layer disposed on a first side of the layer. The integrated circuit also may include a first interconnect formed on the first side of the layer, and the first interconnect may electrically connect a first transistor of the plurality of transistors and a second transistor of the plurality of transistors. Additionally, the integrated circuit may include a second interconnect formed on a second side of the layer opposite the first side of the layer, and the second interconnect may electrically connect a third transistor of the plurality of transistors and a fourth transistor of the plurality of transistors.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Honeywell International Inc.
    Inventor: Bradley J. Larsen
  • Publication number: 20130049217
    Abstract: A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are placed in a holder that is subsequently embedded in an encapsulated semiconductor device package. The ends of the signal conduits are exposed and the signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package. Holders can be provided in a variety of geometries and materials, depending upon the nature of the application. Further, multiple holders with signal conduits can be provided in a single package to provide for more complex interconnect configuration demands in, for example, system-in-a-package applications.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: Zhiwei Gong, Navjot Chhabra, Glenn G. Daves, Scott M. Hayes, Douglas G. Mitchell, Jason R. Wright
  • Publication number: 20130049208
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral interconnect having a bond finger and a contact pad with a trace in direct contact with the bond finger and the contact pad, the bond finger vertically offset from the contact pad; connecting an integrated circuit die and the bond finger; and forming a module encapsulation on the integrated circuit die, the bond finger and the trace exposed from the module encapsulation.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: NamJu Cho, HeeJo Chi, ChanHoon Ko
  • Patent number: 8383511
    Abstract: Openings are formed in first and second mask layers. Next, diameter of the opening in the second mask layer is enlarged so that the diameter of the opening in the second mask layer becomes larger by a length X than diameter of the opening in the first mask layer. Thereafter, mask material is formed into the opening in the second mask layer, to form a cavity with a diameter X within the opening in the second mask layer. There is formed a mask which includes the second mask layer and the mask material having therein opening including the cavity.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 26, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Mitsunari Sukekawa
  • Patent number: 8377796
    Abstract: A method of forming a circuit structure includes providing a substrate; forming recesses in the substrate; forming a mask layer over the substrate, wherein the mask layer covers non-recessed portions of the substrate, with the recesses exposed through openings in the mask layer; forming a buffer/nucleation layer on exposed portions of the substrate in the recesses; and growing a group-III group-V (III-V) compound semiconductor material from the recesses until portions of the III-V compound semiconductor material grown from the recesses join each other to form a continuous III-V compound semiconductor layer.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: February 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Yu, Chen-Hua Yu, Ding-Yuan Chen, Wen-Chih Chiou
  • Publication number: 20130037965
    Abstract: One aspect of the present invention is a three-dimensional integrated circuit 1 including a first semiconductor chip and a second semiconductor chip that are layered on each other, wherein each of (i) a wiring layer closest to an interface between the first and second semiconductor chips among wiring layers of the first semiconductor chip and (ii) a wiring layer closest to the interface among wiring layers of the second semiconductor chip includes a power conductor area and a ground conductor area, a layout of the power conductor area and the ground conductor area in the first semiconductor chip is the same as a layout of the power conductor area and the ground conductor area in the second semiconductor chip, and the power conductor area in the first semiconductor chip at least partially faces the ground conductor area in the second semiconductor chip with an insulation layer therebetween.
    Type: Application
    Filed: April 2, 2012
    Publication date: February 14, 2013
    Inventors: Takashi Morimoto, Takeshi Nakayama, Takashi Hashimoto
  • Publication number: 20130037955
    Abstract: A substrate for a semiconductor device is provided. The substrate includes a first metal line, a second metal line, a metal support part, a first insulating part, and a second insulating part. The first metal line is electrically connected to a first electrode of the semiconductor device. The second metal line is electrically connected to a second electrode of the semiconductor device and spaced apart from the first metal line. The metal support part is disposed between the first metal line and the second metal line. The first insulating part is disposed between the first metal line and the metal support part and configured to electrically insulate the first metal line from the metal support part. The second insulating part is disposed between the second metal line and the metal support part and configured to electrically insulate the second metal line from the metal support part.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Inventors: Su Jeong SUH, Hwa Sun Park, Hyeong Chul Youn
  • Patent number: 8372739
    Abstract: An interconnect structure for an integrated circuit and method of forming the interconnect structure. The method includes depositing a metallic layer containing a reactive metal in an interconnect opening formed within a dielectric material containing a dielectric reactant element, thermally reacting at least a portion of the metallic layer with at least a portion of the dielectric material to form a diffusion barrier primarily containing a compound of the reactive metal from the metallic layer and the dielectric reactant element from the dielectric material, and filling the interconnect opening with Cu metal, where the diffusion barrier surrounds the Cu metal within the opening. The reactive metal can be Co, Ru, Mo, W, or Ir, or a combination thereof. The interconnect opening can be a trench, a via, or a dual damascene opening.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Satohiko Hoshino, Kuzuhiro Hamamoto, Shigeru Mizuno, Yasushi Mizusawa
  • Patent number: 8373273
    Abstract: Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeok-Sang Oh, Woo-Jin Jang, Bum-Ki Moon, Ji-Hong Choi, Minseok Oh, Tien-Jen Cheng
  • Publication number: 20130034958
    Abstract: A method of fabricating an integrated device including a MicroElectroMechanical system (MEMS) and an associated microcircuit is provided. In one embodiment, the method comprises: forming a high temperature contact through a dielectric layer to an underlying element of a microcircuit formed adjacent to a MicroElectroMechanical System (MEMS) structure on a substrate; and depositing a layer of conducting material over the dielectric layer, and patterning the layer of conducting material to form a local interconnect (LI) for the microcircuit overlying and electrically coupled to the contact and a bottom electrode for the adjacent MEMS structure. Other embodiments are also provided.
    Type: Application
    Filed: October 10, 2012
    Publication date: February 7, 2013
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventor: Silicon Light Machines Corporation
  • Patent number: 8368081
    Abstract: Embodiments of the invention relates to a metal thin film connection structure, comprising a first metal layer pattern; a second metal layer pattern which is separately disposed with the first metal layer pattern; a first insulating layer formed on the first metal layer pattern and the second metal layer pattern; a plurality of first via holes formed over the first metal layer pattern; a plurality of second via holes formed over the second metal layer pattern; and a plurality of third metal layer patterns formed on the first insulating layer, the third metal layer patterns being filled in the first via holes and the second via holes and electrically connect the first metal layer pattern and the second metal layer pattern through the first and second via holes. The embodiments of the invention also provide an array substrate comprising the metal thin film connection structure and a manufacturing method for the metal thin film connection structure.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 5, 2013
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Wei Qin, Zhilong Peng
  • Publication number: 20130026634
    Abstract: In one embodiment, an interconnect structure between an integrated circuit (IC) chip and a substrate comprises a plurality of materials.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Michael G. Lee, Chihiro Uchibori
  • Publication number: 20130026635
    Abstract: A hybrid interconnect structure containing copper regions that have different impurities levels within a same opening is provided. In one embodiment, the interconnect structure includes a patterned dielectric material having at least one opening located therein. A dual material liner is located at least on sidewalls of the patterned dielectric material within the at least one opening. The structure further includes a first copper region having a first impurity level located within a bottom region of the at least one opening and a second copper region having a second impurity level located within a top region of the at least one opening and atop the first copper region. In accordance with the present disclosure, the first impurity level of the first copper region is different from the second impurity level of the second copper region.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, David V. Horak, Charles W. Koburger, III, Shom Ponoth
  • Publication number: 20130026633
    Abstract: A wiring structure for a semiconductor device includes a multilayer metallization having a total thickness of at least 5 ?m and an interlayer disposed in the multilayer metallization with a first side of the interlayer adjoining one layer of the multilayer metallization and a second opposing side of the interlayer adjoining a different layer of the multilayer metallization. The interlayer includes at least one of W, WTi, Ta, TaN, TiW, and TiN or other suitable compound metal or a metal silicide such as WSi, MoSi, TiSi, and TaSi.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Manfred Schneegans, Jürgen Förster
  • Patent number: 8361901
    Abstract: An electronic package and method and system for forming the electronic package. The electronic package has a first substrate including a first electronic device and including through-holes extending through an entire thickness of the first substrate. The electronic package has a second substrate bonded to the first substrate, metallizations formed in the through-holes of the first substrate to connect to components of the first electronic device, and a patternable substance disposed between the first substrate and the second substrate and adhering the first substrate and the second substrate together in regions apart from the metallizations.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: January 29, 2013
    Assignee: Research Triangle Institute
    Inventors: Erik P Vick, Dean M. Malta, Matthew R. Lueck, Dorota Temple
  • Publication number: 20130020712
    Abstract: A method and structures are provided for implementing an integrated circuit with an enhanced wiring structure of mixed double density and high performance wires in a common plane. A wiring structure includes a first wire having a first plane and a first via to a second wire in a second plane having a second via and a third wire having the first plane with height equal to the first wire and the first via, and a third via having a height equal to the second wire and the second via.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony G. Aipperspach, Todd A. Christensen, John E. Sheets, II
  • Publication number: 20130020709
    Abstract: A semiconductor package and a method of fabricating the same. The semiconductor package includes a carrier having a plurality bonding pads disposed on a surface thereof, a packaging layer formed on the surface of the carrier and having a plurality of openings corresponding to the bonding pads, a conductive material filled in the openings and electrically connected to the bonding pads, and an electronic component installed on the packaging layer and having a plurality of conductive pillars correspondingly received in the openings and electrically connected to the conductive material. The formation of the openings in the packaging layer can control the position and size of the conductive material to enable the overall height of the conductive structure to be level and to keep the electronic component from tilting.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 24, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chun-An Huang, Pin-Cheng Huang, Chi-Hsin Chiu, Shih-Kuang Chiu
  • Publication number: 20130020714
    Abstract: A contact pad for an electronic device integrated in a semiconductor material chip is formed from a succession of protruding elements. Each protruding element extends transversally to a main surface of the chip and has a rounded terminal portion. Adjacent pairs protruding elements define an opening which is partially filled with a first conductive material to form a contact structure that is in electrical contact with an integrated electronic device formed in the chip. A layer of a second conductive material is deposited to cover said protruding elements and the contact structures so as to form the contact pad.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 24, 2013
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: Davide Giuseppe Patti
  • Publication number: 20130015583
    Abstract: A chip includes an integrated circuit and a carbonic layer. The carbonic layer includes a graphite-like carbon, wherein a lateral conducting path through the graphite-like carbon electrically connects two circuit elements of the integrated circuit.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: Infineon Technologies AG
    Inventor: Uwe Hoeckele
  • Publication number: 20130015551
    Abstract: A method for fabricating a memory array includes providing a semiconductor substrate having thereon a plurality of line-shaped active areas and intermittent line-shaped trench isolation regions between the plurality of line-shaped active areas, which extend along a first direction; forming buried word lines extending along a second direction in the semiconductor substrate, the buried word lines intersecting with the line-shaped active areas and the intermittent line-shaped trench isolation regions, wherein the second direction is not perpendicular to the first direction; forming buried digit lines extending along a third direction in the semiconductor substrate, wherein the third direction is substantially perpendicular to the second direction; and forming storage nodes at storage node sites between the buried digit lines.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventor: Kuo-Chen Wang
  • Patent number: 8354339
    Abstract: Methods of fabricating a self-aligned permanent on-chip interconnect structure are provided. In one embodiment, the method includes forming a patterned photoresist having at least one opening on a surface of a substrate. A dielectric sidewall structure is then formed on each sidewall of the patterned photoresist and within the at least one opening. A narrowed width opening is present between neighboring dielectric sidewall structures. The patterned photoresist is then removed and thereafter each dielectric sidewall structure is converted into a permanent patterned dielectric structure which is self-aligned and double patterned. At least an electrically conductive material is formed within the narrowed width openings.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventor: Qinghuang Lin
  • Publication number: 20130012018
    Abstract: A semiconductor structure fabrication method. A provided structure includes: a semiconductor substrate, a transistor on the semiconductor substrate, N interconnect layers on the semiconductor substrate, and a temporary filling region within the N layers. N is at least 2. The temporary filling region is heated at a high temperature sufficiently high to result in the temporary filling material being replaced by a cooling pipes system that does not include any solid or liquid material. A first portion and a second portion of the cooling pipes system are each in direct physical contact with a surrounding ambient at a first interface and a second interface respectively such that a first direction perpendicular to the first interface is perpendicular to a second direction perpendicular to the second interface. A totality of interfaces between the cooling pipes system and the ambient consists of the first interface and the second interface.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Kaushik A. Kumar, Andres Fernando Munoz, Michael Ray Sievers, Richard Stephen Wise
  • Patent number: 8343803
    Abstract: A through-silicon via stack package contains package units. Each package unit includes a semiconductor chip; a through-silicon via formed in the semiconductor chip; a first metal line formed on an upper surface and contacting a portion of a top surface of the through-silicon via; and a second metal line formed on a lower surface of the semiconductor chip and contacting a second portion of a lower surface of the through-silicon via. When package units are stacked, the second metal line formed on the lower surface of the top package unit and the first metal line formed on the upper surface of the bottom package unit are brought into contact with the upper surface of the through-silicon via of the bottom package unit and the lower surface of the through-silicon via of the top package unit, respectively. The stack package is lightweight and compact, and can form excellent electrical connections.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: January 1, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Qwan Ho Chung
  • Patent number: 8343866
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions the masking layer inhibits formation of capping layer material on the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case, capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive, a semiconductor material, or an electrically insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: January 1, 2013
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 8344513
    Abstract: A system and a method for protecting through-silicon vias (TSVs) is disclosed. An embodiment comprises forming an opening in a substrate. A liner is formed in the opening and a barrier layer comprising carbon or fluorine is formed along the sidewalls and bottom of the opening. A seed layer is formed over the barrier layer, and the TSV opening is filled with a conductive filler. Another embodiment includes a barrier layer formed using atomic layer deposition.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Weng-Jin Wu
  • Publication number: 20120326313
    Abstract: Methods of fabricating a multi-layer semiconductor device such as a multi-layer damascene or inverted multi-layer damascene structure using only a single or reduced number of exposure steps. The method may include etching a precursor structure formed of materials with differential removal rates for a given removal condition. The method may include removing material from a multi-layer structure under different removal conditions. Further disclosed are multi-layer damascene structures having multiple cavities of different sizes. The cavities may have smooth inner wall surfaces. The layers of the structure may be in direct contact. The cavities may be filled with a conducting metal or an insulator. Multi-layer semiconductor devices using the methods and structures are further disclosed.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Craig Mitchell, Belgacem Haba
  • Publication number: 20120326318
    Abstract: A method for forming a metal-semiconductor alloy layer uses particular thermal annealing conditions to provide a stress free metal-semiconductor alloy layer through interdiffusion of a buried semiconductor material layer and a metal-semiconductor alloy forming metal layer that contacts the buried semiconductor material layer within an aperture through a capping layer beneath which is buried the semiconductor material layer. A resulting semiconductor structure includes the metal-semiconductor alloy layer that further includes an interconnect portion beneath the capping layer and a contiguous via portion that penetrates at least partially through the capping layer. Such a metal-semiconductor alloy layer may be located interposed between a substrate and a semiconductor device having an active doped region.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Lavoie, Francois Pagette, Anna W. Topol
  • Publication number: 20120329266
    Abstract: A plurality of gate electrode patterns to be laid out in parallel are alternately set as first patterns to be formed in a first exposure step of double patterning and as second patterns to be formed in a second exposure step. Subsequently, a circuit that includes transistor pairs each formed by connecting one of the first patterns and one of the second patterns in parallel is laid out. This reduces the risk of variations in characteristics of transistors caused by double patterning.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 27, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Takanori Hiramoto, Toshio Hino, Tsuyoshi Sakata, Yutaka Mizuno, Katsuya Ogata
  • Patent number: 8338873
    Abstract: Provided are a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a plurality of active pillars projecting from a semiconductor substrate, a gate pattern disposed on at least a portion of each of the active pillars with a gate insulator interposed therebetween, and a conductive line disposed on each of the active pillars and below the corresponding gate pattern, the conductive line may be insulated from the semiconductor substrate and the gate pattern, wherein each of the active pillars may include a drain region above the corresponding gate pattern, a body region adjacent to the corresponding gate pattern, and a source region that is in contact with the conductive line below the gate pattern.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jongwook Lee, Jung Ho Kim, SungWoo Hyun
  • Publication number: 20120319277
    Abstract: Disclosed is a thin film transistor panel, comprising a substrate, an insulation layer and transparent conducting material. The insulation layer comprises projections at the back side not facing the substrate. A space between two adjacent projections is 1 ?m-10 ?m; the transparent conducting material is formed on the top surface and the lateral surface of the projections of the insulation layer. Otherwise, the transparent conducting material is formed on the top surface and the plane surface around the bottom of the projections or formed on the top surface, the lateral surface and the plane surface around the bottom of the projections. The present invention also discloses a manufacturing method of the thin film transistor panel.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 20, 2012
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY, CO., LTD.
    Inventors: Chiu-yi Chung, Cheng-ming He
  • Publication number: 20120319236
    Abstract: An inductor may be formed from a conductive path that includes intertwined conductive lines. There may be two, three, or more than three intertwined conductive lines in the conductive path. The conductive lines may be formed from conductive structures in the dielectric stack of an integrated circuit. The dielectric stack may include metal layers that include conductive traces and may include via layers that include vias for interconnecting the traces. The intertwined conductive lines may be formed from the conductive structures in the metal and via layers. In crossover regions, the conductive lines may cross each other without electrically connecting to each other. Vias may be used to couple multiple layers of traces together to reduce line resistance.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Inventors: Shuxian Chen, Jeffrey T. Watt
  • Publication number: 20120319237
    Abstract: Corner-rounded structures and methods of manufacture are provided. The method includes forming at least two conductive wires with rounded corners on a substrate. The method further includes forming a insulator film on the substrate and between the at least two conductive wires with the rounded corners.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward C. COONEY, III, Jeffrey P. GAMBINO, Zhong-Xiang HE, Thomas L. MCDEVITT, Gary L. MILO