Metal, Metal Oxide Or Metal Hydroxide Patents (Class 502/300)
  • Patent number: 8785346
    Abstract: A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 22, 2014
    Assignees: Lawrence Livermore National Security, LLC, Universitaet Bremen
    Inventors: Juergen Biener, Alex V. Hamza, Marcus Baeumer, Christian Schulz, Birte Jürgens, Monika M. Biener
  • Patent number: 8778831
    Abstract: There is described a base metal modified Cerium containing oxide materials and their application as catalysts for the oxidation of CO and HC emissions from a compression ignition/diesel engine. These materials provide effective promotion of CO and HC oxidation function in the presence or absence of PGM and are based upon OIC/OS materials having a stable cubic crystal structure, and most especially to promoted OIC/OS materials wherein the promotion is achieved by the post-synthetic introduction of non-precious metals via a basic (alkaline) exchange process.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 15, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Barry W. L. Southward, Curt Ellis
  • Publication number: 20140193306
    Abstract: An exhaust gas oxidation catalyst characterised as an exhaust gas oxidation catalyst comprising a catalyst substrate, wherein a plurality of exhaust gas channels has been formed, and a catalyst layer formed on the surface of the exhaust gas channels in the catalyst substrate; wherein a catalyst layer consisting of a bottom catalyst layer, a top catalyst layer exposed within the exhaust gas channels, and an intermediate catalyst layer located between the bottom catalyst layer and top catalyst layer, is provided so as to cover not less than 25% of the exhaust gas channel surface, and wherein the bottom catalyst layer contains at least an oxygen-occluding agent as catalyst component but does not contain a hydrocarbon adsorbent, the intermediate catalyst layer contains at least catalyst metal, supported on a metal oxide support, and a hydrocarbon adsorbent as catalyst components, and the top catalyst layer contains at least an oxygen-occluding agent and a hydrocarbon adsorbent as catalyst components.
    Type: Application
    Filed: May 25, 2012
    Publication date: July 10, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Takeshi Kadono, Satoshi Sumiya, Lifeng Wang
  • Publication number: 20140193730
    Abstract: Electrooxidative materials and various method for preparing electrooxidative materials formed from an alloy of oxophilic and electrooxidative metals. The alloy may be formed using methods such as spray pyrolysis or mechanosynthesis and may or may not include a supporting material which may or may not be sacrificial as well as the materials.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: STC.UNM
    Inventors: Ulises A. Martinez, Plamen B. Atanassov, Alexey Serov, Monica Padilla
  • Publication number: 20140194541
    Abstract: The present invention relates to a catalyst for C2 oxygenate synthesis in which a hydrogenated active metal is supported on a porous carrier to synthesize a C2 oxygenate from a mixed gas containing hydrogen and carbon monoxide, wherein the porous carrier has an average pore diameter of 0.1 to 20 nm.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 10, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, SEKISUI CHEMICAL CO., LTD.
    Inventors: Tomoaki Nishino, Toshihito Miyama, Kazuhisa Murata, Yanyong Liu
  • Publication number: 20140193745
    Abstract: The invention relates to a method for preparing a substrate surface structured with thermally stable metal alloy nanoparticles, which method comprises—providing a micellar solution of amphiphilic molecules such as organic diblock or multiblock copolymers in a suitable solvent; —loading the micelles of said micellar solution with metal ions of a first metal salt; —loading the micelles of said micellar solution with metal ions of at least one second metal salt; —depositing the metal ion-loaded micellar solution onto a substrate surface to form a (polymer) film comprising an ordered array of (polymer) domains; co-reducing the metal ions contained in the deposited domains of the (polymer) film by means of a plasma treatment to form an ordered array of nanoparticles consisting of an alloy of the metals used for loading the micelles on the substrate surface.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Joachim P. Spatz, Sebastian Lechner
  • Publication number: 20140187416
    Abstract: The current document is directed to processes for producing improved porous catalysts for the dehydrogenation of organic compounds. In one implementation, the process comprises providing a powder of metal particles, sieving the powder using vibrating-screen sieves, aligning metal particles collected from sieving under an external magnetic field, partially sintering the aligned metal particles to form a solid matrix by heating the aligned metal particles in a furnace or microwave oven, or heating the aligned metal particles using a laser sintering process with a controlled amount of external heat, to a temperature below the melting point of the metal powder, and oxidizing the matrix to produce the porous catalyst. The catalysts produced by the disclosed methods have a porous body with increased surface area, can assume various microstructures, and consist essentially of metal oxides.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Applicant: Asemblon Inc.
    Inventors: Esmaeel Naeemi, David O'Connor
  • Patent number: 8765628
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: July 1, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
  • Publication number: 20140178262
    Abstract: Hollow porous metal oxide microspheres are provided. The microspheres may be used as a support for a catalyst, particularly an exhaust treatment catalyst for an internal combustion engine. Also provided are methods of making the microspheres, methods of using the microspheres as catalyst supports, and methods of exhaust treatment using catalyst articles comprising the microspheres.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: BASF Corporation
    Inventors: Pascaline Harrison Tran, Michael P. Galligan, Ye Liu, Xiaolin David Yang, Qingyuan Hu, Doan Lieu
  • Publication number: 20140174906
    Abstract: A system and method employing sunlight energy for the reduction of carbon dioxide into methane and water are disclosed. Methane gas may then be stored for later use as fuel. The system and method may use inorganic capping agents that cap the surface of semiconductor nanocrystals to form photocatalytic capped colloidal nanocrystals, which may be deposited on a substrate and treated to form a photoactive material. The photoactive material may be employed in the system to harvest sunlight and produce energy necessary for carbon dioxide reduction. The system may also include elements necessary to collect and transfer methane, for subsequent transformation into electrical energy.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: SUNPOWER TECHNOLOGIES LLC
    Inventor: DANIEL LANDRY
  • Publication number: 20140171290
    Abstract: The present invention is directed to catalyst particles comprising a layered core-shell-shell structure and to a method of their manufacture. The catalyst particles have the general formula BM/IL/PM in which BM is a base metal core (selected from Co, Ni or Cu), PM is a precious metal outer shell (selected from Pt, Ir or Pd) and IL is an intermediate layer comprising a base metal/precious metal alloy with a concentration gradient of base metal to the outside PM layer. The particles of the present invention comprise a core-shell-shell structure and a substantially continuous precious metal shell layer. They find use in various catalytic applications, for example in gas-phase catalysis, in electrocatalysts for fuel cells, in catalytic converters for automobiles and in electronic or medical applications.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Marco LOPEZ, Dan V. GOIA, Igor V. SEVONKAEV
  • Patent number: 8748335
    Abstract: A photodegradation catalyst or a photodegradation catalyst precursor comprises a plurality of domains of an oxide of a first metal distributed in a substrate of a halide or oxyhalide of a second metal, wherein the mole percentage of the halide or oxyhalide of the second metal is above 50%. Additionally, a method of preparing a photodegradation catalyst or a photodegradation catalyst precursor, a photodegradation catalyst or a photodegradation catalyst precursor obtained from the method and a method of treating organic pollutants or substances in air or water by using the photodegradation catalyst or the photodegradation catalyst precursor are illustrated.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 10, 2014
    Assignee: Microvast, Inc.
    Inventors: Xiao Ping Zhou, Fei Chen, Jeff Qiang Xu
  • Publication number: 20140155250
    Abstract: Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a noble metal alloy catalyst 3 having an alloy of a noble metal and a transition metal, and a form-defining material layer 4 which allows the noble metal alloy catalyst 3 to be dispersed and arranged. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering a noble metal alloy on a base plate 2, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering the noble metal alloy on the form-defining material.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ohta, Ryogo Kato, Toshiyuki Shima
  • Publication number: 20140155253
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 5, 2014
    Inventor: Alexander Kastalsky
  • Publication number: 20140155251
    Abstract: Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a catalyst 3, a form-defining material layer 4 which allows the catalyst 3 to be dispersed and arranged, and a covering layer 5 which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering on a base plate 2 a metal which forms a catalyst 3 and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering on the form-defining material a metal which forms a catalyst 3 and oxidizing the surface of the metal.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ohta, Ryogo Kato, Toshiyuki Shima
  • Patent number: 8741504
    Abstract: A solid catalyst having a close-packed structure has basic structural units present in the surface of the solid catalyst, the basic structural units including (i) a triangular lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the triangular lattice so that each atom of one of the elements adjoins atoms of the other elements or (ii) a rhombic lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the rhombic lattice in an atomic ratio of 1:2:1 so that each ruthenium atom directly adjoins a platinum atom and an atom of the additional element; and a fuel cell includes either of the solid catalyst as an anode-side electrode catalyst.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yoshida, Fumihiko Aiga, Satoshi Itoh, Yoshiko Hiraoka, Reiko Yoshimura, Tsukasa Tada
  • Publication number: 20140148331
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20140147377
    Abstract: A nanocrystalline photocatalyst for water splitting and a method for fabricating a nanocrystalline photocatalyst for water splitting. The photocatalyst comprises a structure having a specific surface area and a volume fraction of atoms located both on the surface and at the grain boundaries adapted for enhancement of a photocatalytic reaction.
    Type: Application
    Filed: July 16, 2012
    Publication date: May 29, 2014
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Ghim Wei Ho, Kian Jon Chua
  • Publication number: 20140141966
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Application
    Filed: December 12, 2013
    Publication date: May 22, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20140130760
    Abstract: The invention provides an exhaust gas cleaning oxidation catalyst and in particular to an oxidation catalyst for cleaning the exhaust gas discharged from internal combustion engines of compression ignition type (particularly diesel engines). The invention further relates to a catalysed substrate monolith comprising an oxidising catalyst on a substrate monolith for use in treating exhaust gas emitted from a lean-burn internal combustion engine. In particular, the invention relates to a catalysed substrate monolith comprising a first washcoat coating and a second washcoat coating, wherein the second washcoat coating is disposed in a layer above the first washcoat coating.
    Type: Application
    Filed: January 20, 2014
    Publication date: May 15, 2014
    Applicants: JOHNSON MATTHEY PUBLIC LIMITED COMPANY, JOHNSON MATTHEY JAPAN G.K.
    Inventors: SATOSHI SUMIYA, LIFENG WANG, HANAKO OYAMADA, PHILIP GERALD BLAKEMAN, MICHAEL GAVIN BROWN, SOUGATO CHATTERJEE, ANDREW FRANCIS CHIFFEY, JANE GAST, PAUL RICHARD PHILLIPS, RAJ RAO RAJARAM, ANDREW PETER WALKER
  • Patent number: 8722000
    Abstract: Catalytic articles, systems and methods for treating exhaust gas streams are described. A catalytic article comprising a wall flow filter having gas permeable walls, a hydrolysis catalyst, an optional soot oxidation catalyst, a selective catalytic reduction catalyst permeating the walls, an ammonia oxidation catalyst and an oxidation catalyst to oxidize CO and hydrocarbons is described. Methods of treating exhaust gas streams comprising soot, an ammonia precursor such as urea, ammonia, NOx, CO and hydrocarbons are also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 13, 2014
    Assignee: BASF Corporation
    Inventor: R. Samuel Boorse
  • Patent number: 8722273
    Abstract: Disclosed herein are embodiments of ultralow loading catalyst. Also disclosed are membrane electrode assemblies and fuel cells utilizing the ultralow loading catalyst. One embodiment of an ultralow loading catalyst includes support particles comprised of a non-precious metal catalyst material and precious metal particles supported on the support particles.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 13, 2014
    Assignee: Nissan North America, Inc.
    Inventors: Taehee Han, Ellazar V. Niangar, Nilesh Dale
  • Publication number: 20140128245
    Abstract: A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Inventors: Qinghua YIN, Xiwang QI, Eliseo RUIZ
  • Patent number: 8716171
    Abstract: The present invention relates to preparation of porous gallium (III) oxide [Ga2O3] photocatalyst for production of hydrocarbons a porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method, and a process of producing hydrocarbons using the porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: May 6, 2014
    Assignee: Korea Advanced Instititute of Science and Technology
    Inventors: Jeung-Ku Kang, Hang-Ah Park, Jung-Hoon Choi, Kyung-Min Choi, Dong-Ki Lee
  • Patent number: 8716165
    Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventor: William Peter Addiego
  • Patent number: 8716174
    Abstract: There is provided a production method in which highly transparent fine metal hydroxide particles having a small particle size and excellent in monodispersibility can be easily produced without requiring grinding. The method for producing fine metal hydroxide particles at least includes: a reaction step of mixing an aqueous solution of a metal salt, for example, a magnesium salt, with an aqueous solution of a hydroxide salt to precipitate metal hydroxide particles in an uncrystallized state; a purification step of removing by-product salt from a mixed solution containing the precipitated metal hydroxide particles in an uncrystallized state; a surface treatment step of treating the metal hydroxide particles in an uncrystallized state obtained through the purification step with a surface-treatment agent on the surface thereof; and a heating step of crystallizing the surface-treated metal hydroxide particles in an uncrystallized state by hydrothermal treatment.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: May 6, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Yoshiyuki Miyoshi
  • Publication number: 20140121097
    Abstract: A catalyst structure comprising dispersed metal catalyst on support, wherein the support but not the metal catalyst can be observed using x-ray diffraction, and wherein the metal catalyst can be chemically detected.
    Type: Application
    Filed: September 24, 2013
    Publication date: May 1, 2014
    Applicant: The Materials Foundry, LLC
    Inventors: Jonathan Phillips, Brian James Scanlan
  • Patent number: 8709967
    Abstract: A wire catalyst for hydrogenation reaction and/or dehydrogenation reaction comprises a metallic core and an oxide surface layer covering at least part of the surface thereof. The metallic core is electrically conductive so that the metallic core itself can generate heat by directly passing an electric current therethrough or electromagnetic induction. The oxide surface layer is made of an oxide of a metallic element constituting the metallic core. The oxide surface layer is provided with a porous structure having pores opening at the surface of the oxide surface layer. The catalytic material is supported in the pores of the oxide surface layer. When a shaped wire catalyst is manufactured, the shaping into a specific shape is made before the oxide surface layer having the porous structure is formed and the catalytic material is supported thereon.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 29, 2014
    Assignees: Nippon Seisen Co., Ltd.
    Inventors: Masaru Ichikawa, Yoshinori Tanimoto, Tsuneo Akiura
  • Publication number: 20140113218
    Abstract: Catalysts comprising porous metal nanoparticles, which are individually encapsulated with a reaction-enhancing material, and their use in fuel cell catalysis are provided.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jonah Daedalus Erlebacher, Joshua D. Snyder
  • Patent number: 8701393
    Abstract: An internal combustion engine in which an SOx trap catalyst (13) for trapping SOx contained in the exhaust gas contains an oxygen adsorbing and releasing material (54) which can adsorb SO2 contained in the exhaust gas and an SOx storage material (55) which can store SOx in the form of sulfates. The SO2 which is contained in the exhaust gas is chemically adsorbed at the oxygen adsorbing and releasing material (54) without being oxidized. If the temperature of the SOx trap catalyst (13) becomes higher than the start temperature of adsorbed SO2 movement, the SO2 which is chemically adsorbed at the oxygen adsorbing and releasing material (54) is oxidized and stored in the form of sulfates in the SOx storage material (55).
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takamitsu Asanuma, Yoshihisa Tsukamoto, Kazuhiro Umemoto, Junichi Matsuo, Hiromasa Nishioka
  • Patent number: 8703642
    Abstract: A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 22, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nahid Mohajeri
  • Patent number: 8697597
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 15, 2014
    Assignee: University of Miami
    Inventor: Xiangyang Zhou
  • Patent number: 8691716
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8691721
    Abstract: A rhodium-loading solution characterized by comprising rhodium atoms and an organic base in a molar ratio of 1:0.5-35.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 8, 2014
    Assignee: Cataler Corporation
    Inventors: Akiya Chiba, Motoya Abe, Isao Naito
  • Publication number: 20140094635
    Abstract: Embodiments include metal catalyst compositions and methods of forming metal catalyst compositions.
    Type: Application
    Filed: May 24, 2012
    Publication date: April 3, 2014
    Inventors: Junling Lu, Peter Stair, Baosong Fu, Harold H. Kung, Mayfair C Kung
  • Patent number: 8683787
    Abstract: An exhaust gas purifying catalyst (1) of the present invention includes anchor/promoter simultaneous enclosure particles (5) including catalyst units (13) which contain: noble metal particles (8); and anchor particles (9) as an anchor material of the noble metal particles (8) supporting the noble metal particles (8); promoter units (14) which are provided not in contact with the noble metal particles (8) and contain first promoter particles (11) having an oxygen storage and release capacity; and an enclosure material (12) which encloses both the catalyst units (13) and the promoter units (14), and separates the noble metal particles (8) and the anchor particles (9) in the catalyst units (13) from the first promoter particles (11) in the promoter units (14). The exhaust gas purifying catalyst (1) further includes second promoter particles (6) which have the oxygen storage and release capacity, and are not enclosed in the anchor/promoter simultaneous enclosure particles (5) by the enclosure material (12).
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 1, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takamasa Nakagawa, Masanori Nakamura, Misaki Fujimoto, Naoki Kachi
  • Publication number: 20140088206
    Abstract: The invention relates to improvements in the design of Fischer-Tropsch catalysts comprising a support and cobalt on the support. A first aspect is the modification of the silica support with at least 11 wt % titania to prevent the formation of cobalt silicates, thereby limiting the deactivation resulting from the silicate formation. A second aspect is the provision of C03O4 particles highly dispersed on the catalyst support with an average particle diameter of the cobalt oxide particle of less than 12 nm in order to improve catalytic activity and selectivity.
    Type: Application
    Filed: February 7, 2012
    Publication date: March 27, 2014
    Applicant: OXFORD CATALYSTS LIMITED
    Inventors: Frank Daly, Laura Richard, Sreekala Rugmini
  • Publication number: 20140087937
    Abstract: A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: National Yunlin University of Science & Technology
    Inventors: Bo-Tau Liu, Cheng-Hsien Hsieh, De-Hua Wang
  • Publication number: 20140080698
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Application
    Filed: April 29, 2013
    Publication date: March 20, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Publication number: 20140066299
    Abstract: Described is a product comprising an amount of particles having one or more multi-layered dots on their surface, each multi-layered dot consisting of two or more layers and having an innermost layer contacting the surface of the particle, and an outermost layer, wherein the innermost layer of the multi-layered dots consists of a first metal and the outermost layer of the multi-layered dots consists of a second metal, different from the first metal.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Wolfgang Gerlinger, Stephan Deuerlein
  • Patent number: 8663587
    Abstract: Catalysts, catalytic articles, and catalyst systems and methods for treating exhaust gas streams utilizing the catalytic articles are described. In one or more embodiments, a catalytic article includes a first SCR catalyst permeating the porous walls of a substrate and a second SCR catalyst coating the walls of the substrate. Methods for treating an exhaust gas stream are also provided. Methods of making and using such catalysts and catalytic articles are also described.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: March 4, 2014
    Assignee: BASF Corporation
    Inventor: R. Samuel Boorse
  • Publication number: 20140057779
    Abstract: The present subject matter provides a method of preparing a multicomponent metal-hybrid nanocomposite using co-gasification, in which a multicomponent metal-hybrid nanocomposite can be prepared by a one-step process without using a complicated process including the steps of supporting-drying-calcining-annealing and the like at the time of preparing a conventional alloy catalyst, and provides a multicomponent metal-hybrid nanocomposite prepared by the method. The method is advantageous in that a multicomponent metal-hybrid nanocomposite can be synthesized by a simple process of simultaneously gasifying two kinds of metal precursors, and in that an additional post-treatment process is not required.
    Type: Application
    Filed: July 17, 2013
    Publication date: February 27, 2014
    Inventors: Hee-Yeon Kim, Seok-yong Hong, Kwang-Sup Song, Hong-Soo Kim
  • Patent number: 8658331
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Patent number: 8652993
    Abstract: A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 18, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nahid Mohajeri
  • Publication number: 20140044627
    Abstract: The present invention relates to a process for preparing a catalyst, at least comprising the steps of adding a protecting agent to an aqueous solution of a metal precursor to give a mixture (M1), adding a reducing agent to mixture (M1) to give a mixture (M2), adding a support material to mixture (M2) to give a mixture (M3), adjusting the pH of mixture (M3), and separating the solid and liquid phase of mixture (M3). Furthermore, the present invention relates to the catalyst as such and its use as diesel oxidation catalyst.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: BASF Corporation
    Inventors: Attilio Siani, Torsten W. Müller-Stach, Torsten Neubauer, Xinyi Wei
  • Patent number: 8647431
    Abstract: A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 11, 2014
    Assignee: MEGA-TECH Holding B.V.
    Inventor: Robin De La Roij
  • Publication number: 20140038814
    Abstract: A method of making a supported catalytic species comprising an alloy of at least two metals, comprises the steps of: (i) combining a particulate support material, a solution of a first metal compound, a solution of a second metal compound, and a solution of an alkaline precipitating agent to form a slurry mixture; (ii) agitating the resultant mixture; and (iii) contacting the solids with a reducing agent, wherein the first metal in the first metal compound and the second metal in the second metal compound is each independently selected from the group consisting of gold, palladium, platinum, rhodium, iridium, silver, osmium and ruthenium; and wherein the first metal is not the same as the second metal.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 6, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Bergeal David, Andrew Francis Chiffey, Peter Johnston, Francois Moreau, Paul Richard Phillips
  • Publication number: 20140038816
    Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Board of Trustees of the University of Alabama
    Inventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått