Forming Bipolar Transistor By Formation Or Alteration Of Semiconductive Active Regions Patents (Class 438/309)
  • Patent number: 6555857
    Abstract: The object of the present invention is to provide a semiconductor device, which is suitable for use to connect electric condenser microphones. A semiconductor device, comprises: a conductivity-type substrate; an epitaxial layer formed on top of the substrate; island regions separating the epitaxial layer; an input transistor formed on one of the island regions; an insulation layer covering the surface of the input transistor layer; an expansion electrode formed above the insulation layer so as to provide an electrical connection to an input terminal of the input transistor; and resistivity of the epitaxial layer formed below the expansion electrode being in a range of 1000˜5,000 &OHgr;·cm.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: April 29, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shigeaki Okawa, Toshiyuki Ohkoda
  • Publication number: 20030077869
    Abstract: A method of forming a semiconductor device (1000) includes the step of exposing a first region (140) of a semiconductor substrate (101) with a photomask (180). A material is implanted into the first region to form a compound that masks the first region of the semiconductor substrate to form an electrode (155) of the semiconductor device.
    Type: Application
    Filed: October 18, 2001
    Publication date: April 24, 2003
    Applicant: Semiconductor Components Industries, LLC.
    Inventors: Keith Guy Kamekona, James Robert Morgan, Guy Edwin Averett, Misbahul Azam, Weizhong Cai
  • Patent number: 6551889
    Abstract: A method of producing a bipolar transistor includes the step of providing a sacrificial mesa over a layer of SiGe in order to prevent a polysilicon covering layer from forming over a predetermined region of the SiGe layer forming the transistor base. After an etching process removes the sacrificial mesa and the SiGe layer is exposed, an oppositely doped material is applied over top of the SiGe layer to form an emitter. This makes it possible to realize a thin layer of silicon germanium to serve as the transistor base. This method prevents the base layer SiGe from being affected, as it otherwise would be using a conventional double-poly process.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: April 22, 2003
    Assignee: SiGe Semiconductor, Inc.
    Inventor: Stephen J. Kovacic
  • Patent number: 6552374
    Abstract: Disclosed are a method for forming a base layer by epitaxial growth technology of a heterojunction bipolar device and a structure of the bipolar device manufactured by the method.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: April 22, 2003
    Assignee: ASB, Inc.
    Inventors: Tae-Hyeon Han, Byung Ryul Ryum, Soo-Min Lee, Deok-Ho Cho
  • Patent number: 6541824
    Abstract: An ESD protection circuit that will prevent internal circuits of an integrated circuit is formed on a semiconductor substrate to prevent damage during extreme voltage levels from an ESD voltage source and is connected to an input/output pad. A plurality of drains of multiple MOS FET's is formed within the surface of the semiconductor substrate and are each connected to the input/output pad. A plurality of sources of the multiple MOS FET's is formed within the surface of the semiconductor substrate and are placed at a distance from the plurality of drains and are connected to a ground reference potential. Pairs of the plurality of sources are adjacent to each other. A plurality of isolation regions placed between each source of the pairs of sources and are allowed to float. The multiple MOS FET's have a plurality of parasitic bipolar junction transistors.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: April 1, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Jiaw-Ren Shih, Shui-Hung Chen, Yi-Hsun Wu
  • Patent number: 6537887
    Abstract: An integrated circuit and a process for making the same are provided. The circuit has a nitrogen implanted emitter window, wherein the nitrogen has been implanted into the emitter window after the emitter window etch, but prior to the emitter conductor deposition. Nitrogen implantation is expected to minimize oxide growth variation.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 25, 2003
    Assignee: Agere Systems Inc.
    Inventors: Yih-Feng Chyan, Chung Wai Leung, Yi Ma, Demi Nguyen
  • Patent number: 6538294
    Abstract: An arrangement in a semiconductor component includes a highly doped layer on a substrate layer and is delimited by at least one trench extending from the surface of the component through the highly doped layer. A sub-layer between the substrate layer and the highly doped layer is doped with the same type of dopant as the buried collector, but to a lower concentration. The sub-layer causes a more even distribution of the potential lines in the substrate and in a sub-collector layer, thereby eliminating areas of dense potential lines and increasing the breakdown voltage of the component, (i.e., because the breakdown voltage is lower in areas with dense potential lines).
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: March 25, 2003
    Assignee: Telefonaktiebolaget LM Ericson (publ)
    Inventors: Håkan Sjödin, Anders Söderbärg
  • Publication number: 20030049909
    Abstract: A semiconductor device and a method of manufacturing the semiconductor device having a vertical NPN bipolar transistor, a lateral PNP bipolar transistor, and P-type and N-type resistors are disclosed. In one embodiment, a photoresist pattern is formed on a pad oxide layer and field oxides on an N-type epitaxial layer that is grown on a P-type semiconductor substrate. The pad oxide layer is etched after implanting P-type impurity into the epitaxial layer by using the photoresist pattern as a mask. Deposition of a polysilicon layer after removing the photoresist pattern is followed by implanting P-type impurity and N-type impurity into the polysilicon layer in sequence. Another photoresist pattern formed on the polysilicon layer after the previous implantation is used as an etch mask for etching the polysilicon layer to form polysilicon electrodes of transistors and P-type and N-type resistors as well as expose the surface of the epitaxial layer near an emitter region of the vertical transistor.
    Type: Application
    Filed: March 8, 2002
    Publication date: March 13, 2003
    Applicant: Fairchild Korea Semiconductor Ltd.
    Inventors: Jong-Hwan Kim, Cheol-Joong Kim, Suk-Kyun Lee, Yongcheol Choi
  • Publication number: 20030045063
    Abstract: A method of manufacturing a semiconductor device comprising a plurality of single-crystal semiconductor layers formed, for example, in an opening of an insulating film, said semiconductor layers having no or very few crystal defects. The method comprises forming in a first growth chamber a first semiconductor layer of a first conductivity type in an opening of an insulating film and subsequently forming in a second growth chamber a second semiconductor layer of a second conductivity type in an opening of an insulating film, while supplying hydrogen to the surface of the substrate when the substrate is transferred from said first growth chamber to said second growth chamber.
    Type: Application
    Filed: May 21, 2002
    Publication date: March 6, 2003
    Applicant: Hitachi, Ltd.
    Inventor: Katsuya Oda
  • Publication number: 20030042504
    Abstract: A semiconductor component (100) includes a semiconductor substrate (16) that is formed with trench(27). A semiconductor layer (20) is formed in the trench for coupling a control signal (VB) through a sidewall (25) of the trench to route a current (Ic) through a bottom surface (23) of the trench.
    Type: Application
    Filed: September 5, 2001
    Publication date: March 6, 2003
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Misbahul Azam, Gary Loechelt, Julio Costa
  • Publication number: 20030045064
    Abstract: A semiconductor device is provided which avoids lowering of the sense speeds of plural sense amplifiers due to their drives. In the semiconductor device, a P-type well layer (6) containing a P-type impurity is selectively disposed in a main surface of an epitaxial layer (3). An N-type bottom layer (7) containing an N-type impurity is disposed so as to make contact with a bottom surface of the P-type well layer (6). A P-type well layer (2) is disposed in such a thickness as to make contact with the N-type bottom layer (7), so that the N-type bottom layer (7) and P-type well layer (2) form a PN junction. Further, in the main surface of the epitaxial layer (3), an N-type well layer (4) containing an N-type impurity and a P-type well layer (5) containing a P-type impurity are selectively disposed so as to sandwich therebetween the P-type well layer (6).
    Type: Application
    Filed: July 30, 2002
    Publication date: March 6, 2003
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Tatsuya Kunikiyo, Takeshi Hamamoto, Yoshinori Tanaka
  • Patent number: 6528378
    Abstract: To provide a super high-speed heterojunction bipolar transistor, a semiconductor device including such a heterojunction bipolar transistor has a structure wherein a subcollector layer, collector layer, base layer, emitter layer (InGaP layer) and emitter cap layer are successively formed in predetermined shapes a surface of a semi-insulating GaAs substrate, an inner edge part of a base electrode overlaps a periphery of the emitter layer, and the base electrode is electrically connected to the base layer by an alloy layer formed by alloying the emitter layer under the base electrode. The emitter layer is selectively formed on the base layer. The base electrode extends from the peripheral part of the emitter layer across the base layer, and the alloy layer extends to a midway depth of the base layer. The edge of the base layer is situated further inside than the outer edge of the base electrode.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 4, 2003
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems, Co., Ltd.
    Inventors: Koji Hirata, Hiroyuki Takazawa
  • Patent number: 6524921
    Abstract: The invention includes a bipolar transistor construction having a collector region, emitter region, and base region extending within a semiconductive material substrate. The construction further comprises separate access regions associated with the base region, emitter region and collector region, respectively. An n-type doped connecting region is comprised by the collector region and extends beneath the emitter and base regions. A p-type doped location is comprised by the base region and extends beneath the emitter region and above the n-type doped connecting region. An n-type doped intermediate location is within the emitter region and between the p-type doped location and the emitter access region. The invention also includes methods of forming bipolar transistors.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: February 25, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Nathaniel J. Collins
  • Patent number: 6524894
    Abstract: An N+ buffer layer formed on the underside of an N− layer includes an inactive region having incompletely activated ions and an active region having highly activated ions. The carrier concentration of the active region is higher than that of the inactive region. In the inactive region, the electrical activation rate X of the ions is expressed as 1%≦X≦30%. It is thus possible to achieve a PT structure using a Raw wafer, which reduces manufacturing costs and suppresses power consumption.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: February 25, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideki Nozaki, Yoshiro Baba, Motoshige Kobayashi
  • Publication number: 20030032232
    Abstract: A polysilicon-emitter-type transistor has a substrate with a collector region, a base region on the collector region, and an oxide layer on the base region with an emitter window therein exposing part of the base region. The polysilicon emitter is formed by forming a first polysilicon layer of approximately 30 to 100 Angstroms at least within the emitter window and at least on the exposed base region. Then, an interfacial oxide layer being approximately 5 to 50 Angstroms thick is formed in an upper portion of the first polysilicon layer, for example, by exposing the first polysilicon layer to oxygen and annealing. Then, a second polysilicon layer is formed on the interfacial oxide layer. The thickness of the second polysilicon layer may be approximately 500 to 5000 Angstroms thick. Subsequent annealing diffuses dopants in the emitter more uniformly into the base region.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 13, 2003
    Inventors: Alexander Kalnitsky, Sudarsan Uppili, Sang Park
  • Publication number: 20030030075
    Abstract: MOS transistors (TR1, TR2) are arranged closer to a pad (SP) in descending order of current-driving capability. Namely, the MOS transistors (TR1, TR2) are arranged from closer part to the pad (SP) in descending order of value of W/L obtained by dividing a gate width (W) of a gate electrode by a gate length (L) of the same. When a transistor has a large current-driving capability, the value of source-to-drain current is high. For this reason, the MOS transistors are arranged from closer part to the pad for source electrode in descending order of current-driving capability, to thereby reduce the amount of voltage drop in an interconnect line. A current value of the transistor becomes lower as a distance between the pad and the transistor increases. As a result, it is allowed to reduce influence on the transistor characteristics exerted by voltage drop due to interconnection resistance.
    Type: Application
    Filed: April 2, 2002
    Publication date: February 13, 2003
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Kenji Yamaguchi, Hiroyuki Amishiro, Motoshige Igarashi
  • Patent number: 6518111
    Abstract: A method for manufacturing a semiconductor device includes forming a collector region of a semiconductor substrate and forming an isolation structure adjacent at least a portion of the collector region. The method also includes forming a gate stack layer adjacent at least a portion of the isolation structure and forming a base region of the semiconductor substrate adjacent at least a portion of the collector region. The base region comprises a base link up region proximate a lateral edge of the base region. A diffusion source layer is formed adjacent at least a portion of the base link up region. The method includes removing a portion of the gate stack layer to form a base electrode adjacent a portion of the base region and a gate electrode spaced apart from the base electrode. The gate electrode is located at a complementary metal oxide semiconductor (CMOS) area of the semiconductor device.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: February 11, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Frank S. Johnson
  • Patent number: 6518629
    Abstract: In a semiconductor device having high voltage resistance and low ON voltage characteristics, charge-storage regions (insulation layer) are formed in a drift region. Formed above the drift region are a channel region, an emitter region, trench-type gate electrodes, and an emitter electrode. Strips of the insulation layer extend in a direction intersecting a direction of extension of the gate electrodes, and form a stripe pattern. The insulation layer curbs extraction of holes into the channel region. Openings in the stripe pattern of the insulation layer form depletion layers.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoyoshi Kushida, Katsuhiko Nishiwaki
  • Patent number: 6514779
    Abstract: A silicon carbide device is fabricated by forming a plurality of a same type of silicon carbide devices on at least a portion of a silicon carbide wafer in a predefined pattern. The silicon carbide devices have corresponding first contacts on a first face of the silicon carbide wafer. The plurality of silicon carbide devices are electrically, tested to identify ones of the plurality of silicon carbide devices which pass an electrical test. The first contact of the identified ones of the silicon carbide devices are then selectively interconnected. Devices having a plurality of selectively connected silicon carbide devices of the same type are also provided.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: February 4, 2003
    Assignee: Cree, Inc.
    Inventors: Sei-Hyung Ryu, Anant Agarwal, Craig Capell, John W. Palmour
  • Publication number: 20030020121
    Abstract: A semiconductor structure for a high frequency monolithic switch matrix includes a monocrystalline silicon substrate, an amorphous oxide material overlying the monocrystalline silicon substrate, a monocrystalline perovskite oxide material overlying the amorphous oxide material, a monocrystalline compound semiconductor material overlying the monocrystalline perovskite oxide material, and a high frequency semiconductor integrated formed in and over the monocrystalline compound semiconductor material having one or more input ports and one or more output ports. The high frequency semiconductor integrated circuit also includes a high frequency switch circuit that is electrically coupled to a switch driver control circuit that is fabricated on the monocrystalline compound semiconductor material and which provides the DC signals required to control the high frequency circuit.
    Type: Application
    Filed: July 25, 2001
    Publication date: January 30, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Stephen Kent Rockwell, John E. Holmes, Nestor Javier Escalera, Steven James Franson
  • Publication number: 20030022431
    Abstract: High quality epitaxial layers of monocrystalline oxide materials (24) are grown overlying monocrystalline substrates such as large silicon wafers (22) using RHEED information to control the stoichiometry of the growing film. The monocrystalline oxide layer (24) may be used to form a compliant substrate for monocrystalline growth of additional layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22) spaced apart from the silicon wafer (22) by an amorphous interface layer of silicon oxide (28). The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24).
    Type: Application
    Filed: July 25, 2001
    Publication date: January 30, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Zhiyi Yu, Ravindranath Droopad, Corey Overgaard
  • Publication number: 20030022411
    Abstract: A nonvolatile semiconductor storage device includes a row decoder which independently controls a plurality of row select line groups. A negative voltage generated by a debooster circuit is applied to individual row select line groups with time shifts. As a result, peaks of erase current can be suppressed, so that consumption current can be reduced. In this device, a current limiting circuit of the booster circuit limits the consumption current of the booster circuit, allowing voltages to be generated within a range under a specified current value according to the conditions of voltage application to the individual row select line groups. Thus, a further reduction of the consumption current at a shorter scale can be achieved.
    Type: Application
    Filed: February 27, 2002
    Publication date: January 30, 2003
    Inventors: Ken Sumitani, Takayuki Satoh
  • Patent number: 6506658
    Abstract: A method for fabricating a silicon-on-insulator (SOI) wafer that includes a monocrystalline silicon substrate with a doped region buried therein is provided. The method includes forming a plurality of trench-like openings extending from a surface of the substrate to the doped buried region, and selectively etching through the plurality of trench-like openings to change the doped buried region into a porous silicon region. The porous silicon region is oxidized to obtain an insulating region for the SOI wafer.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: January 14, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe D'Arrigo, Corrado Spinella, Salvatore Coffa, Giuseppe Arena, Marco Camalleri
  • Patent number: 6506655
    Abstract: A method of manufacturing a bipolar transistor in an N-type semiconductor substrate, including the steps of depositing a first base contact polysilicon layer and doping it; depositing a second silicon oxide layer; forming in the first and second layers an opening; annealing to form a third thin oxide layer and harden the second oxide layer; implanting a P-type dopant; depositing a fourth silicon nitride layer; depositing a fifth silicon oxide layer and etching it; anisotropically etching the fifth, fourth, and third layers; performing cleanings during which the fifth layer is reetched and takes a flared profile; depositing a sixth polysilicon layer; and implanting an N-type dopant.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: January 14, 2003
    Assignee: STMicroelectronics S.A.
    Inventors: Yvon Gris, Germaine Troillard
  • Patent number: 6506656
    Abstract: The present invention provides a unique device structure and method that provides increased transistor performance in integrated bipolar circuit devices. The preferred embodiment of the present invention provides improved high speed performance with a stepped collector dopant profile that reduces emitter-collector transit time and parasitic resistance with minimal increase in parasitic capacitances. The preferred stepped collector dopant profile includes a shallow implant and a deeper implant. The shallow implant reduces the base-collector space-charge region width, reduce resistance, and tailors the collector-base breakdown characteristics. The deeper implant links the buried collector to the subcollector and provides a low resistance path to the subcollector. The stepped collector dopant profile has minimal impact on the collector-base capacitance outside the intrinsic region of the device since the higher dopant is compensated by, or buried in, the extrinsic base dopants outside the intrinsic region.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: January 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Gregory G. Freeman, Basanth Jagannathan, Shwu-Jen Jeng, Jeffrey B. Johnson
  • Publication number: 20030001209
    Abstract: A hybrid semiconductor device is presented in which one or more diode regions are integrated into a transistor region. In a preferred embodiment the transistor region is a continuous (self-terminating) SOI LDMOS device in which are integrated one or more diode portions. Within the diode portions, since there is only one PN junction, the mechanism for breakdown failure due to bipolar turn-on is nonexistent. The diode regions are formed such that they have a lower breakdown voltage than the transistor region, and thus any transient voltage (or current) induced breakdown is necessarily contained in the diode regions. In a preferred embodiment, the breakdown voltage of the diode portions is lowered by narrowing their field plate length relative to the transistor portion of the device. This allows the device to survive any such breakdown without being destroyed, resulting in a more rugged and more reliable device.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Petruzzello John, Letavic Theodore James, Simpson Mark
  • Publication number: 20020190273
    Abstract: The invention concerns a bipolar transistor with upper heterojunction comprising in particular stacked on a substrate: an emitter layer (EM); a base layer (BA), a collector layer (CO). In said transistor, the base-emitter junction surface is of smaller dimension than the base-collector junction surface and the material of the base layer has a lower electric conducting sensitivity to ion implantation than the electric conducting sensitivity of the material of the emitter layer to the same ion implant.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 19, 2002
    Inventors: Sylvain Delage, Simone Cassette, Didier Floriot, Arnaud Girardot
  • Publication number: 20020192916
    Abstract: A method of fabricating a small bipolar transistor emitter in an integrated circuit structure is provided. The integrated circuit structure includes a trench isolation structure formed in a semiconductor substrate to define a substrate active device region. A collector region having a first conductivity type is formed in the substrate active device region beneath a surface thereof. A base region having a second conductivity type opposite the first conductivity type is formed in the substrate active device region above the collector region and extending to the surface of the substrate active device region such that the surface of the active device region forms a surface of the base region. A layer of dielectric material is formed to extend at least partially over the surface-of the base region to define an edge of the layer of dielectric material that is formed over the surface of the base region.
    Type: Application
    Filed: April 11, 2002
    Publication date: December 19, 2002
    Inventor: Abdalla Aly Naem
  • Patent number: 6496352
    Abstract: A post-in-crown capacitor is disclosed. The post-in-crown capacitor (60) includes a crown (44) coupled to a conductive via (20). A post (48) is disposed within the crown (44) and a capacitor insulation layer (50) is formed outwardly from the crown (44) and the post (48). A capacitor plate layer (52) is then formed outwardly from the capacitor insulation layer (50).
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: December 17, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Darius L. Crenshaw, William F. Richardson, Rick L. Wise
  • Patent number: 6492237
    Abstract: A method of forming an NPN semiconductor device includes the steps of forming a collector region within a substrate, forming a base region over the collector region, and forming an oxide-nitride-oxide stack over the base region. Once these three structures are formed, an opening is created through the oxide-nitride-oxide stack to expose the top surface of the base region. Then, a doped polysilicon material is used to fill the opening and make electrical contact to the base region. The use of the oxide-nitride-oxide stack with appropriate etching of the opening eliminates the exposure of the base region to reactive ion etch environment typical of prior art methods for forming NPN semiconductor devices. As an option, after the opening of the oxide-nitride-oxide stack is formed, a local oxidation of silicon (LOCOS) and etched can be preformed to create oxide spacers to line the opening wall above the base region.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: December 10, 2002
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Sang Hoon Park, Robert F. Scheer
  • Patent number: 6492238
    Abstract: A process for forming a bipolar transistor with a raised extrinsic base, an emitter, and a collector integrated with a CMOS circuit with a gate. An intermediate semiconductor structure is provided having CMOS and bipolar areas. An intrinsic base layer is provided in the bipolar area. A base oxide is formed across, and a sacrificial emitter stack silicon layer is deposited on, both the CMOS and bipolar areas. A photoresist is applied to protect the bipolar area and the structure is etched to remove the sacrificial layer from the CMOS area only such that the top surface of the sacrificial layer on the bipolar area is substantially flush with the top surface of the CMOS area. Finally, a polish stop layer is deposited having a substantially flat top surface across both the CMOS and bipolar areas suitable for subsequent chemical-mechanical polishing (CMP) to form the raised extrinsic base.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: December 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: David C. Ahlgren, Gregory G. Freeman, Feng-Yi Huang, Adam D. Ticknor
  • Publication number: 20020179976
    Abstract: It is an object to obtain a semiconductor device capable of minimizing an increase in a gate capacity without adversely influencing an operation characteristic and a method of manufacturing the semiconductor device. A first trench (7) and a second trench (11) are formed to reach an upper layer portion of an N− layer (3) through a P base layer (5) and an N layer (4), respectively. In this case, a predetermined number of second trenches (11) are formed between the first trenches (7) and (7). The first trench (7) is provided adjacently to an N+ emitter region (6) and has a gate electrode (9) formed therein. The second trench (11) has a polysilicon region (15) formed therein. The second trench (11) is different from the first trench (7) in that the N+ emitter region (6) is not formed in a vicinal region and the gate electrode (9) is not formed therein.
    Type: Application
    Filed: November 8, 2001
    Publication date: December 5, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Hideki Takahashi
  • Publication number: 20020177285
    Abstract: A semiconductor power component is described having a rear-side anode contact, a rear-side emitter region of a first conductivity type, which is connected to the rear-side anode contact, a drift region, which is connected to the rear-side emitter region and partially extends to the front-side surface, a front-side MOS control structure, and a front-side cathode contact, which is connected to the source region and the body region. The drift region includes a first drift region of the second conductivity type, a second drift region of the second conductivity type, and a third drift region of the first conductivity type. The first drift region is a buried region. The second drift region connects the front-side surface to the first drift region. The third drift region borders on a body region and connects the front side surface to the first drift region.
    Type: Application
    Filed: April 10, 2002
    Publication date: November 28, 2002
    Inventors: Wolfgang Feiler, Robert Plikat
  • Publication number: 20020175391
    Abstract: A bi-directional transient voltage suppression device with symmetric current-voltage characteristics is provided. The device comprises: (a) a lower semiconductor layer of first conductivity type; (b) an upper semiconductor layer of first conductivity type; and (b) a middle semiconductor layer adjacent to and disposed between the lower and upper layers, the middle layer having a second conductivity type opposite the first conductivity type, such that upper and lower p-n junctions are formed. In this device, the middle layer has a net doping concentration that is highest at a midpoint between the junctions. Furthermore, the doping profile along a line normal to the lower, middle and upper layers is such that, within the middle layer and within at least a portion of the lower and upper layers, the doping profile on one side of a centerplane of the middle layer mirrors the doping profile on an opposite side of the centerplane.
    Type: Application
    Filed: May 22, 2001
    Publication date: November 28, 2002
    Inventors: Willem G. Einthoven, Lawrence LaTerza, Gary Horsman, Jack Eng, Danny Garbis
  • Publication number: 20020168829
    Abstract: The bipolar transistor is produced such that a connection region of its base is provided with a silicide layer, so that a base resistance of the bipolar transistor is small. No silicide layer is produced between an emitter and an emitter contact and between a connection region of a collector and a collector contact. The base is produced by in situ-doped epitaxy in a region in which a first insulating layer is removed by isotropic etching such that the connection region of the base which is arranged on the first insulating layer is undercut. In order to avoid defects of a substrate in which the bipolar transistor is partly produced, isotropic etching is used for the patterning of auxiliary layers, whereby etching is selective with respect to auxiliary layers lying above, which are patterned by anisotropic etching.
    Type: Application
    Filed: June 3, 2002
    Publication date: November 14, 2002
    Inventors: Josef Bock, Wolfgang Klein, Herbert Schafer, Martin Franosch, Thomas Meister, Reinhard Stengl
  • Publication number: 20020163014
    Abstract: A semiconductor material which has a high carbon dopant concentration includes gallium, indium, arsenic and nitrogen. The disclosed semiconductor materials have a low sheet resistivity because of the high carbon dopant concentrations obtained. The material can be the base layer of gallium arsenide-based heterojunction bipolar transistors and can be lattice-matched to gallium arsenide emitter and/or collector layers by controlling concentrations of indium and nitrogen in the base layer. The base layer can have a graded band gap that is formed by changing the flow rates during deposition of III and V additive elements employed to reduce band gap relative to different III-V elements that represent the bulk of the layer. The flow rates of the III and V additive elements maintain an essentially constant doping-mobility product value during deposition and can be regulated to obtain pre-selected base-emitter voltages at junctions within a resulting transistor.
    Type: Application
    Filed: April 10, 2002
    Publication date: November 7, 2002
    Applicant: Kopin Corporation
    Inventors: Roger E. Welser, Paul M. Deluca, Charles R. Lutz, Kevin S. Stevens
  • Patent number: 6475849
    Abstract: According to a disclosed method, a dopant spike region is formed in a link base region, which connects an intrinsic base region to an extrinsic base region. For example, the intrinsic base region can be the region in which the base-emitter junction is formed in a silicon-germanium heterojunction bipolar transistor, and the extrinsic base region can be the external portion of the base of the same transistor to which external electrical contact is made. The dopant spike can be an increased concentration of boron dopant. A diffusion blocking segment is then fabricated on top of the link base region in order to prevent diffusion of the dopant spike out of the link base region. For example, the diffusion blocking segment can be formed from silicon-oxide. Thus, link base resistance is reduced, for example, by the higher concentration of boron dopant in the dopant spike region causing the link base resistance to be lower than the intrinsic base resistance.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 5, 2002
    Assignee: Newport Fab, LLC
    Inventor: Marco Racanelli
  • Publication number: 20020158309
    Abstract: An integrated circuit that includes a high breakdown voltage bipolar transistor. The bipolar transistor includes an emitter 36, a base 32, and a collector structure. The emitter 36 is adjacent to and overlies the base 32 and the base 32 is adjacent to and overlies a core portion 48 of the collector structure. The collector structure includes, in addition to the core portion 48, a collector contact region 31 and a lateral collector region 50 between the core portion 48 and the collector contact region 31. The lateral collector region 50 is thinner than said collector contact region at some point along its length.
    Type: Application
    Filed: January 7, 2002
    Publication date: October 31, 2002
    Inventors: Leland Swanson, Gregory E. Howard
  • Publication number: 20020158308
    Abstract: A semiconductor component and a method for fabricating it includes a substrate and an epitaxial layer situated thereon and integrating at least a first and a second bipolar component in the layer. The first and second bipolar components have a buried layer and different collector widths. The buried layer of the second component has a larger layer thickness than that of the first component; exactly one epitaxial layer is provided. The different collector widths produced as a result thereof are influenced by the outdiffusion of the dopant of the buried layers by other substances.
    Type: Application
    Filed: May 13, 2002
    Publication date: October 31, 2002
    Inventors: Jakob Huber, Wolfgang Klein
  • Patent number: 6472262
    Abstract: A self-aligned double-polysilicon type bi-polar transistor with a heterojunction base comprises a semiconducting heterojunction region lying over an active region of a semiconductor substrate and over an isolating region delimiting the active region, and incorporating the intrinsic base region of the transistor. An emitter region situated above the active region and coming into contact with the upper surface of the semiconducting heterojunction region. A polysilicon layer forming the extrinsic base region of the transistor, situated on each side of the emitter region and separated from the semiconducting heterojunction region by a separation layer comprising an electrically conducting connection part situated just outside the emitter region. This connection part ensures an electrical contact between the extrinsic base and the intrinsic base.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: October 29, 2002
    Assignee: STMicroelectronics S.A.
    Inventors: Alain Chantre, Didier Dutartre, Hélène Baudry
  • Patent number: 6472286
    Abstract: The invention describes the fabrication and structure of an ESD protection device for integrated circuit semiconductor devices with improved ESD protection and resiliency. A vertical bipolar npn transistor forms the basis of the protection device. To handle the large current requirements of an ESD incident, the bipolar transistor has multiple base and emitter elements formed in an npn bipolar array. To assure turn-on of the multiple elements of the array the emitter fingers are continuously or contiguously connected with an unique emitter design layout. The contiguous emitter design provides an improved electrical emitter connection for the device, minimizing any unbalance that can potentially occur when using separate emitter fingers and improving the ability for the simultaneous turn on of the multiple emitter-base elements.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: October 29, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Ta-Lee Yu
  • Patent number: 6472288
    Abstract: Bipolar transistors of different designs, particularly designs optimized for different high frequency applications are formed on the same substrate by separate base layer formation processes for epitaxial growth including different material concentration profiles of germanium, boron and/or carbon. Epitaxial growth of individual growth layers by low temperature processes is facilitated by avoiding etching of the silicon substrate including respective collector regions through use of an etch stop that can be etched selectively to silicon. Annealing processes can be performed between growth of respective base layers and/or performed collectively after all transistors are substantially completed.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: October 29, 2002
    Assignee: International Business Machines Corporation
    Inventors: Gregory G. Freeman, K. T. Schonenberg, Kenneth J. Stein, Seshadri Subbanna
  • Publication number: 20020149084
    Abstract: The number of design processes for fabricating semiconductor devices can be reduced by parallel connection of a plurality of unit bipolar transistors Qu that are completely electrically isolated from each other in a semiconductor layer of an SOI substrate 1 to form a bipolar transistor having a large current capacity.
    Type: Application
    Filed: March 8, 2002
    Publication date: October 17, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Yoichi Tamaki, Takayuki Iwasaki, Kousuke Tsuji, Chiyoshi Kamada
  • Publication number: 20020146880
    Abstract: The present invention creates a useful BJT by increasing the gain associated with the parasitic BJT on an SOI or bulk type MOSFET. This is done by masking those manufacturing steps that minimize the BJT's beta value, by intentionally increasing the beta value of the BJT, and by driving the base of the BJT with the circuit. Once the gain is increased sufficiently, the BJT may be used productively in the circuit. Because the physical structure of the BJT is already part of the silicon water, its productive use does not require additional space.
    Type: Application
    Filed: February 22, 2002
    Publication date: October 10, 2002
    Inventor: Jonathan P. Lotz
  • Patent number: 6461925
    Abstract: A method of manufacturing a heterojunction BiCMOS IC. (100) includes forming a gate electrode (121, 131), forming a protective layer (901, 902) over the gate electrode, forming a semiconductor layer (1101) over the protective layer, depositing an electrically insulative layer (1102, 1103) over the semiconductor layer, using a mask layer (1104) to define a doped region (225) in the semiconductor layer and to define a hole (1201) in the electrically insulative layer, forming an electrically conductive layer (1301) over the electrically insulative layer, using another mask layer (1302) to define an emitter region (240) in the electrically conductive layer and to define an intrinsic base region (231) and a portion of an extrinsic base region (232) in the electrically conductive layer, and using yet another mask layer (1502) to define another portion of the extrinsic base region in the electrically conductive layer.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: October 8, 2002
    Assignee: Motorola, Inc.
    Inventors: Jay P. John, James A. Kirchgessner, Ik-Sung Lim, Michael H. Kaneshiro, Vida Ilderem Burger, Phillip W. Dahl, David L. Stolfa, Richard W. Mauntel, John W. Steele
  • Patent number: 6461928
    Abstract: A method for fabricating an integrated circuit having analog and digital core devices. Using a first masking layer (118), a p-type type dopant is implanted to form drain extension regions (126, 122, 124) in the pMOS digital core region (102), pMOS I/O region (104), and the pMOS analog core region (106). Using a second masking layer (132), a n-type dopant is implanted into at least a drain side of the nMOS analog core region (110) and the nMOS I/O region (108) to for drain extension regions (142, 144) and into the pMOS digital core region (102). This forms a pocket region (140) in the pMOS digital core region (102) but not the pMOS analog core region (106) or the pMOS I/O region (104).
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: October 8, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Mark S. Rodder
  • Publication number: 20020142557
    Abstract: The invention provides a bipolar transistor with improved performance. An insulation film comprising a silicon oxide film is formed by means of oxidation treatment on the side surface of an emitter aperture, and then an epitaxial layer comprised of SiGe is grown selectively in an aperture formed by removing a silicon nitride film so as to form under cut.
    Type: Application
    Filed: March 4, 2002
    Publication date: October 3, 2002
    Inventors: Takashi Hashimoto, Kouji Mikami, Tsutomu Udo, Masao Kondo, Eiji Oue
  • Patent number: 6455364
    Abstract: In the method for fabricating a semiconductor device of the present invention, a collector layer of a first conductivity type is formed in a region of a semiconductor substrate sandwiched by device isolation. A collector opening is formed through a first insulating layer deposited on the semiconductor substrate so that the range of the collector opening covers the collector layer and part of the device isolation. A semiconductor layer of a second conductivity type as an external base is formed on a portion of the semiconductor substrate located inside the collector opening, while junction leak prevention layers of the same conductivity type as the external base are formed in the semiconductor substrate. Thus, the active region is narrower than the collector opening reducing the transistor area, while minimizing junction leak.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: September 24, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Asai, Teruhito Oonishi, Takeshi Takagi, Tohru Saitoh, Yoshihiro Hara, Koichiro Yuki, Katsuya Nozawa, Yoshihiko Kanzawa, Koji Katayama, Yo Ichikawa
  • Patent number: 6455390
    Abstract: A method of manufacturing a hetero-junction bipolar transistor including a carbon-doped base layer includes the steps of (a) growing a base layer on an underlying layer through chemical vapor deposition, (b) forming at least one semiconductor layer over the base layer, and (c) then subjecting the base layer to thermal annealing at a temperature of 520° C. to 650° C.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: September 24, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Koichiro Fujita, Naoki Takahashi
  • Publication number: 20020132434
    Abstract: The present invention provides a unique device structure and method that provides increased transistor performance in integrated bipolar circuit devices. The preferred embodiment of the present invention provides improved high speed performance with a stepped collector dopant profile that reduces emitter-collector transit time and parasitic resistance with minimal increase in parasitic capacitances. The preferred stepped collector dopant profile includes a shallow implant and a deeper implant. The shallow implant reduces the base-collector space-charge region width, reduce resistance, and tailors the collector-base breakdown characteristics. The deeper implant links the buried collector to the subcollector and provides a low resistance path to the subcollector. The stepped collector dopant profile has minimal impact on the collector-base capacitance outside the intrinsic region of the device since the higher dopant is compensated by, or buried in, the extrinsic base dopants outside the intrinsic region.
    Type: Application
    Filed: March 19, 2001
    Publication date: September 19, 2002
    Applicant: International Business Machines Corporation
    Inventors: Gregory G. Freeman, Basanth Jagannathan, Shwu-jen Jeng, Jeffrey B. Johnson