Making Device Or Circuit Emissive Of Nonelectrical Signal Patents (Class 438/22)
  • Patent number: 8809091
    Abstract: A method of manufacturing an organic electroluminescence element having on a belt-formed flexible base material, a first electrode, at least one organic functional layer, and a second electrode, includes continuously forming at least one organic functional layer by coating the same on a first electrode which is formed continuously on the flexible base material in the conveying direction thereof, further forming a second electrode on the organic functional layer, so as to make a plurality of organic electroluminescence element structures in the conveying direction, and then cutting the electroluminescence element structures into individual organic electroluminescence elements so as to manufacture organic electroluminescence elements.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 19, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Nobuaki Takahashi, Shigetoshi Kawabe, Natsuki Yamamoto
  • Patent number: 8809079
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 19, 2014
    Assignee: Kateeva, Inc.
    Inventors: Jianglong Chen, Ian Millard, Steven Van Slyke, Inna Tregub, Conor Madigan
  • Patent number: 8809894
    Abstract: A semiconductor light emitting diode including: a support substrate; an intermediate layer including an intermediate electrode portion, a second conductive semiconductor layer, an active layer, a first conductive semiconductor layer and an upper electrode portion sequentially disposed on the upper surface side of the support substrate in this order; and a lower electrode layer provided on the lower surface side of the support substrate, where: the intermediate layer has at least one intermediate electrode portion extending linearly or in an island-like shape; and the upper electrode portion and the intermediate electrode portion are disposed in such a positional relationship that these electrode portions are in parallel with and offset from each other and a distance between the upper electrode portion and the intermediate electrode portion is within the range of 10 ?m to 50 ?m.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: August 19, 2014
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Masayuki Nakano, Hiroyuki Togawa, Hidetaka Yamada
  • Patent number: 8809867
    Abstract: Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Michael D. Craven, Steven P. Denbaars, James S. Speck, Shuji Nakamura
  • Patent number: 8809893
    Abstract: The present invention relates to a vertical/horizontal light-emitting diode for a semiconductor.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pun Jae Choi, Sang Bum Lee, Jin Bock Lee, Yu Seung Kim, Sang Yeob Song
  • Patent number: 8809081
    Abstract: An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units (PD) for detecting light from the first array of light emitting units (OELD) is provided. The second layer (D2) is arranged between the first die (D1) and the third die (D3). The first, second and third array are aligned such that light emitted from the first array of light emitting units (OLED) passed through the second array of via holes (VH) and is detected by the third array of light detecting units (PD). The first array of light emitting units and/or the third array of light detecting units are manufactured based on standard semiconductor manufacturing processes.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fred Roozeboom, Herbert Lifka, Fredrik Vanhelmont, Wouter Dekkers
  • Patent number: 8809901
    Abstract: The invention provides a nanowire light emitting device and a manufacturing method thereof. In the light emitting device, first and second conductivity type clad layers are formed and an active layer is interposed therebetween. At least one of the first and second conductivity type clad layers and the active layer is a semiconductor nanowire layer obtained by preparing a layer of a mixture composed of a semiconductor nanowire and an organic binder and removing the organic binder therefrom.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won Ha Moon, Dong Woohn Kim, Jong Pa Hong
  • Publication number: 20140225150
    Abstract: The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: Lextar Electronics Corporation
    Inventors: Chia-Lin HSIAO, Nai-Wei Hsu, Te-Chung Wang, Tsung-Yu Yang
  • Publication number: 20140225148
    Abstract: An optoelectronic component includes at least one active semiconductor layer sequence, at least one first and one second element, and at least one adhesive layer arranged between at least one first element and at least one second element. The adhesive layer is produced from an adhesive that comprises at least a first monofunctional, difunctional or polyfunctional epoxy resin, an accelerator and an adhesion promoter.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 14, 2014
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Klaus Hoehn, Reinhard Streitel
  • Publication number: 20140227809
    Abstract: A method of forming nanocrystals and a method of manufacturing an organic light-emitting display apparatus that includes a metal compound thin film having the nanocrystals. The method of forming nanocrystals includes forming a metal compound thin film under a first pressure by using a reactive sputtering process, and forming the nanocrystals in the metal compound thin film under a second pressure that is lower than the first pressure by using the reactive sputtering process.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 14, 2014
    Inventors: Myung-Soo Huh, Cheol-Lae Roh, Seung-Ho Choi
  • Patent number: 8802457
    Abstract: A method includes performing a grinding to a backside of a semiconductor substrate, wherein a remaining portion of the semiconductor substrate has a back surface. A treatment is then performed on the back surface using a method selected from the group consisting essentially of a dry treatment and a plasma treatment. Process gases that are used in the treatment include oxygen (O2). The plasma treatment is performed without vertical bias in a direction perpendicular to the back surface.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Lai, Cheng-Ta Wu, Kai-Chun Hsu, Yeur-Luen Tu, Ching-Chun Wang, Chia-Shiung Tsai
  • Patent number: 8803186
    Abstract: An LED substrate structure has a substrate and a conducting portion. The substrate has a bottom surface and two opposite first lateral surfaces connected with the bottom surface. The bottom surface has the conducting portion formed thereon, and the conducting portion has a first cutting segment located on a contact border defined between one of the two first lateral surfaces and the bottom surface. The conducting portion further has an expansion region connected with the first cutting segment. The length of the first cutting segment is shorter than any segment taken on the expansion region parallel thereto.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 12, 2014
    Assignees: Lite-On Electronics (Guangzhou) Limited, Lite-On Technology Corporation
    Inventors: Hou-Te Lee, Tsung-Kang Ying, Chia-Hung Chu, Shih-Po Yu
  • Patent number: 8803167
    Abstract: An organic light emitting diode (OLED) display according to an exemplary embodiment includes a display substrate on which a plurality of organic light emitting diodes are formed; a conducting material layer contacting one of electrodes included in the organic light emitting diode; an encapsulation substrate facing the display substrate; and an anti-reflective light transmission layer that is formed on a surface of the encapsulation substrate and is connected to the conducting material layer.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: August 12, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-Soo Koh, Chul-Woo Jeong, Tae-Gon Kim, Hee-Seong Jeong, Soon-Ryong Park, Woo-Suk Jung, Il-Ryong Cho, Tae-Kyu Kim, Jae-Yong Kim
  • Patent number: 8802458
    Abstract: A laser diode capable of independently driving each ridge section, and inhibiting rotation of a polarization angle resulting from a stress applied to the ridge section without lowering reliability and a method of manufacturing the same are provided. A laser diode includes: three or more strip-like ridge sections in parallel with each other with a strip-like trench in between, including at least a lower cladding layer, an active layer, and an upper cladding layer in this order; an upper electrode on a top face of each ridge section, being electrically connected to the upper cladding layer; a wiring layer electrically connected to the upper electrode, in the air at least over the trench; and a pad electrode in a region different from regions of both the ridge section and the trench, being electrically connected to the upper electrode through the wiring layer.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: August 12, 2014
    Assignee: Sony Corporation
    Inventors: Makoto Nakashima, Takahiro Yokoyama, Sachio Karino
  • Patent number: 8802465
    Abstract: Systems and methods for fabricating a light emitting diode include forming a multilayer epitaxial structure above a carrier substrate; depositing at least one metal layer above the multilayer epitaxial structure; removing the carrier substrate.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 12, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Chen-Fu Chu
  • Patent number: 8803209
    Abstract: A photodetector device includes: a first semiconductor region of a first conductivity type electrically connected to a first external electrode: a second semiconductor region of a second conductivity type formed on the first semiconductor region; a third semiconductor region of the first conductivity type formed on the second semiconductor region; and a plurality of fourth semiconductor regions of the second conductivity type formed on the second semiconductor region, each of the plurality of fourth semiconductor regions being surrounded by the third semiconductor region, including a second conductivity type impurity having a concentration higher than a concentration of the second semiconductor region, and electrically connected to a second external electrode.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: August 12, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Noriyuki Nakamura
  • Patent number: 8802185
    Abstract: An object is to provide a deposition method for smoothly obtaining desired pattern shapes of material layers and a method for manufacturing a light-emitting device while throughput is improved when a plurality of different material layers is stacked on a substrate. A material layer is selectively formed in advance in a position overlapped with a light absorption layer over a first substrate by pump feeding. Three kinds of light-emitting layers are deposited on one deposition substrate. This first substrate and a second substrate that is to be a deposition target substrate are arranged to face each other, and the light absorption layer is heated by being irradiated with light, whereby a film is deposited on the second substrate. Three kinds of light-emitting layers can be deposited with positional accuracy by performing only one position alignment before light irradiation.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hisao Ikeda, Satoshi Seo
  • Publication number: 20140217458
    Abstract: Provided are a method of manufacturing a light-emitting element by which a light-emitting element (80) is manufactured through the following steps and a light-emitting element manufactured by employing the method. A light-emitting element layer (40) is formed on one face (32T) of a monocrystalline substrate (30A) for a light-emitting element. Next, the other face (32B) of the monocrystalline substrate (30A) for a light-emitting element is polished until a state where a vertical hole (34A) penetrates the monocrystalline substrate (30A) for a light-emitting element in its thickness direction is established. Next, a conductive material is filled into the vertical hole (34B) from the side of the vertical hole (34B) closer to an opening (36B) in the other face (32B) to form a conductive portion (50) that is continuous from a side closer to the light-emitting element layer (40) to the opening (36B) in the other face (32B).
    Type: Application
    Filed: April 3, 2012
    Publication date: August 7, 2014
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKIKAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hidetoshi Takeda, Keiji Honjo, Hitoshi Hoshino
  • Publication number: 20140217423
    Abstract: A semiconductor light-emitting device made of a nitride-based semiconductor includes a semiconductor stacked structure having a nonpolar plane or a semipolar plane as a principal plane, and including an active layer for emitting polarized light. The semiconductor light-emitting device includes a striped structure which is provided in a position intersecting an exit path of the polarized light and includes a plurality of recesses. An angle formed between the extension direction of the recesses and the polarization direction of the polarized light is from 0° to 45°. The recesses have a minute uneven structure (texture) at at least part of a surface of each recess, the minute uneven structure being shallower than the depth of each recess.
    Type: Application
    Filed: April 3, 2014
    Publication date: August 7, 2014
    Applicant: Panasonic Corporation
    Inventors: Toshiyuki FUJITA, Akira INOUE, Toshiya YOKOGAWA
  • Publication number: 20140217368
    Abstract: A method for manufacturing an organic light emitting display device includes mounting in a chamber a substrate where a transparent electrode is to be formed and a SnO member that is a source of forming the transparent electrode, injecting argon gas and oxygen into the chamber, and evaporating the SnO member to be deposited on the substrate.
    Type: Application
    Filed: July 3, 2013
    Publication date: August 7, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hun Kim, Jin-Woo Park, Jai-Hyuk Choi
  • Publication number: 20140217457
    Abstract: There is provided a light-emitting element chip which can be safely assembled and a manufacturing method therefor. A light-emitting element chip 10 has a semiconductor layer 12 including a luminescent layer 12a on a supporting portion 11. The supporting portion 11 has a concave shape, providing a support substrate in this light-emitting element chip 10, and being connected to one electrode on the semiconductor layer 12. The outer peripheral portion of the supporting portion 11 (a supporting portion outer peripheral portion 11a) surrounds the semiconductor layer 12, and is protruded to be set at a level higher than the other face 12d and the n-side electrode 15 of the semiconductor layer 12.
    Type: Application
    Filed: May 25, 2011
    Publication date: August 7, 2014
    Applicants: WAVESQUARE INC., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Meoung Whan Cho, Seog Woo Lee, Pil Guk Jang, Ryuichi Toba, Yoshitaka Kadowaki
  • Patent number: 8796056
    Abstract: A method for fabricating a display panel includes the following steps. A surface of a first substrate is adhered to a first supporting substrate with a first adhesive layer. First devices are formed on the other surface of the first substrate. The other surface of the first substrate is adhered to a second supporting substrate with a second adhesive layer. The first adhesive layer and supporting substrate are separated from the first substrate. Second devices are formed on the surface of the first substrate. A second substrate is adhered to a third supporting substrate with a third adhesive layer. The first substrate and the second substrate are assembled, and a display medium layer is interposed between the first substrate and the second substrate. The second adhesive layer and supporting substrate are separated from the first substrate, and the third adhesive layer and supporting substrate are separated from the second substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 5, 2014
    Assignee: AU Optronics Corp.
    Inventor: Chi-Ho Chang
  • Patent number: 8790936
    Abstract: A wafer-level optical deflector assembly is formed on a front surface side of a wafer. Then, the front surface side of the wafer is etched by using elements of the wafer-level optical deflector assembly, to form a front-side dicing street. Then, a transparent substrate with an inside cavity is adhered to the front surface side of the wafer. Then, a second etching mask is formed on a back surface side of the wafer. Then, the back surface side of the wafer is etched to create a back-side dicing street. Then, an adhesive sheet with a ring-shaped rim is adhered to the back surface side of the wafer. Then, the transparent substrate is removed. Finally, the ring-shaped rim is expanded to widen the front-side dicing street and the back-side dicing street to pick up optical deflectors one by one from the wafer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 29, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Yoshiaki Yasuda
  • Patent number: 8790937
    Abstract: A transparent conductive electrode stack containing a work function adjusted zinc oxide is provided. Specifically, the transparent conductive electrode stack includes a layer of zinc oxide and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of zinc oxide to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of zinc oxide and no work function modifying material.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Ning Li, Devendra K. Sadana
  • Patent number: 8790958
    Abstract: A quantum dot organic light emitting device and a method of manufacturing the same are disclosed. A first electrode layer is formed on a substrate. A block copolymer film which can cause phase separation on the first electrode layer is formed. The block copolymer film is phase-separated into a plurality of first domains, each having a nano size column shape, and a second domain which surrounds the first domains. A quantum dot template film of the second domain, which comprises a plurality of nano size through holes, is formed by selectively removing the first domains. Quantum dot structures, each of which comprises an organic light emitting layer in the through hole of the quantum dot template film, is formed.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Samung Display Co., Ltd.
    Inventors: Sung-Hwan Cho, Hyo-Seok Kim
  • Patent number: 8791483
    Abstract: A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 29, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyung Hee Ye, Chang Youn Kim, Jin Cheol Shin, Joon Hee Lee, Jong Kyun You, Hong Chol Lim
  • Patent number: 8791467
    Abstract: An embodiment of the present invention discloses a light-emitting structure having a light output power of more than 4mW at 20 mA current. Another embodiment of the present invention discloses a method of making a light-emitting structure having a light output power of more than 4mW at 20 mA current, and a layer with a thickness of 0.5 ?m˜3?m.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: July 29, 2014
    Assignee: Epistar Corporation
    Inventor: Kuang-Neng Yang
  • Patent number: 8790939
    Abstract: A method for producing a plurality of radiation-emitting components includes A) providing a carrier layer having a plurality of mounting regions separated from one another by separating regions; B) applying an interlayer to the separating regions; C) applying a respective radiation-emitting device to each of the plurality of mounting regions; D) applying a continuous potting layer to the radiation-emitting device and the separating regions; E) severing the potting layer and partially severing the interlayer in the separating regions of the carrier layer in a first separating step; and F) partially severing the interlayer and severing the carrier layer in a second separating step, wherein the interlayer is completely severed by the first and the second separating step.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: July 29, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stephan Preuss, Harald Jaeger
  • Publication number: 20140206115
    Abstract: The present application provides a method of manufacturing an optoelectronic semiconductor device, comprising the steps of: providing a substrate; forming an optoelectronic system on the substrate; forming a barrier layer on the optoelectronic system; forming an electrode on the barrier layer; and annealing the optoelectronic semiconductor device; wherein the optoelectronic semiconductor device has a first forward voltage before the annealing step and has a second forward voltage after the annealing step, and a difference between the second forward voltage and the first forward voltage is smaller than 0.2 Volt.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicant: EPISTAR CORPORATION
    Inventors: Tz Chiang YU, Jenn Hwa FU, Hsin Hsiung HUANG
  • Publication number: 20140203287
    Abstract: A nitride light emitting device comprises a current blocking Schottky junction zone formed below the p-electrode and above the active region so that current injection from the p-electrode to the area of the active region that is vertically shaded by the p-electrode is blocked by the Schottky junction zone. A method for fabricating the same is also provided.
    Type: Application
    Filed: July 21, 2012
    Publication date: July 24, 2014
    Applicant: INVENLUX LIMITED
    Inventors: JIANPING ZHANG, MARIO SAENGER, WILLIAM SO, FANGHAI ZHAO, CHUNHUI YAN
  • Patent number: 8785219
    Abstract: The present application provides a method of manufacturing an optoelectronic semiconductor device, comprising the steps of: providing a substrate; forming an optoelectronic system on the substrate; forming a barrier layer on the optoelectronic system; forming an electrode on the barrier layer; and annealing the optoelectronic semiconductor device; wherein the optoelectronic semiconductor device has a first forward voltage before the annealing step and has a second forward voltage after the annealing step, and a difference between the second forward voltage and the first forward voltage is smaller than 0.2 Volt.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: July 22, 2014
    Assignee: Epistar Corporation
    Inventors: Tz Chiang Yu, Jenn Hwa Fu, Hsin Hsiung Huang
  • Patent number: 8785916
    Abstract: Optoelectronic organic component, comprising: a first electrode, a first planarization layer which is disposed on the first electrode, a first injection layer which is disposed on the planarization layer, an organic functional layer which is disposed on the injection layer, a second electrode which is disposed on the organic functional layer, wherein in the case that the first electrode is an anode, the following applies for the energy levels: EF?EHOMO,Inj.??EHOMO,Plan. and EF?EHOMO,Inj<EHOMO,Funk. or in the case that the first electrode is a cathode, the following applies for the energy levels: ELUMO,Inj.?EF?ELUMO,Plan.?EF and ELUMO,Inj.?EF<ELUMO,Funk.?EF, wherein EF is the fermi energy, EHOMO is the energy of the highest occupied energy level of the respective layer and ELUMO is the energy of the lowest unoccupied energy level of the respective layer.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 22, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Marc Philippens, Ralph Paetzold, Wiebke Sarfert, David Hartmann, Arvid Hunze, Ralf Krause
  • Patent number: 8785952
    Abstract: A light emitting device is disclosed. The light emitting device includes a first electrode and a second electrode, which have different areas, thereby achieving enhanced bonding reliability.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: July 22, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dongwook Park
  • Publication number: 20140200636
    Abstract: A laser package for use in a dermatological treatment device may include a conductive carrier, an insulation layer arranged over a first region of a first side of the conductive carrier, a semiconductor laser device mounted to a second region of the first side of the conductive carrier, and a conductive film secured to the semiconductor laser device and extending over at least a portion of the insulation layer, such that the conductive film is insulated from the conductive carrier by the insulation layer, and wherein a coefficient of thermal expansion of the semiconductor laser device differs from a coefficient of the conductive carrier to which it is mounted by more than 20%.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Inventors: Patrick Reichert, Harvey I-Heng Liu
  • Publication number: 20140199793
    Abstract: A semiconductor device is manufactured by forming at least one epitaxial structure over a substrate. A portion of the substrate is cut and lifted to expose a partial surface of the epitaxial structure. A first electrode is then formed on the exposed partial surface to result in a vertical semiconductor device.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: PHOSTEK INC.
    Inventor: Yuan-Hsiao CHANG
  • Patent number: 8779455
    Abstract: The present invention provides a semiconductor light-emitting device that emits light with a specific low correlated color temperature and with a high Ra, and a semiconductor light-emitting system provided with the semiconductor light-emitting device. This object is attained by the semiconductor light-emitting device having the below-described configuration. A semiconductor light-emitting device includes a LED chip as a semiconductor light-emitting element, and a phosphor emitting light using the LED chip as an excitation source, and emits light with a correlated color temperature equal to or higher than 1600 K and lower than 2400 K. The phosphor includes at least a green phosphor and a red phosphor. In the spectrum of light emitted from the semiconductor light-emitting device, the value of the peak intensity of the light emitted by the LED chip is less than 60% of the maximum peak intensity of the light emitted by the phosphor.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 15, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroaki Sakuta, Yuki Kohara, Yoshihito Satou
  • Patent number: 8778720
    Abstract: Discussed is a fabrication method of a solar cell according to an embodiment of the invention, which includes forming an electrode material on a semiconductor substrate for the solar cell; and forming an electrode by heat treating the electrode material by laser irradiation, wherein the electrode material comprises at least one of an electrode paste, electrode ink and aerosol for the electrode.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: July 15, 2014
    Assignee: LG Electronics Inc.
    Inventors: Jong Hwan Kim, Hwa Nyeon Kim, Ju Hwan Yun
  • Patent number: 8778705
    Abstract: A light-emitting diode (“LED”) device has an LED chip attached to a substrate. The terminals of the LED chip are electrically coupled to leads of the LED device. Elastomeric encapsulant within a receptacle of the LED device surrounds the LED chip. A second encapsulant is disposed within an aperture of the receptacle on the elastomeric encapsulant.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: July 15, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Tong Fatt Chew
  • Patent number: 8778778
    Abstract: According to an embodiment, an active layer is formed on a first surface of a semiconductor substrate, a wiring layer is formed on the active layer, and an insulating layer is formed covering the wiring layer. The first surface of the semiconductor substrate is bonded to a support substrate via the insulating layer, and the semiconductor substrate bonded to the support substrate is thinned leaving the semiconductor substrate having a predetermined thickness which covers the active layer from a second surface. At least a part of area of the thinned semiconductor substrate is removed to expose the active layer.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazumasa Tanida, Masahiro Sekiguchi, Masayuki Dohi, Tsuyoshi Matsumura, Hideo Numata, Mari Otsuka, Naoko Yamaguchi, Takashi Shirono, Satoshi Hongo
  • Publication number: 20140191201
    Abstract: An apparatus for depositing one or more organic material layers of an OLED lighting device upon a first region of a substrate and one or more conducting layers upon a second region, wherein the conducting layers partially or completely cover and extend beyond one side of the organic layers, comprising: a reusable mask in contact with the substrate, at least one mask open area having an overhang feature; one or more sources of vaporized organic material, selected to form layers of the OLED lighting device, and the vaporized organic material plume is shaped, on the side corresponding to the mask overhang feature, so as to limit substantial transfer of organic material on said side to angles less than or equal to a selected cutoff angle to the first region; and one or more sources of vaporized conducting material that transfer conducting material to the second region, wherein the second region partially or completely overlaps the first region and extends beyond the first region on the side corresponding to the o
    Type: Application
    Filed: March 21, 2013
    Publication date: July 10, 2014
    Applicant: OLEDWORKS LLC
    Inventors: John W. Hamer, Michael L. Boroson
  • Patent number: 8772805
    Abstract: A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 8, 2014
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Kyung Hee Ye, Chang Youn Kim, Jin Cheol Shin, Joon Hee Lee, Jong Kyun You, Hong Chol Lim
  • Patent number: 8772777
    Abstract: In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device comprises: a substrate in which a light-emitting region and a thin-film transistor (TFT) region are defined; and a plurality of insulating films formed on the substrate. A refractive index changes at only one of the interfaces between insulating films, which correspond to the light-emitting region and are formed between the substrate and a first electrode of an organic electroluminescence display element, and a refractive index changes at two or more of the interfaces between insulating films which correspond to the TFT region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: July 8, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: June-Woo Lee, Sung-Ho Kim
  • Patent number: 8772060
    Abstract: The present invention provides a method for manufacturing a group III nitride semiconductor light emitting element, with which warping can be suppressed upon the formation of respective layers on the substrate, a semiconductor layer including a light emitting layer of excellent crystallinity can be formed, and excellent light emission characteristics can be obtained; such a group III nitride semiconductor light emitting element; and a lamp. Specifically disclosed is a method for manufacturing a group III nitride semiconductor light emitting element, in which an intermediate layer, an underlayer, an n-type contact layer, an n-type cladding layer, a light emitting layer, a p-type cladding layer, and a p-type contact layer are laminated in sequence on a principal plane of a substrate, wherein a substrate having a diameter of 4 inches (100 mm) or larger, with having an amount of warping H within a range from 0.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 8, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hiromitsu Sakai, Takeshi Harada
  • Patent number: 8772762
    Abstract: Provided is an organic electroluminescent device including: a substrate (11, 101); a first electrode (12, 102) formed on the substrate (11, 101) and including a pixel region; a partition wall (23, 203) formed on the substrate (11, 101), partitioning the first electrode (12, 102), and including a surface with a recessed and projected form; a luminescent medium layer (19, 109) formed on the pixel region and the partition wall (23, 203), a film thickness of the partition wall (23, 203) being uneven according to the recessed and projected form; and a second electrode (17, 107) formed on the luminescent medium layer (19, 109).
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Shingo Kaneta, Yuki Yasu, Ryo Syoda, Noriko Morikawa, Eiichi Kitazume
  • Patent number: 8772061
    Abstract: A solid state energy conversion device and method of making is disclosed for converting energy between electromagnetic and electrical energy. The solid state energy conversion device comprises a wide bandgap semiconductor material having a first doped region. A thermal energy beam is directed onto the first doped region of the wide bandgap semiconductor material in the presence of a doping gas for converting a portion of the first doped region into a second doped region in the wide bandgap semiconductor material. A first and a second Ohmic contact are applied to the first and the second doped regions of the wide bandgap semiconductor material. In one embodiment, the solid state energy conversion device operates as a light emitting device to produce electromagnetic radiation upon the application of electrical power to the first and second Ohmic contacts.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: July 8, 2014
    Assignee: University of Central Florida
    Inventors: Nathaniel R. Quick, Aravinda Kar
  • Publication number: 20140183497
    Abstract: An organic light-emitting diode manufactured from an organic light-emitting diode substrate in which a concave-convex structure is provided in at least a part of the surface, in which the concave-convex structure is capable of obtaining an atomic force microscope (AFM) image in which a plurality of dots is dispersed when observed by an AFM. A histogram is created by measuring a diameter (nm) of each of the plurality of dots present in a randomly selected region having an area of 25 ?m2 on the atomic force microscope image, resulting in a plurality of peaks including one main peak and one or more sub-peaks, and the chromaticity of light emitted from the organic light-emitting diode is in a range of (x, y)=(0.28 to 0.50, 0.29 to 0.45) in a CIE standard colorimetric system.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Oji Holdings Corporation
    Inventors: Kei Shinotsuka, Takayuki Okamoto, Etsuko Kawamukai, Norio Yamamura
  • Publication number: 20140183441
    Abstract: Provided is a terahertz wave generating/detecting apparatus and a method for manufacturing the same. The terahertz wave generating/detecting apparatus includes; a substrate having an active region and a transmitting region; a lower metal layer extending in a first direction on the active region and the transmitting region of the substrate; a graphene layer disposed on the lower metal layer on the active region; and upper metal layers extending in the first direction on the graphene layer of the active region and the substrate in the transmission region, wherein a terahertz wave is generated or amplified by a surface plasmon polariton that is induced on a boundary surface between the graphene layer and the lower metal layer by beated laser light applied to the graphene layer and the metal layer.
    Type: Application
    Filed: October 25, 2013
    Publication date: July 3, 2014
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kyung Hyun PARK, Sang-Pil HAN, Jeong Woo PARK, Han-Cheol RYU, Kiwon MOON, Namje KIM, Hyunsung KO
  • Patent number: 8765508
    Abstract: Methods of fabricating semiconductor devices or structures include bonding a layer of semiconductor material to another material at a temperature, and subsequently changing the temperature of the layer of semiconductor material. The another material may be selected to exhibit a coefficient of thermal expansion such that, as the temperature of the layer of semiconductor material is changed, a controlled and/or selected lattice parameter is imparted to or retained in the layer of semiconductor material. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Novel intermediate structures are formed during such methods. Engineered substrates include a layer of semiconductor material having an average lattice parameter at room temperature proximate an average lattice parameter of the layer of semiconductor material previously attained at an elevated temperature.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: July 1, 2014
    Assignee: Soitec
    Inventor: Chantal Arena
  • Patent number: 8765510
    Abstract: A photonic device comprises a substrate and a dielectric material including two or more openings that expose a portion of the substrate, the two or more openings each having an aspect ratio of at least 1. A bottom diode material comprising a compound semiconductor material that is lattice mismatched to the substrate occupies the two or more openings and is coalesced above the two or more openings to form the bottom diode region. The device further includes a top diode material and an active diode region between the top and bottom diode materials.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Anthony J. Lochtefeld
  • Patent number: RE45084
    Abstract: The present invention is a method of fabricating an optical device using multiple sacrificial spacer layers. The first step in this process is to fabricate the underlying base structure and deposit an optical structure thereon. A facet is then created at the ends of the optical structure and alternating sacrificial and intermediate layers are fabricated on the device. A mask layer is deposited on the structure, with openings created in the layers to allow use of an etchant. User-defined portions of the spacer layers are subsequently removed with the etchant to create air gaps between the intermediate layers.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: August 19, 2014
    Assignee: National Security Agency
    Inventors: John L. Fitz, Daniel S. Hinkel, Scott C. Horst