Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace

- ASM IP Holding B.V.

An assembly of a liner and a flange for a vertical furnace for processing substrates is provided. The liner being configured to extend in the interior of a process tube of the vertical furnace, and the flange is configured to at least partially close a liner opening. The liner comprising a substantially cylindrical wall delimited by the liner opening at a lower end and closed at a higher end and being substantially closed for gases above the liner opening and defining an inner space. The flange comprising: an inlet opening configured to insert and remove a boat configured to carry substrates in the inner space of the liner; a gas inlet to provide a gas to the inner space. The assembly is constructed and arranged with a gas exhaust opening to remove gas from the inner space and a space between the liner and the low pressure tube.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD

The present invention relates to a low pressure vertical furnace and more in particular to an assembly of a liner and a flange for a low pressure vertical furnace and the liner used therein. The liner is configured to extend in the interior of a low pressure process tube of the vertical furnace and the flange configured to partially close an interior of the tube.

BACKGROUND

A vertical processing furnace for processing substrates, e.g., semiconductor wafers may include a heating means, placed around a bell jar-shaped process tube and a substantially cylindrical liner that is coaxially disposed within the process tube. The upper end of the process tube may be closed, for example by a dome-shaped structure, whereas the lower end surface of the process tube may be open.

The liner may be open at its upper end and lower end. The lower end may be partially closed by a flange. An inner space bounded by the liner and the flange forms a process chamber in which wafers to be treated may be processed. Between the liner and the process tube is a circumferential space. The flange may be provided with an inlet opening for inserting a wafer boat carrying wafers into the inner space. The wafer boat may be placed on a door that is vertically moveably arranged and that is configured to close off the inlet opening in the flange.

The flange may further include at least one gas inlet that is in fluidum connection with the inner space bounded by the liner. Additionally, a gas exhaust may be provided that is in fluidum connection with the circumferential space between the liner and the process tube. This gas exhaust may be connected to a vacuum pump for pumping off gas from the circumferential space. This configuration may lead to a gas flow from the gas inlet at the lower end of the liner through the inner space of the liner upwards through the open end of the liner into the circumferential space and to the gas exhaust. The gas in the flow may be a reaction (process) gas for a deposition reaction on the wafers. This reaction gas may also deposit on other surfaces than the wafers within the vertical furnace.

A problem of vertical processing furnaces for processing substrates may be contamination in the inner space of the process tube.

SUMMARY

An improved assembly of a liner and a flange that may cause less contamination may therefore be required.

Accordingly, there is provided an assembly of a liner and a flange according to a first embodiment, the liner being configured to extend in the interior of a low pressure process tube of a vertical furnace. The liner of the assembly may comprise a substantial cylindrical wall delimited by the liner opening at the lower end and a top closure at the higher end. The liner may be substantially closed above the liner opening for gasses and define an inner space. The flange may comprise an inlet opening configured to insert and remove a boat that is configured to carry substrates in the inner space of the liner. The flange may be configured to at least partially close an opening of the tube. The flange may have a gas inlet duct to provide a reaction gas to the inner space. The assembly may be constructed and arranged with a gas exhaust opening to remove gas from the inner space and a space between the liner and the low pressure process tube.

The contamination may be circumvented by closing the liner above the liner opening for reaction gases and removing gas from the inner space and the space between the liner and the process tube by the gas exhaust duct at the flange so that the reaction gases don't reach the space between the liner and the tube. The inside of the process tube and the outside of the liner may therefore be kept clean since substantially no reaction gasses are flowing there.

According to an embodiment there is provided a vertical furnace, comprising:

a low pressure process tube defining an interior;

a heater configured to heat the interior of the tube;

an assembly according to the first embodiment, wherein the flange is partially closing an open end of the process tube leaving a central inlet opening open and wherein the liner extends in the interior of the process tube;

a vertically movably arranged door configured to close off the central inlet opening in the flange and configured to support a wafer boat that is configured to hold substrates.

The vertical furnace has the advantages which have been described above with reference to the assembly of the liner and the flange. An advantage may be that contamination is prevented by providing the liner as a barrier between the inner space and the tube.

According to a further embodiment there may be provided a liner configured to extend in the interior of a low pressure process tube of a vertical furnace comprising:

a substantially cylindrical wall delimited by a liner opening at a lower end and a top closure at a higher end and being substantially closed for gases above the liner opening and defining an inner space wherein the liner comprises silicon carbide.

The various embodiments of the invention may be applied separate from each other or may be combined. Embodiments of the invention will be further elucidated in the detailed description with reference to some examples shown in the figures.

BRIEF DESCRIPTION OF THE FIGURES

It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of illustrated embodiments of the present disclosure.

FIG. 1 shows a cross-sectional view of a tube of a vertical process furnace including an assembly of a liner and a flange according to an embodiment;

FIG. 2 is a schematic top view of the assembly of FIG. 1;

FIG. 3 is a cross-sectional perspective side view of the assembly over the line III-III from FIG. 2 in which also the process tube of the vertical furnace is shown;

FIG. 4 is a cross-section over the line IV-IV in FIG. 2;

FIG. 5 is a similar cross-section as shown in FIG. 4, but of an embodiment in which the flange is provided with support pads;

FIG. 6 shows a cross-sectional view of a vertical furnace including an assembly of a liner and a flange according to a further embodiment;

FIG. 7 shows a cross-sectional view of a vertical furnace including an assembly of a liner and a flange according to yet a further embodiment;

FIG. 8 depicts a perspective bottom view of an injector according to an embodiment located within the liner according to FIG. 1, 6 or 7; and,

FIG. 9 depicts an injector for use in FIG. 1, 6, 7 or 8.

DETAILED DESCRIPTION

In this application similar or corresponding features are denoted by similar or corresponding reference signs. The description of the various embodiments is not limited to the examples shown in the figures and the reference number used in the detailed description and the claims are not intended to limit what is described to the examples shown in the figures.

FIG. 1 shows a cross-sectional view of a vertical furnace including an assembly of a liner and a flange according to an embodiment. The vertical furnace includes a low pressure process tube (sometimes referred to herein as low pressure tube, process tube, or simply tube) 12 defining an interior and a heater H configured to heat the interior.

A liner 2 extends in the interior, the liner comprising a substantially cylindrical wall delimited by a liner opening 13 at a lower end and a dome shape top closure 2d at the higher end. The liner is substantially closed for gases above the liner opening and defines an inner space I.

A flange 3 may be provided to at least partially close an opening TO of the low pressure process tube 12. A vertically movably arranged door 14 may be configured to close off a central inlet opening O in the flange 3 and may be configured to support a wafer boat B that is configured to hold substrates W. The flange 3 may be partially closing the opening TO of the process tube 12. The door 14 may be provided with a pedestal R. The pedestal R may be rotated to have the wafer boat B in the inner space rotating. Under the lowest substrate in the boat B a flow space may be provided to prevent the flow of reaction gas between the substrates W in the boat.

In the example shown in FIG. 1, the assembly 1 comprises a liner 2 comprising a substantial cylindrical liner wall having an outer substantial cylindrical surface 2a and an inner substantial cylindrical surface 2b. The flange 3 is configured to at least partially close the tube opening TO and the liner opening 13 defined more precisely by the lower end surface 2c of the liner 2. The flange 3 comprises:

an inlet opening 0 configured to insert and remove the boat B configured to carry substrates W in the inner space I of the liner 2;

a gas inlet 16 to provide a gas F, for example a reaction gas to the inner space I; and, a gas exhaust duct 7 to remove gas from the inner space.

The gas inlet 16 may be provided with an injector 17 constructed and arranged within the assembly to extend vertically into the inner space I along the substantial cylindrical wall of the liner 2 towards the higher end and comprising an injector opening 18 to inject gas in the inner space I.

Gas exhaust openings 8 connected to the gas exhaust duct 7 for removing gas from the inner space may be constructed and arranged below the injector opening 18. In this way, by closing the liner 2 above the liner opening for gases, providing a gas to the inner space with the injector 17 through the injector opening 18 at an upper end of the inner space I and removing gas from the inner space by the gas exhaust openings 8 at a lower end of the inner space a down flow F in the inner space of the liner 2 may be created. This down flow F may transport contamination of reaction byproducts, particles from the substrate W, the boat B, the liner 2 and/or the support flange 3 downward to the exhaust openings 8 away from the processed substrates W.

The gas exhaust opening 8 for removing gas from the inner space I may be provided below the open end of the liner 2. This may be beneficial since a source of contamination of the process chamber may be formed by the contact between the liner 2 and the flange 3. More specifically the source may exist, at the position where a lower end surface of the liner at the open end is in contact with the flange. During the processing of substrates, and in particular during unloading of a boat after processing, the liner and the flange may be subjected to heat that increases the temperature of both liner and flange. Due to the temperature increase, liner and flange may experience thermal expansion, which causes them to radially expand. As the liner and the flange may have different coefficients of thermal expansion, because for example the liner 2 may be made from silicon carbide and the flange from metal, the liner and the flange may move with respect to each other during expansion. This may cause friction between the lower end surface of the liner and the upper surface of the flange, which may result in contaminants, e.g., small particles breaking away from liner and/or flange. The particles may migrate into the process chamber and may contaminate the process chamber and the substrates which are being processed.

By closing the liner above the liner opening for gases, providing a process gas to the inner space with the gas injector at an upper end of the inner space and removing gas from the inner space by the gas exhaust at a lower end of the inner space, a down flow in the inner space may be created. This down flow may transport the particles from the liner-flange interface downward to the exhaust away from the processed substrates.

The gas exhaust openings 8 may be constructed and arranged in the flange 3 between the liner 2 and the tube 12 for removing gas from the circumferential space between the liner 2 and the tube 12. In this way the pressure in the circumferential space and the interior space I may be made equal and in a low pressure vertical furnace may be made lower than the surrounding atmospheric pressure surrounding the tube 12. The vertical furnace may be provided with a pressure control system to remove gas from the interior of the tube (including the inner space of the liner) of the low pressure vertical furnace.

In this way the liner 2 may be made rather thin and of a relatively weak material since it doesn't have to compensate for atmospheric pressure. This creates a larger freedom in choosing the material for the liner 2. The thermal expansion of the material of liner 2 may be chosen such that it may be comparable with the material deposited on the substrate in the inner space. The latter having the advantage that the expansion of the liner and the material deposited also on the liner may be the same. The latter minimizes the risk of the deposited material dropping off as a result of temperature changes of the liner 2.

The tube 12 may be made rather thick and of a relatively strong compressive strength material since it may have to compensate for atmospheric pressure with respect to the low pressure on the inside of the tube. For example, the low pressure process tube 12 can be made of 5 to 8, preferably around 6 mm thick Quartz. Quartz has a very low Coefficient of Thermal Expansion (CTE) of 0.59×10-6 K-1 (see table 1) which makes it more easy to cope with thermal fluctuations in the apparatus. Although the CTE of the deposited materials may be higher (e.g., CTE of Si3N4=3×10-6 K-1, CTE of Si=2.3×10-6 K-1) the differences may be relatively small. When films are deposited onto tube made of quartz, they may adhere even when the tube goes through many large thermal cycles however the risk of contamination may be increasing.

The liner 2 may circumvent any deposition on the inside of the tube 2 and therefore the risk of deposition on the tube 12 dropping off may be alleviated. The tube may therefore be made from Quartz.

A liner 2 of silicon carbide (CTE of SiC=4×10-6 K-1) may provide an even better match in CTE between deposited film and liner, resulting in a greater cumulative thickness before removal of the deposited film from the liner may be required. Mismatches in CTE result in cracking of the deposited film and flaking off, and correspondingly high particle counts, which is undesirable and may be alleviated by using a SIC liner 2. The same mechanism may work for the injector 17 however for injectors 17 it may be the case that the injector may be breaking if too much material with different thermal expansion is deposited. It may therefore be advantageously to manufacture the injector 17 from silicon carbide or silicon.

TABLE 1 Coefficient of Thermal Expansion (CTE) of Materials in Semiconductor Processing Material Thermal expansion (ppm/K) Quartz 0.59 Silicon nitride 3 Silicon 2.3 Silicon carbide 4.0 Tungsten 4.5

Whether a material is suitable for the liner 2 and or the injector 17 may be dependent on the material that is deposited. It is therefore advantageously to be able to use material with substantially the same thermal expansion for the deposited material as for the liner 2 and/or the injector 17. It may therefore be advantageously to be able to use material with a thermal expansion for the liner 2 and/or the injector 17 relatively higher than that of quartz. For example Silicon Carbide SiC may be used. The silicon carbide liner may be between 4 to 6, preferably 5 mm thick since it doesn't have to compensate for atmospheric pressure. Pressure compensation may be done with the tube.

For systems depositing metal and metal compound materials with a CTE between about 4×10-6 K-1 and 6×10-6 K-1, such as TaN, HfO2 and TaO5, the liner and injector materials preferably may have a CTE between about 4×10-6 K-1 and 9×10-6 K-1, including, e.g., silicon carbide.

For deposition of material with even a higher CTE, the liner and/or injector materials may be chosen as for example depicted by table 2.

TABLE 2 Coefficient of Thermal Expansion (CTE) of Ceramic Construction Materials Material Thermal expansion (ppm/K) Macor 12.6 Boron Nitride 11.9 Glass, ordinary 9 Mullite 5.4

The assembly may be provided with a purge gas inlet 19 mounted on the flange for providing a purge gas P to the circumferential space S between an outer surface of the liner 2b and the process tube 12. The purge gas inlet comprises a purge gas injector 20 extending vertically along the outer surface of the cylindrical wall of the liner 2 from the flange 3 towards the top end of the liner. The purge gas P to the circumferential space S may create a flow in the gas exhaust openings 8 and counteract diffusion of reaction gas from the exhaust tube 7 to the circumferential space S.

The flange 3 may have an upper surface. The liner 2 may be supported by support members 4 that may be connected to the outer cylindrical surface of the liner wall 2a and each have a downwardly directed supporting surface. The liner may also be supported directly on the upper surface of the flange 3 with it lower surface 2c.

The supporting surfaces of the support members 4 may be positioned radially outwardly from the inner cylindrical surface 2b of the liner 2. In this example, the supporting surfaces of the supporting members 4 may also be positioned radially outwardly from the outer cylindrical surface 2a of the liner 2 to which they are attached. The downwardly directed supporting surface of the support members 4 may be in contact with the upper surface of the flange 3 and support the liner 2.

The support flange 3 of the closure may include gas exhaust openings 8 to remove gas from the inner space of the liner 2 and the circular spaces between the liner 2 and the low pressure tube 12. At least some of the gas exhaust openings may be provided in the upper surface of the flange 3 radially outside of the liner 2. At least some of the gas exhaust openings may be provided near the liner opening. The gas exhaust openings 8 may be in fluid connection with a pump via exhaust duct 7 for withdrawing gas from the inner space and the circumferential space between the process tube 12 and the liner 2. Any particles, which may be created by friction between the support members 4 and the upper surface part of the support flange 3 may be drained along with the gas through the gas exhaust openings 8. In any case, the released particles will not be able to enter the process chamber around the substrates W.

FIG. 2 is a schematic top view of the assembly of FIG. 1. The figure shows the liner 2 with the cylindrical wall defining an inner substantially cylindrical surface 2b and an outer substantially cylindrical surface 2a that form an opening 13 for inserting a boat configured to carry substrates.

Also visible are the support members 4. In this example, the liner 2 has three support members 4 that are equally spaced along the circumference of the outer cylindrical surface 2a of the liner 2. The support members 4 may be embodied as notches that are connected to the outer cylindrical surface 2a of the cylindrical wall of the liner 2. The flange may be provided with positioning projections 5 that extend upwards from the upper surface 3a of the flange. The positioning projections 5 may engage the support members 4 on a tangential end surface thereof. As a result, the positioning projections 5 have a centering function for the liner 2 relative to the support flange 3. The positioning projections 5 are spatially separated from the outer cylindrical surface 2a of the liner 2 allowing the liner 2 to radially expand.

The liner 2 and the notches forming the support members 4 may be manufactured from quartz, silicon or silicon carbide. Instead of three support members 4, alternative embodiments may include two support members 4 or more than three support members 4. Furthermore, the support members 4 are spaced radially outwardly from the inner cylindrical surface 2b and, preferably, also radially outwardly from the outer cylindrical surface 2a of the liner 2. Also clearly illustrated is the space between the outer cylindrical surface 2a of the liner 2 and the positioning projections 5 so that radial expansion of the cylindrical liner wall 2 is possible. The tangential length of the supporting members 4 may typically be in the range of 1-5 cm. The liner 2 delimiting the inner space may have a radially outwardly extending bulge 2e to accommodate the injector 17 or a temperature measurement system in the inner space.

FIG. 3 is a partial perspective cross-sectional view over the line III-III in FIG. 2 in which also the process tube 12 of the vertical process furnace is shown. The flange may be provided with a groove 15 constructed and arranged for providing a seal such as an O-ring therein to provide for a good sealing between the flange 3 and the tube 12. This good sealing is necessary because the flange 3, tube 12 and the O-ring may form part of the pressure barrier between the outside atmospheric pressure and the low pressure inside the tube 12. The O-ring may be provided at the interface of the quartz because quartz has relatively low thermal expansion so there is not much movement of the quartz with respect to the O-ring which may cause wear of the O-ring.

FIG. 3 further shows the liner 2 with a support member 4, which is attached to the outer cylindrical surface 2a of the liner 2. Clearly visible is that the support member 4 may be positioned radially outwardly with regard to the cylindrical wall of the liner 2. The downwardly directed supporting surface of the support member 4 may be in contact with the upper surface 3a of the flange 3 and may support the liner 2. Also visible is that the flange 3 may have a first upper surface part 3a1, which extends under the support member 4 and a second upper surface part 3a2, which may extend under the lower end surface 2c of the cylindrical wall of the liner 2. In this example the second upper surface part 3a2 may be formed as a circular groove, with an inner diameter smaller than the inner diameter of the liner 2. The outer diameter of the groove that forms the second upper surface part 3a2 may have an outer diameter that is larger than the outer diameter of the liner 2.

The support member 4 may support the liner 2 on the first upper surface part 3a1 so that the lower end surface 2c of the liner 2 is vertically spaced apart from the second upper surface part 3a2 of the flange 3. Thus a gap may be formed between the lower end surface 2c of the liner 2 and the second upper surface part 3a2 of the support flange 3. By virtue of this gap, there may be no contact between the liner 2 and the upper surface of the flange 3 adjacent the inner cylindrical surface 2b of the liner wall 2. That there is no contact between the liner 2 and the upper surface of the flange 3 adjacent the inner cylindrical surface 2b may reduce the risk of any particles, which may be created by friction between the liner 2 and the upper surface 3a. The gap may be between 0.1 to 10, preferably 0.2 and 0.5 mm. The support member 4 additionally may include a recess 10 that extends along the tangential length of the support member 4 and has a downwardly directed side that is open.

FIG. 4 is a cross-section over the line IV-IV in FIG. 2. The radially inward recess edge 10a may be located radially outwardly relative to the inner cylindrical surface 2b of the liner 2. The radially outward recess edge 10b of the recess 10 may be positioned radially inward with regard to the supporting surface of the support member 4. As a result, the recess 10 may be positioned at least partially across the circular groove 3a2 in the support flange 3; the radially inward recess edge 10a may be located radially inward of groove 3a2 outer diameter and the radially outward recess edge 10b may be located radially outward of groove 3a2 outer diameter. This configuration may allow a flow of reaction gas to flow from the space delimited by the inner cylindrical surface 2b to the space delimited by the outside of the outer cylindrical surface 2a of the liner 2 and a process tube 12 (which is illustrated in FIG. 3).

Any particles that may be created by the friction between the downwardly directed surface of the support member 4 and the upper surface 3ai of the support flange 3 that is opposite the support member 4, may be transported away from the gap between the lower end surface 2c and the upper surface 3a of the flange. The gas including the particles may be removed through the gas exhaust openings 8 and subsequently exhaust duct 7 towards a pump.

FIG. 5 is similar a cross-section over the line IV-IV in FIG. 2 of a different embodiment in which the support flange 3 may be provided with a support pad 11. FIG. 5 depicts the liner 2, support member 4 and the support flange 3. The support flange 3 in this example may be provided with a support pad 11 that is embedded in the support flange 3. The support pad 11 may be in contact with the downwardly directed supporting surface of the support member 4 and may be configured to reduce the friction between the support flange 3 and the supporting surface of the support member 4. In order to provide said reduction of friction, the support pad 11 may be made of a material with a relatively low constant of friction, such as for example Teflon, Polyimide, PEEK, Hastelloy or any other suitable material. In addition, the support pad 11 may also be made of a metal having a coating of a material with a relatively low constant of friction, such as for example Teflon, Polyimide, PEEK, Hastelloy, other polymeric coatings or a coating of a diamond-like carbon.

FIGS. 6 and 7 show a cross-sectional view of a vertical process furnace including an assembly of a liner 2 and a flange 3 according to further embodiments. FIG. 6 is a cross sectional side view of an example of a vertical process furnace, including a low pressure process tube 12 defining a low pressure interior process tube space, a heater configured to heat the interior process tube space, a vertically movable door configured to close off the central inlet opening in the flange 3 and configured to support a wafer boat B that is configured to hold substrates; and wherein the flange 3 is partially closing an open end of the process tube 12 and wherein the liner 2 extends in the interior process tube space. The door may be provided with a rotator M to rotate the wafer boat B in the inner space. In between the rotator M and the wafer boat B a pedestal R may be provided. The pedestal R may be provided with heaters and/or thermal insulators to improve the heat uniformity for the wafers in the boat B.

The liner 2 may be closed at a higher end for example with a dome shape and may be substantially closed for gases above the liner opening. The flange 3 comprises an inlet opening configured to insert and remove a boat B configured to carry substrates in the inner space of the liner 2. The gas inlet 16 may comprise an injector 17 constructed and arranged within the assembly to extend into the inner space along the cylindrical wall of the liner 2 towards the higher end. The injector 17 in FIG. 6 may be provided with multiple holes provided along the length of the injector 17 to inject gas in the inner space.

The injector 17 in FIG. 7 may be provided with one big opening near the top end of the injector to inject gas in the inner space. The injector 17 of FIG. 7 with one big opening at the end of the injector may also be combined with one or more injectors according to FIG. 6 with multiple holes along the length in this way each part of the inner space may be provided with gas. The liner 2 delimiting the inner space may have a radially outwardly extending bulge to accommodate the injector 17.

The gas exhaust opening 8 for removing gas may be constructed and arranged at a lower end of the inner space I. In this way by closing the liner 2 above the liner opening for gases, providing a process gas to the inner space with the gas injector 17 and removing gas from the inner space I by the gas exhaust opening 8 at a lower end of the inner space, a down flow in the inner space I of the liner 2 may be created. This down flow may transport contamination of reaction byproducts, particles from the substrates, the boat B, the liner 2 and/or the support area of the liner 2 on the flange 3 downward and radially outward to the exhaust 8 away from the processed substrates W. The gas exhaust 8 for removing gas from the inner space I may be provided below the open end of the liner 2.

The assembly may be provided with a temperature measurement system 22 mounted on the flange 3 and extending along an outer surface of the cylindrical wall of the liner 2 towards the top end of the liner to measure a temperature. The temperature measurement system 22 may comprise a beam with a plurality of temperature sensors provided along the length of the beam to measure the temperature at different heights along the liner 2. Since the temperature measurement system 22 is positioned outside the liner 2 deposition may not reach the temperature measurement system 22. This may be beneficial because the deposition may disturb the temperature measurement. Further the temperature measurement system 22 may comprise quartz and therefore have a different expansion coefficient than the deposited material causing a risk of particles and breaking of the temperature measurement system 22. The liner 2 may be provided with a radially inwardly extending bulge to accommodate the temperature measurement system.

A purge gas inlet may be provided at a bottom of a circumferential space S between the liner 2 and the tube 12 to provide a purge gas P between the liner 2 and the tube 12. The assembly may be constructed and arranged such that there is a narrow gap 21 between a lower surface of the liner 2 and the upper surface of the flange 3. The purge gas may flow through the narrow gap between the liner 2 and the flange 3 towards the exhaust opening 8 and may create a counter flow. The gap may be 0.1 to 10 mm, preferably between 0.2 and 0.5 mm. The counter flow may circumvent that the process gas from the injector 17 diffuses through the gap into the circumferential space. The circumferential space S may therefore not be contaminated by the process gas.

The assembly may be provided with a purge gas injector 20 mounted on the flange 3 for providing a purge gas to the circumferential space between an outer surface of the liner 2 and an inner surface of the processing tube 12 such as depicted in FIG. 7. The purge gas injector 20 may be extending along the outer surface of the cylindrical wall of the liner 2 from the flange 3 towards the top end of the liner. In this way it may be easier to get the right purge gas flow over the whole circumference of the circumferential space with only one purge gas injector 20.

A vertical furnace according to an embodiment may comprise:

a low pressure process tube defining an interior;

a heater configured to heat the interior of the tube;

a flange partially closing an open end of the process tube leaving a central inlet opening open and an injector constructed and arranged within the assembly to extend into the interior towards a higher end of the tube and comprising at least one opening to inject gas. A pattern of openings extending in the vertical direction may be provided along the injector. A horizontal, inner cross-section of a gas conduction channel CC inside the injector may be between 100 and 1500, preferably between 200 and 1000, and most preferably between 300 and 500 mm2.

The horizontal, inner cross-section of the gas conduction channel inside the injector may have a shape with a dimension in a direction tangential to the circumference of the substantially cylindrical tube which may be larger than a dimension in a radial direction.

The diameter of the openings may be between 1 to 15 mm, preferably between 3 to 12 mm, more preferably between 4 and 10 mm. The area of the openings may be between 1 to 200 mm2, preferably between 7 to 100 mm2, more preferably between 13 and 80 mm2.

The vertical distance between the openings may decrease when going from the lower end to the top end of the injector. The number of openings may be between 2 and 40, preferably 3 and 30, and more preferably 4 and 10.

The openings may be configured such that gas is injected in at least two different directions, such as the directions illustrated in FIGS. 6 and 7. The opening may have a concave shape from the inside to the outside of the injector, as illustrated in FIG. 9. The openings may be positioned on two vertically extending, spaced apart branches of the injector. The injector may have one opening near the top end of the tube.

An assembly of a liner and a flange may be provided. The liner may be configured to extend in the interior of the low pressure tube of the vertical furnace. The liner may comprise a substantially cylindrical wall delimited by a liner opening at a lower end and a top closure at a higher end and being substantially closed for gases above the liner opening and defining an inner space. The flange may be configured to at least partially close an opening of the tube and comprise:

an inlet opening configured to insert and remove a boat configured to carry substrates in the inner space of the liner; and

a gas inlet to provide a gas to the inner space. The assembly may be constructed and arranged with a gas exhaust opening to remove gas from the inner space and a space between the liner and the low pressure tube.

FIG. 8 depicts a perspective bottom view on an injector located within the liner 2. The injector 17 may comprise multiple injector branches, for example two injector branches 22, and 23, each provided with a separate gas feed conduit connection 24 and 25 respectively. Branch 22 injects gas into the lower part of the inner space and branch 23 injects gas into the upper part of the inner space. The branches may be connected by connecting parts. Additional injector branches may be provided, for example one with a single opening near the end of the liner. However, it is not essential for the invention that the injector comprises two or more injector branches.

The injector may be provided with a pattern of openings 26, the pattern extending substantially over the wafer load. According to the invention the total cross section of the openings is relatively large, for example between 100 and 600, preferably between 200 and 400 mm2. And the inner cross-section of the injector 17, available for the conduction of source gas, may be between 100 and 600, preferably 200 and 500 mm2 or more.

The opening diameter may be between 1 to 15 mm, preferably between 3 to 12 mm, more preferably between 4 and 10 mm. The area of the opening may be between 1 to 200 mm2, preferably between 7 to 100 mm2, more preferably between 13 and 80 mm2. Larger openings may have the advantage that it takes longer for the openings to clog because of deposited layers within the openings.

In the example shown in FIG. 8, the injector as a whole comprises 40 openings. For a diameter of 3 mm, the total cross-section of the openings may be 40×3×3×π/4=282 mm2. The cross-section of each of the branches of the injector is about 11×30=330 mm2. Other injectors may have 20 openings with a 4 mm diameter giving a total area of 251 mm2. Other injectors may have 5 openings with a 8 mm diameter giving a total area of also 251 mm2.

In each injector branch 22, 23, the openings may be provided pair-wise, at the same height, the two openings may inject the gas in two directions, under an angle of about 90 degrees, to improve the radial uniformity.

The openings may be positioned on the injector in a vertically and horizontally spaced apart relationship. The opening pattern on one injector branch may extend vertically with a higher concentration of openings at the higher part of the branch to compensate for a reducing gas flow in the higher part. The injector branches may be injector tubes, each injector tube with its feed end connected to a separate gas supply conduit. The injector tube may be connected via a separate gas supply conduit to a separate gas source for the separate injection of two or more source gases. The opening pattern on one injector branch may extend vertically over only a part of the boat. The injector 17 may be accommodated in bulge 2e in the liner 20.

The assembly may be provided with a temperature measurement system mounted on the flange and extending along an inner or outer surface of the cylindrical wall of the liner 2 towards the top end of the liner to measure a temperature. The temperature measurement system may comprise a beam with a plurality of temperature sensors provided along the length of the beam to measure the temperature at different heights along the liner.

A second bulge 2f may be provided in the liner 2 to accommodate the beam with the plurality of temperature sensors for measurement of the temperature inside the inner space if configured along an inner surface of the liner. As depicted the bulge is extending outwardly so as to accommodate the temperature measurement system on the inside of the liner however the bulge may also be extending inwardly to accommodate the temperature measurement system on the outside of the liner. By accommodating the injector and the temperature system in the bulges 2e and 2f respectively, the inner space can be kept substantially cylindrical symmetric, which is advantageous for the uniformity of a deposition process. Process tube 12 may be provided at the bottom end with a broadening flange 27.

FIG. 9 depicts an injector 17 for use in the assembly of FIG. 1, 6, 7 or 8. Five injector openings 18 are provided in the injector 17 numbered 31, 33, 35, 37, 39 from the top downward. The distance between the openings near the top of the injector 17 may be reduced compared to the distance at a lower end of the injector 17 to compensate for a reduced pressure at the top of the injector. The distance between the first and second openings 31, 33 may be between 45 and 49, preferably 47 mm, between openings 33 and 35 it may be between 51 and 55, preferably 53 mm, between opening 35 and 37 it may be between 55 and 59, preferably 57 mm, and between 37 and 39 it may be between 70 and 100, preferably 81 mm to compensate for the pressure reduction.

The total cross-section of the openings may be relatively large so that the pressure inside the injector is kept at a relatively low value. The diameter of the openings 18 may be between 4 and 15 mm. For example the openings may have a diameter of 8 mm. Deposition within the openings of the injector may cause clogging of the injector openings. By having larger openings, e.g., 4 to 15 mm, preferably 8 mm it takes a longer time for the injector openings to clog up, which is increasing the life time of the injector.

The horizontal, inner cross-section of a gas conduction channel CC inside the injector may have an oblong shape with a dimension in a direction tangential to the circumference of the substantially cylindrical liner which is larger than a dimension in a radial direction. The lower part 28 of the injector 17 may have a smaller cross-section and accordingly a higher pressure. Normally this may cause extra deposition but since the temperature may be lower in this part the deposition rate may still be acceptable.

The opening 18 of the gas injector 17 may be configured to reduce clogging of the opening. The opening may have a concave shape from the inside to the outside. The concave shape with the surface area of the opening on a surface on the inside of the injector larger than the surface area of the opening 18 on the outside of the injector may reduce clogging. The larger area on the inside allows more deposition at the inner side where the pressure and therefore the deposition is larger. On the outside the pressure is reduced and therefore the deposition is also slower and a smaller area may collect the same deposition as a larger diameter on the inside.

Reducing the pressure with the injector may result in a reduction of the reaction rate within the injector 17 because the reaction rate typically increases with increasing pressure. An additional advantage of a low pressure inside the injector is that gas volume through the injector expands at low pressure and for a constant flow of source gas the residence time of the source gas inside the injector reduces correspondingly. Because of the combination of both, the decomposition of the source gases can be reduced and thereby deposition within the injector may be reduced as well.

Deposition within the injector may cause tensile strength in the injector causing the injector to break when temperature is changing. Less deposition within the injector therefore prolongs the life time of the injector 17. The injector may be made from a material which has the coefficient of thermal expansion of the material deposited with the process gas. For example, the gas injector may be made from silicon nitride if silicon nitride is deposited or from silicon if silicon is deposited by the process gas. The thermal expansion of the deposited layer within the injector may therefore match the thermal expansion of the injector, decreasing the chance that the gas injector may break during changes of temperature. Silicon carbide may be a suitable material for the injector 17 because it has a thermal expansion which may match many deposited materials

A disadvantage of a low pressure inside the injector is that the conduction of the injector decreases significantly. This would lead to a poor distribution of the flow of source gas over the opening pattern over the length of the injector: the majority of source gas will flow out of the holes near the inlet end of the injector. To facilitate the flow of source gas inside the injector, along the length direction of the injector, the injector may be provided with a large inner cross section. In order to be able to accommodate the injector according to the invention inside the reaction space, the tangential size of the injector may be larger than the radial size and the liner delimiting the reaction space may be provided with an outwardly extending bulge to accommodate the injector.

In the preferred embodiment the two source gases, providing the two constituting elements of the binary film, are mixed in the gas supply system prior to entering the injector. This is the easiest way to ensure a homogeneous composition of the injected gas over the length of the boat. However, this is not essential. Alternatively, the two different source gases can be injected via separate injectors and mixed after injection in the reaction space.

The use of two injector branches allows some tuning possibilities. When gas of substantially the same composition is supplied to both parts of the injector, via separate source gas supply, the flows supplied to the different injector branches can be chosen different to fine-tune the uniformity in deposition rate over the boat. It is also possible to supply gas of different composition to the two lines of the injector to fine-tune the composition of the binary film over the boat. However, the best results may be achieved when the composition of the injected gas was the same for both injector lines.

While specific embodiments have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The descriptions above are intended to be illustrative, not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described in the foregoing without departing from the scope of the claims set out below. Various embodiments may be applied in combination or may be applied independently from one another.

Claims

1. An assembly of a liner and a flange, the liner being configured to extend in the interior of a low pressure tube of a vertical furnace, the liner comprising:

a substantially cylindrical wall delimited by a liner opening at a lower end and a top closure at a higher end and being substantially closed for gases above the liner opening and defining an inner space, the flange being configured to at least partially close an opening of the low pressure tube and comprising:
an inlet opening configured to insert and remove a boat configured to carry substrates in the inner space of the liner; and
a gas inlet to provide a gas to the inner space, wherein the assembly is constructed and arranged with a gas exhaust duct to remove gas from the inner space and a space between the liner and the low pressure tube through a gas exhaust opening in the flange.

2. The assembly according to claim 1, wherein the gas inlet comprises an injector, constructed and arranged within the assembly to extend into the inner space along the substantially cylindrical wall of the liner towards the higher end and comprising at least one opening to inject gas in the inner space.

3. The assembly according to claim 2, wherein a pattern of openings extending in the vertical direction is provided along the injector.

4. The assembly according to claim 3, wherein the vertical distance between the openings decreases when going from the lower end to the top end of the injector.

5. The assembly according to claim 3, wherein the openings are configured such that gas is injected in at least two different directions.

6. The assembly according to claim 2, wherein the horizontal, inner cross-section area of a gas conduction channel inside the injector is between 100 and 1500 mm2.

7. The assembly according to claim 2, wherein the horizontal, inner cross-section of a gas conduction channel inside the injector has a shape with a dimension in a direction tangential to the circumference of the substantially cylindrical liner which is larger than a dimension in a radial direction.

8. The assembly according to claim 2, wherein the area of the at least one opening may be between 1 to 200 mm2.

9. The assembly according to claim 2, wherein the at least one opening has a concave shape from the inside to the outside.

10. The assembly according to claim 2, wherein the openings are positioned on two vertically extending, spaced apart branches of the injector.

11. The assembly according to claim 2, wherein the injector comprises one opening near the top end of the liner.

12. The assembly according to claim 1, wherein the liner delimiting the inner space has a radially outwardly extending bulge.

13. The assembly according to claim 1, wherein the gas exhaust opening for removing gas from the inner space is provided below the open end of the liner.

14. The assembly according to claim 1, wherein the assembly is provided with a purge gas inlet mounted on the flange for providing a purge gas to the space between the liner and the low pressure tube.

15. The assembly according to claim 14, wherein the purge gas inlet comprises a purge gas injector extending along the outer surface of the substantially cylindrical wall of the liner towards the top end of the liner.

16. The assembly according to claim 1, wherein the assembly is provided with a temperature measurement system mounted on the flange and extending along the substantially cylindrical wall of the liner towards the top end of the liner to measure a temperature.

17. The assembly according to claim 16, wherein the temperature measurement system is arranged along an outer surface of the liner.

18. The assembly according to claim 17, wherein the liner is provided with an radially inwardly extending bulge to accommodate the temperature measurement system.

19. The assembly according to claim 1, wherein at least one of the liner and the gas injector comprises a material selected from silicon carbide and silicon.

20. The assembly according to claim 1, wherein the assembly is configured and arranged such that there is a gap between a lower surface of the liner and the upper surface of the flange.

21. The assembly according to claim 1, wherein the upper surface of the flange is provided with a groove for accommodating seal to seal the low pressure tube.

22. The assembly according to claim 1, wherein the exhaust opening is disposed in an area that is positioned radially outside the outer substantially cylindrical surface of the liner wall.

23. A vertical furnace comprising:

a heater configured to heat the interior of the low pressure tube;
an assembly according to claim 1; and
a vertically movably arranged door configured to close off the central inlet opening in the flange and configured to support a wafer boat that is configured to hold substrates.

24. The vertical furnace according to claim 23, wherein the door is provided with a rotator to rotate the wafer boat in the inner space.

25. The vertical furnace according to claim 23, wherein a seal is provided between the upper surface of the flange and the low pressure tube to seal the low pressure tube.

26. The vertical furnace according to claim 23, wherein a pressure control system is provided to remove gas from the interior of the low pressure tube via the gas exhaust opening.

27. The vertical furnace according to claim 23, wherein the low pressure tube is constructed and arranged to provide a pressure barrier between a low pressure interior space of the low pressure tube, comprising the inner space and the liner, and the atmospheric pressure space outside the low pressure tube.

28. A liner being configured to extend in the interior of a low pressure tube of a vertical furnace comprising:

a substantially cylindrical wall delimited by a liner opening at a lower end and a top closure at a higher end and being substantially closed for gases above the liner opening and defining an inner space,
and two or more support members connected to an outer surface of the substantially cylindrical wall, wherein each of the support members has a downwardly directed supporting surface, and wherein the support members are spaced radially outward from an inner surface of the substantially cylindrical wall,
wherein the liner comprises silicon carbide.

29. The liner according to claim 28, wherein the silicon carbide liner is between 4 to 6 mm thick.

Referenced Cited
U.S. Patent Documents
D30036 January 1899 Rhind
D31889 November 1899 Gill
D56051 August 1920 Cohn
2059480 November 1936 Obermaier
2161626 June 1939 Loughner et al.
2266416 December 1941 Duclos
2280778 April 1942 Anderson
2410420 November 1946 Bennett
2563931 August 1951 Harrison
2660061 November 1953 Lewis
2745640 May 1956 Cushman
2990045 September 1959 Root
3038951 June 1962 Mead
3089507 May 1963 Drake et al.
3094396 June 1963 Flugge et al.
3232437 February 1966 Hultgren
3263502 August 1966 Redwood
3410349 November 1968 Troutman
3588192 June 1971 Drutchas et al.
3647387 March 1972 Benson
3647716 March 1972 Koches
3713899 January 1973 Sebestyen
3718429 February 1973 Williamson
3833492 September 1974 Bollyky
3854443 December 1974 Baerg
3862397 January 1975 Anderson et al.
3867205 February 1975 Schley
3885504 May 1975 Baermann
3887790 June 1975 Ferguson
3904371 September 1975 Neti
3913058 October 1975 Nishio et al.
3913617 October 1975 van Laar
3947685 March 30, 1976 Meinel
3960559 June 1, 1976 Suzuki
3997638 December 14, 1976 Manning et al.
4054071 October 18, 1977 Patejak
4058430 November 15, 1977 Suntola et al.
4093491 June 6, 1978 Whelpton et al.
D249341 September 12, 1978 Mertz
4126027 November 21, 1978 Smith et al.
4134425 January 16, 1979 Gussefeld et al.
4145699 March 20, 1979 Hu et al.
4164959 August 21, 1979 Wurzburger
4176630 December 4, 1979 Elmer
4181330 January 1, 1980 Kojima
4194536 March 25, 1980 Stine et al.
4217463 August 12, 1980 Swearingen
4234449 November 18, 1980 Wolson et al.
4322592 March 30, 1982 Martin
4333735 June 8, 1982 Hardy
4355912 October 26, 1982 Haak
4389973 June 28, 1983 Suntola et al.
4393013 July 12, 1983 McMenamin
4401507 August 30, 1983 Engle
4414492 November 8, 1983 Hanlet
4436674 March 13, 1984 McMenamin
4444990 April 24, 1984 Villar
4454370 June 12, 1984 Voznick
4455193 June 19, 1984 Jeuch et al.
4466766 August 21, 1984 Geren et al.
4479831 October 30, 1984 Sandow
4499354 February 12, 1985 Hill et al.
4512113 April 23, 1985 Budinger
4527005 July 2, 1985 McKelvey et al.
4537001 August 27, 1985 Uppstrom
4548688 October 22, 1985 Mathews
4570328 February 18, 1986 Price et al.
4575636 March 11, 1986 Caprari
4578560 March 25, 1986 Tanaka et al.
4579378 April 1, 1986 Snyders
4579623 April 1, 1986 Suzuki et al.
4590326 May 20, 1986 Woldy
4611966 September 16, 1986 Johnson
4620998 November 4, 1986 Lalvani
D288556 March 3, 1987 Wallgren
4653541 March 31, 1987 Oehlschlaeger et al.
4654226 March 31, 1987 Jackson et al.
4664769 May 12, 1987 Cuomo et al.
4681134 July 21, 1987 Paris
4718637 January 12, 1988 Contin
4721533 January 26, 1988 Phillippi et al.
4722298 February 2, 1988 Rubin et al.
4724272 February 9, 1988 Raniere et al.
4735259 April 5, 1988 Vincent
4749416 June 7, 1988 Greenspan
4753192 June 28, 1988 Goldsmith et al.
4753856 June 28, 1988 Haluska et al.
4756794 July 12, 1988 Yoder
4771015 September 13, 1988 Kanai
4780169 October 25, 1988 Stark et al.
4789294 December 6, 1988 Sato et al.
4821674 April 18, 1989 deBoer et al.
4827430 May 2, 1989 Aid et al.
4830515 May 16, 1989 Cortes
4837113 June 6, 1989 Luttmer et al.
4837185 June 6, 1989 Yau et al.
4854263 August 8, 1989 Chang et al.
4854266 August 8, 1989 Simson et al.
4857137 August 15, 1989 Tachi et al.
4857382 August 15, 1989 Liu et al.
4882199 November 21, 1989 Sadoway et al.
4916091 April 10, 1990 Freeman et al.
4934831 June 19, 1990 Volbrecht
4949848 August 21, 1990 Kos
D311126 October 9, 1990 Crowley
4976996 December 11, 1990 Monkowski et al.
4978567 December 18, 1990 Miller
4984904 January 15, 1991 Nakano et al.
4985114 January 15, 1991 Okudaira
4986215 January 22, 1991 Yamada
4987856 January 29, 1991 Hey
4989992 February 5, 1991 Piai
4991614 February 12, 1991 Hammel
5013691 May 7, 1991 Lory et al.
5027746 July 2, 1991 Frijlink
5028366 July 2, 1991 Harakal et al.
5057436 October 15, 1991 Ball
5060322 October 29, 1991 Delepine
5061083 October 29, 1991 Grimm et al.
5062386 November 5, 1991 Christensen
5065698 November 19, 1991 Koike
5071258 December 10, 1991 Usher et al.
5074017 December 24, 1991 Toya et al.
5098638 March 24, 1992 Sawada
5098865 March 24, 1992 Machado
5104514 April 14, 1992 Quartarone
5108192 April 28, 1992 Mailliet et al.
5116018 May 26, 1992 Friemoth et al.
D327534 June 30, 1992 Manville
5119760 June 9, 1992 McMillan et al.
5130003 July 14, 1992 Conrad
5137286 August 11, 1992 Whitford
5154301 October 13, 1992 Kos
5158128 October 27, 1992 Inoue et al.
5167716 December 1, 1992 Boitnott et al.
5176451 January 5, 1993 Sasada
5178682 January 12, 1993 Tsukamoto et al.
5181779 January 26, 1993 Shia et al.
5183511 February 2, 1993 Yamazaki et al.
5192717 March 9, 1993 Kawakami
5194401 March 16, 1993 Adams et al.
5199603 April 6, 1993 Prescott
5213650 May 25, 1993 Wang et al.
5221556 June 22, 1993 Hawkins et al.
5225366 July 6, 1993 Yoder et al.
5226383 July 13, 1993 Bhat
5228114 July 13, 1993 Suzuki
5242539 September 7, 1993 Kumihashi et al.
5243195 September 7, 1993 Nishi
5243202 September 7, 1993 Mori et al.
5246218 September 21, 1993 Yap et al.
5246500 September 21, 1993 Samata et al.
5259881 November 9, 1993 Edwards et al.
5266526 November 30, 1993 Aoyama
5271967 December 21, 1993 Kramer et al.
5278494 January 11, 1994 Obigane
5284519 February 8, 1994 Gadgil
5288684 February 22, 1994 Yamazaki et al.
5294778 March 15, 1994 Carman et al.
5306666 April 26, 1994 Izumi
5306946 April 26, 1994 Yamamoto
5310456 May 10, 1994 Kadomura
5314570 May 24, 1994 Ikegaya et al.
5315092 May 24, 1994 Takahashi et al.
5326427 July 5, 1994 Jerbic
5336327 August 9, 1994 Lee
5354580 October 11, 1994 Goela et al.
5356478 October 18, 1994 Chen et al.
5356672 October 18, 1994 Schmitt et al.
5360269 November 1, 1994 Ogawa et al.
5364667 November 15, 1994 Rhieu
D353452 December 13, 1994 Groenhoff
5374315 December 20, 1994 Deboer et al.
5380367 January 10, 1995 Bertone
5382311 January 17, 1995 Ishikawa et al.
5388945 February 14, 1995 Garric et al.
5404082 April 4, 1995 Hemandez et al.
5407449 April 18, 1995 Zinger
5413813 May 9, 1995 Cruse et al.
5414221 May 9, 1995 Gardner
5415753 May 16, 1995 Hurwitt et al.
5421893 June 6, 1995 Perlov
5422139 June 6, 1995 Fischer
5423942 June 13, 1995 Robbins et al.
5430011 July 4, 1995 Tanaka et al.
5444217 August 22, 1995 Moore
5453124 September 26, 1995 Moslehi et al.
5482559 January 9, 1996 Imai et al.
5494494 February 27, 1996 Mizuno et al.
5496408 March 5, 1996 Motoda et al.
5501740 March 26, 1996 Besen et al.
5503875 April 2, 1996 Imai et al.
5504042 April 2, 1996 Cho et al.
5514439 May 7, 1996 Sibley
5518549 May 21, 1996 Hellwig
5523616 June 4, 1996 Yasuhide
5527111 June 18, 1996 Lysen et al.
5527417 June 18, 1996 Iida et al.
5531835 July 2, 1996 Fodor et al.
5540898 July 30, 1996 Davidson
5558717 September 24, 1996 Zhao et al.
5559046 September 24, 1996 Oishi et al.
5574247 November 12, 1996 Nishitani et al.
5576629 November 19, 1996 Turner
5577331 November 26, 1996 Suzuki
5583736 December 10, 1996 Anderson et al.
5589002 December 31, 1996 Su
5589110 December 31, 1996 Motoda et al.
5595606 January 21, 1997 Fujikawa et al.
5601641 February 11, 1997 Stephens
5604410 February 18, 1997 Vollkommer et al.
5616264 April 1, 1997 Nishi
5616947 April 1, 1997 Tamura
5621982 April 22, 1997 Yamashita
5632919 May 27, 1997 MacCracken et al.
D380527 July 1, 1997 Velez
5656093 August 12, 1997 Burkhart et al.
5663899 September 2, 1997 Zvonar et al.
5665608 September 9, 1997 Chapple-Sokol et al.
5679215 October 21, 1997 Barnes et al.
5681779 October 28, 1997 Pasch et al.
5683517 November 4, 1997 Shan
5695567 December 9, 1997 Kordina
5697706 December 16, 1997 Ciaravino et al.
5700729 December 23, 1997 Lee et al.
5708825 January 13, 1998 Sotomayor
5711811 January 27, 1998 Suntola et al.
5716133 February 10, 1998 Hosokawa et al.
5718574 February 17, 1998 Shimazu
D392855 March 31, 1998 Pillow
5724748 March 10, 1998 Brooks
5728223 March 17, 1998 Murakarni et al.
5730801 March 24, 1998 Tepman et al.
5732744 March 31, 1998 Barr et al.
5736314 April 7, 1998 Hayes et al.
5753835 May 19, 1998 Gustin
5761328 June 2, 1998 Solberg et al.
5777838 July 7, 1998 Tamagawa et al.
5779203 July 14, 1998 Edlinger
5781693 July 14, 1998 Balance et al.
5782979 July 21, 1998 Kaneno
5791782 August 11, 1998 Wooten et al.
5792272 August 11, 1998 Van Os et al.
5796074 August 18, 1998 Edelstein et al.
5801104 September 1, 1998 Schuegraf et al.
5806980 September 15, 1998 Berrian
5813851 September 29, 1998 Nakao
5819092 October 6, 1998 Ferguson et al.
5819434 October 13, 1998 Herchen et al.
5827435 October 27, 1998 Seiji
5827757 October 27, 1998 Robinson, Jr. et al.
5836483 November 17, 1998 Disel
5837058 November 17, 1998 Chen et al.
5837320 November 17, 1998 Hampden-Smith et al.
5844683 December 1, 1998 Pavloski et al.
5846332 December 8, 1998 Zhao et al.
5851294 December 22, 1998 Young et al.
5852879 December 29, 1998 Schumaier
5853484 December 29, 1998 Jeong
5855680 January 5, 1999 Soininen et al.
5855681 January 5, 1999 Maydan et al.
5857777 January 12, 1999 Schuh
5863123 January 26, 1999 Lee
5865205 February 2, 1999 Wilmer
5873942 February 23, 1999 Park
5877095 March 2, 1999 Tamura et al.
5879128 March 9, 1999 Tietz et al.
5884640 March 23, 1999 Fishkin et al.
D409894 May 18, 1999 McClurg
5908672 June 1, 1999 Ryu
5916365 June 29, 1999 Sherman
D412270 July 27, 1999 Fredrickson
5920798 July 6, 1999 Higuchi et al.
5937323 August 10, 1999 Orczyk et al.
5947718 September 7, 1999 Weaver
5954375 September 21, 1999 Trickle et al.
5961775 October 5, 1999 Fujimura
5968275 October 19, 1999 Lee et al.
5970621 October 26, 1999 Bazydola
5975492 November 2, 1999 Brenes
5979506 November 9, 1999 Aarseth
5982931 November 9, 1999 Ishimaru
5984391 November 16, 1999 Vanderpot et al.
5987480 November 16, 1999 Donohue et al.
5997588 December 7, 1999 Goodwin
5997768 December 7, 1999 Scully
5998870 December 7, 1999 Lee et al.
6001267 December 14, 1999 Van Os et al.
D419652 January 25, 2000 Hall et al.
6013553 January 11, 2000 Wallace
6013920 January 11, 2000 Gordon et al.
6015465 January 18, 2000 Kholodenko et al.
6017779 January 25, 2000 Miyasaka
6017818 January 25, 2000 Lu
6024799 February 15, 2000 Chen
6035101 March 7, 2000 Sajoto et al.
6042652 March 28, 2000 Hyun
6044860 April 4, 2000 Nue
6045260 April 4, 2000 Schwartz et al.
6048154 April 11, 2000 Wytman
6050506 April 18, 2000 Guo et al.
6054678 April 25, 2000 Miyazaki
6060691 May 9, 2000 Minami et al.
6060721 May 9, 2000 Huang
6068441 May 30, 2000 Raaijmakers et al.
6072163 June 6, 2000 Armstrong
6073973 June 13, 2000 Boscaljon et al.
6074443 June 13, 2000 Venkatesh
6083321 July 4, 2000 Lei et al.
6086677 July 11, 2000 Umotoy et al.
6091062 July 18, 2000 Pfahnl et al.
6093252 July 25, 2000 Wengert et al.
6093253 July 25, 2000 Lofgren
6096267 August 1, 2000 Kishkovich
6099302 August 8, 2000 Hong et al.
6102565 August 15, 2000 Kita et al.
6104011 August 15, 2000 Juliano
6104401 August 15, 2000 Parsons
6106678 August 22, 2000 Shufflebotham
6119710 September 19, 2000 Brown
6121061 September 19, 2000 Van Bilsen et al.
6121158 September 19, 2000 Benchikha et al.
6122036 September 19, 2000 Yamasaki et al.
6124600 September 26, 2000 Moroishi et al.
6125789 October 3, 2000 Gupta et al.
6126848 October 3, 2000 Li et al.
6129044 October 10, 2000 Zhao et al.
6129546 October 10, 2000 Sada
6134807 October 24, 2000 Komino
6137240 October 24, 2000 Bogdan et al.
6140252 October 31, 2000 Cho et al.
6148761 November 21, 2000 Majewski et al.
6158941 December 12, 2000 Muka et al.
6160244 December 12, 2000 Ohashi
6161500 December 19, 2000 Kopacz et al.
6162323 December 19, 2000 Koshimizu et al.
6174809 January 16, 2001 Kang et al.
6178918 January 30, 2001 Van Os et al.
6180979 January 30, 2001 Hofman et al.
6187672 February 13, 2001 Zhao
6187691 February 13, 2001 Fukuda
6190634 February 20, 2001 Lieber et al.
6191399 February 20, 2001 Van Bilsen
6194037 February 27, 2001 Terasaki et al.
6201999 March 13, 2001 Jevtic
6203613 March 20, 2001 Gates et al.
6207932 March 27, 2001 Yoo
6212789 April 10, 2001 Kato
6214122 April 10, 2001 Thompson
6217658 April 17, 2001 Orczyk et al.
6218288 April 17, 2001 Li et al.
6225020 May 1, 2001 Jung et al.
6235858 May 22, 2001 Swarup et al.
6242359 June 5, 2001 Misra
6243654 June 5, 2001 Johnson et al.
6245665 June 12, 2001 Yokoyama
6247245 June 19, 2001 Ishii
6250250 June 26, 2001 Maishev et al.
6257758 July 10, 2001 Culbertson
6264467 July 24, 2001 Andreas et al.
6271148 August 7, 2001 Kao
6274878 August 14, 2001 Li et al.
6281098 August 28, 2001 Wang
6281141 August 28, 2001 Das et al.
6284050 September 4, 2001 Shi et al.
6287965 September 11, 2001 Kang et al.
6293700 September 25, 2001 Lund et al.
D449873 October 30, 2001 Bronson
6296710 October 2, 2001 Allen et al.
6296909 October 2, 2001 Spitsberg
6299133 October 9, 2001 Waragai et al.
6302964 October 16, 2001 Umotoy et al.
6303523 October 16, 2001 Cheung
6305898 October 23, 2001 Yamagishi et al.
6311016 October 30, 2001 Yanagawa et al.
6312525 November 6, 2001 Bright et al.
6315512 November 13, 2001 Tabrizi et al.
6316162 November 13, 2001 Jung et al.
6321680 November 27, 2001 Cook et al.
D451893 December 11, 2001 Robson
D452220 December 18, 2001 Robson
6325858 December 4, 2001 Wengert
6326597 December 4, 2001 Lubomirsky et al.
6329297 December 11, 2001 Balish
6342427 January 29, 2002 Choi et al.
6344084 February 5, 2002 Koinuma et al.
6344232 February 5, 2002 Jones et al.
6347636 February 19, 2002 Xia
6350391 February 26, 2002 Livshits et al.
6352945 March 5, 2002 Matsuki
D455024 April 2, 2002 Mimick et al.
6367410 April 9, 2002 Leahey et al.
6368773 April 9, 2002 Jung et al.
6368987 April 9, 2002 Kopacz et al.
6370796 April 16, 2002 Zucker
6372583 April 16, 2002 Tyagi
6374831 April 23, 2002 Chandran
6375312 April 23, 2002 Ikeda et al.
6375750 April 23, 2002 Van Os et al.
D457609 May 21, 2002 Piano
6383566 May 7, 2002 Zagdoun
6383955 May 7, 2002 Matsuki
6387207 May 14, 2002 Janakiraman
6391803 May 21, 2002 Kim et al.
6395650 May 28, 2002 Callegari et al.
6398184 June 4, 2002 Sowada et al.
6410459 June 25, 2002 Blalock et al.
6413321 July 2, 2002 Kim et al.
6413583 July 2, 2002 Moghadam et al.
6420279 July 16, 2002 Ono et al.
D461233 August 6, 2002 Whalen
D461882 August 20, 2002 Piano
6432849 August 13, 2002 Endo et al.
6435798 August 20, 2002 Satoh
6435865 August 20, 2002 Tseng
6436819 August 20, 2002 Zhang
6437444 August 20, 2002 Andideh
6438502 August 20, 2002 Awtrey
6441350 August 27, 2002 Stoddard et al.
6445574 September 3, 2002 Saw et al.
6446573 September 10, 2002 Hirayama et al.
6447232 September 10, 2002 Davis et al.
6447651 September 10, 2002 Ishikawa et al.
6448192 September 10, 2002 Kaushik
6450757 September 17, 2002 Saeki
6451713 September 17, 2002 Tay et al.
6454860 September 24, 2002 Metzner et al.
6455225 September 24, 2002 Kong et al.
6455445 September 24, 2002 Matsuki
6461435 October 8, 2002 Littau et al.
6461436 October 8, 2002 Campbell et al.
6468924 October 22, 2002 Lee
6471779 October 29, 2002 Nishio et al.
6472266 October 29, 2002 Yu et al.
6475276 November 5, 2002 Elers et al.
6475930 November 5, 2002 Junker et al.
6478872 November 12, 2002 Chae et al.
6482331 November 19, 2002 Lu et al.
6482663 November 19, 2002 Buckland
6483989 November 19, 2002 Okada et al.
6494065 December 17, 2002 Babbitt
6494998 December 17, 2002 Brcka
6496819 December 17, 2002 Bello et al.
6499533 December 31, 2002 Yamada
6503079 January 7, 2003 Kogano et al.
6503562 January 7, 2003 Saito et al.
6503826 January 7, 2003 Oda
6506253 January 14, 2003 Sakuma
6507410 January 14, 2003 Robertson et al.
6511539 January 28, 2003 Raaijmakers
6514313 February 4, 2003 Spiegelman
6514666 February 4, 2003 Choi et al.
6521295 February 18, 2003 Remington
6521547 February 18, 2003 Chang et al.
6528430 March 4, 2003 Kwan
6528767 March 4, 2003 Bagley et al.
6531193 March 11, 2003 Fonash et al.
6531412 March 11, 2003 Conti et al.
6534133 March 18, 2003 Kaloyeros et al.
6534395 March 18, 2003 Werkhoven et al.
6536950 March 25, 2003 Green
6540469 April 1, 2003 Matsunaga et al.
6544906 April 8, 2003 Rotondaro et al.
6552209 April 22, 2003 Lei et al.
6558755 May 6, 2003 Berry et al.
6559026 May 6, 2003 Rossman et al.
6566278 May 20, 2003 Harvey et al.
6569239 May 27, 2003 Arai et al.
6569971 May 27, 2003 Roh et al.
6573030 June 3, 2003 Fairbairn et al.
6574644 June 3, 2003 Hsu et al.
6576062 June 10, 2003 Matsuse
6576064 June 10, 2003 Griffiths et al.
6576300 June 10, 2003 Berry et al.
6576564 June 10, 2003 Agarwal
6578589 June 17, 2003 Mayusumi
6579833 June 17, 2003 McNallan et al.
6580050 June 17, 2003 Miller et al.
6583048 June 24, 2003 Vincent et al.
6589707 July 8, 2003 Lee et al.
6589868 July 8, 2003 Rosman
6590251 July 8, 2003 Kang et al.
6594550 July 15, 2003 Okrah
6596653 July 22, 2003 Tan
6598559 July 29, 2003 Vellore et al.
6607868 August 19, 2003 Choi
6607948 August 19, 2003 Sugiyama et al.
6608745 August 19, 2003 Tsuruta et al.
6620251 September 16, 2003 Kitano
6624064 September 23, 2003 Sahin
6627268 September 30, 2003 Fair et al.
6627503 September 30, 2003 Ma et al.
6632478 October 14, 2003 Gaillard et al.
6633364 October 14, 2003 Hayashi
6635117 October 21, 2003 Kinnard et al.
6638839 October 28, 2003 Deng et al.
6645304 November 11, 2003 Yamaguchi
6648974 November 18, 2003 Ogliari et al.
6649921 November 18, 2003 Cekic et al.
6652924 November 25, 2003 Sherman
6656281 December 2, 2003 Ueda
6660662 December 9, 2003 Ishikawa et al.
6662817 December 16, 2003 Yamagishi
6673196 January 6, 2004 Oyabu
6676290 January 13, 2004 Lu
6682971 January 27, 2004 Tsuneda et al.
6682973 January 27, 2004 Paton et al.
D486891 February 17, 2004 Cronce
6684659 February 3, 2004 Tanaka et al.
6688784 February 10, 2004 Templeton
6689220 February 10, 2004 Nguyen
6692575 February 17, 2004 Omstead et al.
6692576 February 17, 2004 Halpin et al.
6699003 March 2, 2004 Saeki
6699399 March 2, 2004 Qian et al.
6709989 March 23, 2004 Ramdani et al.
6710364 March 23, 2004 Guldi et al.
6710857 March 23, 2004 Kondo
6713824 March 30, 2004 Mikata
6716571 April 6, 2004 Gabriel
6720260 April 13, 2004 Fair et al.
6722837 April 20, 2004 Inui
6723642 April 20, 2004 Lim et al.
6730614 May 4, 2004 Lim et al.
6732006 May 4, 2004 Haanstra et al.
6734090 May 11, 2004 Agarwala et al.
6740853 May 25, 2004 Johnson et al.
6743475 June 1, 2004 Skarp et al.
6743738 June 1, 2004 Todd et al.
6745095 June 1, 2004 Ben-Dov
6753507 June 22, 2004 Fure et al.
6755221 June 29, 2004 Jeong et al.
6756085 June 29, 2004 Waldfried
6756293 June 29, 2004 Li et al.
6756318 June 29, 2004 Nguyen et al.
6759098 July 6, 2004 Han
6760981 July 13, 2004 Leap
6784108 August 31, 2004 Donohoe et al.
D497977 November 2, 2004 Engelbrektsson
6811960 November 2, 2004 Lee et al.
6815350 November 9, 2004 Kim et al.
6820570 November 23, 2004 Kilpela et al.
6821910 November 23, 2004 Adomaitis et al.
6824665 November 30, 2004 Shelnut et al.
6825134 November 30, 2004 Law et al.
6828235 December 7, 2004 Takano
6831004 December 14, 2004 Byun
6835039 December 28, 2004 Van Den Berg
6846146 January 25, 2005 Inui
6846515 January 25, 2005 Vrtis
6846742 January 25, 2005 Rossman
6847014 January 25, 2005 Benjamin et al.
6858524 February 22, 2005 Haukka et al.
6858547 February 22, 2005 Metzner
6863019 March 8, 2005 Shamouilian
6863281 March 8, 2005 Endou et al.
6864041 March 8, 2005 Brown
6872258 March 29, 2005 Park et al.
6872259 March 29, 2005 Strang
6874247 April 5, 2005 Hsu
6874480 April 5, 2005 Ismailov
6875677 April 5, 2005 Conley, Jr. et al.
6876017 April 5, 2005 Goodner
6878402 April 12, 2005 Chiang et al.
6884066 April 26, 2005 Nguyen et al.
6884295 April 26, 2005 Ishii
6884319 April 26, 2005 Kim
D505590 May 31, 2005 Greiner
6889211 May 3, 2005 Yoshiura et al.
6889864 May 10, 2005 Lindfors et al.
6895158 May 17, 2005 Alyward et al.
6899507 May 31, 2005 Yamagishi et al.
6909839 June 21, 2005 Wang et al.
6911092 June 28, 2005 Sneh
6913152 July 5, 2005 Zuk
6913796 July 5, 2005 Albano et al.
6917755 July 12, 2005 Nguyen et al.
6924078 August 2, 2005 Lee et al.
6929700 August 16, 2005 Tan et al.
6930041 August 16, 2005 Agarwal
6930059 August 16, 2005 Conley, Jr. et al.
6935269 August 30, 2005 Lee et al.
6939817 September 6, 2005 Sandhu et al.
6942753 September 13, 2005 Choi et al.
6951587 October 4, 2005 Narushima
6953609 October 11, 2005 Carollo
6955836 October 18, 2005 Kumagai et al.
6972055 December 6, 2005 Sferlazzo
6972478 December 6, 2005 Waite et al.
6974781 December 13, 2005 Timmermans et al.
6975921 December 13, 2005 Verhaar
6976822 December 20, 2005 Woodruff
6981832 January 3, 2006 Zinger et al.
6982046 January 3, 2006 Srivastava et al.
6984595 January 10, 2006 Yamazaki
6985788 January 10, 2006 Haanstra et al.
6987155 January 17, 2006 Roh et al.
6990430 January 24, 2006 Hosek
7005227 February 28, 2006 Yueh et al.
7005391 February 28, 2006 Min
7010580 March 7, 2006 Fu et al.
7017514 March 28, 2006 Shepherd et al.
7018941 March 28, 2006 Cui et al.
7021881 April 4, 2006 Yamagishi
7036453 May 2, 2006 Ishikawa et al.
7041609 May 9, 2006 Vaartstra
7045430 May 16, 2006 Ahn et al.
7049247 May 23, 2006 Gates et al.
7053009 May 30, 2006 Conley, Jr. et al.
7055875 June 6, 2006 Bonora
7062161 June 13, 2006 Kusuda et al.
7070178 July 4, 2006 Van Der Toorn et al.
7071051 July 4, 2006 Jeon et al.
7073834 July 11, 2006 Matsumoto et al.
7080545 July 25, 2006 Dimeo et al.
7084060 August 1, 2006 Furukawa
7084079 August 1, 2006 Conti et al.
7085623 August 1, 2006 Siegers
7088003 August 8, 2006 Gates et al.
7090394 August 15, 2006 Hashikura et al.
7092287 August 15, 2006 Beulens et al.
7098149 August 29, 2006 Lukas
7101763 September 5, 2006 Anderson et al.
7109098 September 19, 2006 Ramaswamy et al.
7109114 September 19, 2006 Chen et al.
7111232 September 19, 2006 Bascom
7115305 October 3, 2006 Bronikowski et al.
7115838 October 3, 2006 Kurara et al.
7122085 October 17, 2006 Shcro et al.
7122222 October 17, 2006 Xiao et al.
7129165 October 31, 2006 Basol et al.
7132360 November 7, 2006 Schaeffer et al.
7135421 November 14, 2006 Alm et al.
7143897 December 5, 2006 Guzman et al.
7147766 December 12, 2006 Uzoh et al.
7153542 December 26, 2006 Nguyen et al.
7156380 January 2, 2007 Soininen
7163393 January 16, 2007 Adachi et al.
7163721 January 16, 2007 Zhang et al.
7163900 January 16, 2007 Weber
7168852 January 30, 2007 Linnarsson
7172497 February 6, 2007 Basol et al.
7186648 March 6, 2007 Rozbicki
7192824 March 20, 2007 Ahn et al.
7192892 March 20, 2007 Ahn et al.
7195693 March 27, 2007 Cowans
7198447 April 3, 2007 Morimitsu et al.
7201943 April 10, 2007 Park et al.
7204887 April 17, 2007 Kawamura et al.
7205246 April 17, 2007 MacNeil et al.
7205247 April 17, 2007 Lee et al.
7207763 April 24, 2007 Lee
7208389 April 24, 2007 Tipton et al.
7210925 May 1, 2007 Adachi
7211524 May 1, 2007 Ryu et al.
7211525 May 1, 2007 Shanker
7214630 May 8, 2007 Varadarajan et al.
7223014 May 29, 2007 Lojen
7208413 April 24, 2007 Byun et al.
7234476 June 26, 2007 Arai
7235137 June 26, 2007 Kitayama et al.
7235482 June 26, 2007 Wu
7235501 June 26, 2007 Ahn et al.
7238596 July 3, 2007 Kouvetakis et al.
7238616 July 3, 2007 Agarwal
7238653 July 3, 2007 Lee et al.
7265061 September 4, 2007 Cho et al.
7274867 September 25, 2007 Peukert
D553104 October 16, 2007 Oohashi et al.
7279256 October 9, 2007 Son
7290813 November 6, 2007 Bonora
7294581 November 13, 2007 Haverkort et al.
7296460 November 20, 2007 Dimeo et al.
7297641 November 20, 2007 Todd et al.
7298009 November 20, 2007 Yan et al.
D557226 December 11, 2007 Uchino et al.
7307028 December 11, 2007 Goto et al.
7307178 December 11, 2007 Kiyomori et al.
7312148 December 25, 2007 Ramaswamy et al.
7312162 December 25, 2007 Ramaswamy et al.
7312494 December 25, 2007 Ahn et al.
7320544 January 22, 2008 Hsieh
7323401 January 29, 2008 Ramaswamy et al.
7326657 February 5, 2008 Xia et al.
7327948 February 5, 2008 Shrinivasan
7329947 February 12, 2008 Adachi et al.
7335611 February 26, 2008 Ramaswamy et al.
7351057 April 1, 2008 Berenbak et al.
7354847 April 8, 2008 Chan et al.
7354873 April 8, 2008 Fukazawa et al.
7356762 April 8, 2008 van Driel
7357138 April 15, 2008 Ji et al.
7361447 April 22, 2008 Jung
7376520 May 20, 2008 Wong
7379785 May 27, 2008 Higashi et al.
7381644 June 3, 2008 Soubramonium et al.
7387685 June 17, 2008 Choi et al.
7393207 July 1, 2008 Imai
7393418 July 1, 2008 Yokogawa
7393736 July 1, 2008 Ahn et al.
7393765 July 1, 2008 Hanawa et al.
7396491 July 8, 2008 Marking et al.
7399388 July 15, 2008 Moghadam et al.
7399570 July 15, 2008 Lee et al.
7402534 July 22, 2008 Mahajani
7405166 July 29, 2008 Liang et al.
7405454 July 29, 2008 Ahn et al.
D575713 August 26, 2008 Ratcliffe
7410290 August 12, 2008 Tanaka
7410666 August 12, 2008 Elers
7411352 August 12, 2008 Madocks
7414281 August 19, 2008 Fastow
D576001 September 2, 2008 Brunderman
7422635 September 9, 2008 Zheng
7422653 September 9, 2008 Blahnik et al.
7422775 September 9, 2008 Ramaswamy et al.
7429532 September 30, 2008 Ramaswamy et al.
7431966 October 7, 2008 Derderian et al.
7432476 October 7, 2008 Morita et al.
7437060 October 14, 2008 Wang et al.
7442275 October 28, 2008 Cowans
7467632 December 23, 2008 Lee et al.
7475588 January 13, 2009 Dimeo et al.
7476291 January 13, 2009 Wang et al.
7479198 January 20, 2009 Guffrey
7482247 January 27, 2009 Papasouliotis
7482283 January 27, 2009 Yamasaki et al.
D585968 February 3, 2009 Elkins et al.
7489389 February 10, 2009 Shibazaki et al.
7494882 February 24, 2009 Vitale
7497614 March 3, 2009 Gaff
7498242 March 3, 2009 Kumar et al.
7501292 March 10, 2009 Matsushita et al.
7501355 March 10, 2009 Bhatia et al.
7503980 March 17, 2009 Kida et al.
D590933 April 21, 2009 Vansell
7514375 April 7, 2009 Shanker et al.
D593969 June 9, 2009 Li
7541297 June 2, 2009 Mallick et al.
7547363 June 16, 2009 Tomiyasu et al.
7547633 June 16, 2009 Ravish et al.
7550396 June 23, 2009 Frohberg et al.
7561982 July 14, 2009 Rund et al.
7563715 July 21, 2009 Haukka et al.
7566891 July 28, 2009 Rocha-Alvarez et al.
7575968 August 18, 2009 Sadaka et al.
7579285 August 25, 2009 Zimmerman et al.
7579785 August 25, 2009 Shinmen et al.
D600223 September 15, 2009 Aggarwal
7582555 September 1, 2009 Lang
7582575 September 1, 2009 Fukazawa et al.
7589003 September 15, 2009 Kouvetakis et al.
7589029 September 15, 2009 Derderian et al.
7591601 September 22, 2009 Matsuoka et al.
D602575 October 20, 2009 Breda
7598513 October 6, 2009 Kouvetakis et al.
7601223 October 13, 2009 Lindfors et al.
7601225 October 13, 2009 Tuominen et al.
7601652 October 13, 2009 Singh et al.
7611751 November 3, 2009 Elers
7611980 November 3, 2009 Wells et al.
7618226 November 17, 2009 Takizawa
7621672 November 24, 2009 Ripley
7622369 November 24, 2009 Lee et al.
7622378 November 24, 2009 Liu et al.
7623940 November 24, 2009 Huskamp et al.
D606952 December 29, 2009 Lee
7625820 December 1, 2009 Papasouliotis
7629277 December 8, 2009 Ghatnagar
7632549 December 15, 2009 Goundar
7640142 December 29, 2009 Tachikawa et al.
7645341 January 12, 2010 Kennedy et al.
7645484 January 12, 2010 Ishizaka
7648927 January 19, 2010 Singh et al.
7651269 January 26, 2010 Comendant
7651583 January 26, 2010 Kent et al.
7651955 January 26, 2010 Ranish et al.
7651959 January 26, 2010 Fukazawa et al.
7651961 January 26, 2010 Clark
D609652 February 9, 2010 Nagasaka
D609655 February 9, 2010 Sugimoto
7661299 February 16, 2010 Kusunoki
7678197 March 16, 2010 Maki
7678715 March 16, 2010 Mungekar et al.
7682454 March 23, 2010 Sneh
7682657 March 23, 2010 Sherman
D613829 April 13, 2010 Griffin et al.
D614153 April 20, 2010 Fondurulia et al.
D614267 April 20, 2010 Breda
D614268 April 20, 2010 Breda
D614593 April 27, 2010 Lee
7690881 April 6, 2010 Yamagishi
7691205 April 6, 2010 Ikedo
7692171 April 6, 2010 Kaszuba et al.
7695808 April 13, 2010 Tuma
7713874 May 11, 2010 Milligan
7716993 May 18, 2010 Ozawa et al.
7720560 May 18, 2010 Menser et al.
7723648 May 25, 2010 Tsukamoto et al.
7727864 June 1, 2010 Elers
7732343 June 8, 2010 Niroomand et al.
7736437 June 15, 2010 Cadwell et al.
7736528 June 15, 2010 Okita et al.
7740437 June 22, 2010 de Ridder et al.
7740705 June 22, 2010 Li
7745346 June 29, 2010 Hausmann et al.
7748760 July 6, 2010 Kushida
7749563 July 6, 2010 Zheng et al.
7753584 July 13, 2010 Gambino et al.
7754621 July 13, 2010 Putjkonen
7763869 July 27, 2010 Matsushita et al.
7767262 August 3, 2010 Clark
7771796 August 10, 2010 Kohno et al.
7780440 August 24, 2010 Shibagaki et al.
7781352 August 24, 2010 Fukazawa et al.
7789559 September 7, 2010 Waser et al.
7789965 September 7, 2010 Matsushita et al.
7790633 September 7, 2010 Tarafdar et al.
7798096 September 21, 2010 Mahajani et al.
7803722 September 28, 2010 Liang
7806587 October 5, 2010 Kobayashi
7807566 October 5, 2010 Tsuji et al.
7807578 October 5, 2010 Bencher et al.
7816278 October 19, 2010 Reed et al.
7824492 November 2, 2010 Tois et al.
7825040 November 2, 2010 Fukazawa et al.
7829460 November 9, 2010 Streck et al.
7833353 November 16, 2010 Furukawahara et al.
7838084 November 23, 2010 Derderian et al.
7842518 November 30, 2010 Miyajima
7842622 November 30, 2010 Lee et al.
D629874 December 28, 2010 Hermans
7850449 December 14, 2010 Yang et al.
7851019 December 14, 2010 Tuominen et al.
7851232 December 14, 2010 Van Schravendijk et al.
7858519 December 28, 2010 Liu et al.
7858533 December 28, 2010 Liu et al.
7865070 January 4, 2011 Nakamura
7871198 January 18, 2011 Rempe et al.
7874726 January 25, 2011 Jacobs et al.
7884918 February 8, 2011 Hattori
7888233 February 15, 2011 Gauri
D634329 March 15, 2011 Wastrom
D634719 March 22, 2011 Yasuda et al.
7897215 March 1, 2011 Fair et al.
7897217 March 1, 2011 Faguet
7902582 March 8, 2011 Forbes et al.
7906174 March 15, 2011 Wu et al.
7910288 March 22, 2011 Abatchev et al.
7915139 March 29, 2011 Lang
7915667 March 29, 2011 Knoefler et al.
7919416 April 5, 2011 Lee et al.
7925378 April 12, 2011 Gilchrist et al.
7935940 May 3, 2011 Smargiassi
7939447 May 10, 2011 Bauer et al.
7942969 May 17, 2011 Riker et al.
7946762 May 24, 2011 Yednak
7951262 May 31, 2011 Koshiishi et al.
7955516 June 7, 2011 Chandrachood
7955650 June 7, 2011 Tsuji
7957708 June 7, 2011 Karschnia et al.
7963736 June 21, 2011 Takizawa et al.
7967913 June 28, 2011 Hua et al.
7972980 July 5, 2011 Lee et al.
7977256 July 12, 2011 Liu et al.
7981751 July 19, 2011 Zhu et al.
D643055 August 9, 2011 Takahashi
7989736 August 2, 2011 Park et al.
7992318 August 9, 2011 Kawaji
7994721 August 9, 2011 Espiau et al.
7997795 August 16, 2011 Schwagerman et al.
7998875 August 16, 2011 DeYoung
8003174 August 23, 2011 Fukazawa
8003919 August 23, 2011 Goto et al.
8004198 August 23, 2011 Bakre et al.
8020315 September 20, 2011 Nishimura
8030129 October 4, 2011 Jeong
8033771 October 11, 2011 Gage et al.
8038835 October 18, 2011 Hayashi et al.
8041197 October 18, 2011 Kasai et al.
8041450 October 18, 2011 Takizawa et al.
8043972 October 25, 2011 Liu et al.
8046193 October 25, 2011 Yetter et al.
8048783 November 1, 2011 Chung et al.
8055378 November 8, 2011 Numakura
8060252 November 15, 2011 Gage et al.
8083853 December 27, 2011 Choi et al.
D651291 December 27, 2011 Liebson et al.
8071451 December 6, 2011 Berry
8071452 December 6, 2011 Raisanen
8072578 December 6, 2011 Yasuda et al.
8076230 December 13, 2011 Wei
8076237 December 13, 2011 Uzoh
8076250 December 13, 2011 Rajagopalan
8076251 December 13, 2011 Akae et al.
8078310 December 13, 2011 Nishimoto et al.
8082946 December 27, 2011 Laverdiere et al.
8084104 December 27, 2011 Shinriki et al.
8084372 December 27, 2011 You et al.
D652896 January 24, 2012 Gether
8092604 January 10, 2012 Tomiyasu et al.
8100583 January 24, 2012 Aggarwal
D653734 February 7, 2012 Sisk
D654884 February 28, 2012 Honma
D655055 February 28, 2012 Toll
8110099 February 7, 2012 Hersey et al.
8114734 February 14, 2012 Yang et al.
8119466 February 21, 2012 Avouris
8129290 March 6, 2012 Balseanu et al.
8137462 March 20, 2012 Fondurulia et al.
8137465 March 20, 2012 Shrinivasan et al.
8138104 March 20, 2012 Balseanu et al.
8138676 March 20, 2012 Mills
8142862 March 27, 2012 Lee et al.
8143174 March 27, 2012 Xia et al.
8147242 April 3, 2012 Shibagaki et al.
8158512 April 17, 2012 Ji et al.
8172947 May 8, 2012 Shibata
8173554 May 8, 2012 Lee et al.
8178436 May 15, 2012 King et al.
8187679 May 29, 2012 Dickey et al.
8187951 May 29, 2012 Wang
8192901 June 5, 2012 Kageyama
8196234 June 12, 2012 Glunk
8197915 June 12, 2012 Oka et al.
8198168 June 12, 2012 Tanioku
8216380 July 10, 2012 White et al.
8231799 July 31, 2012 Bera et al.
D665055 August 7, 2012 Yanagisawa et al.
8241991 August 14, 2012 Hsieh et al.
8242028 August 14, 2012 Van Schravendijk
8242031 August 14, 2012 Mallick et al.
8246900 August 21, 2012 Kasai et al.
8252114 August 28, 2012 Vukovic
8252659 August 28, 2012 Huyghabaert et al.
8252691 August 28, 2012 Beynet et al.
8267633 September 18, 2012 Obikane
8272516 September 25, 2012 Salvador
8278176 October 2, 2012 Bauer et al.
8282769 October 9, 2012 Iizuka
8282847 October 9, 2012 Romano
8287648 October 16, 2012 Reed et al.
8293016 October 23, 2012 Bahng et al.
8293642 October 23, 2012 Kim
8298951 October 30, 2012 Nakano
8307472 November 13, 2012 Saxon et al.
8309173 November 13, 2012 Tuominen et al.
8323413 December 4, 2012 Son
8328939 December 11, 2012 Choi et al.
8329599 December 11, 2012 Fukazawa et al.
8334219 December 18, 2012 Lee et al.
8349083 January 8, 2013 Takasuka et al.
D676943 February 26, 2013 Kluss
8367528 February 5, 2013 Bauer et al.
8372204 February 12, 2013 Nakamura
8378464 February 19, 2013 Kato et al.
8393091 March 12, 2013 Kawamoto
8394466 March 12, 2013 Hong et al.
8398773 March 19, 2013 Jdira et al.
8404499 March 26, 2013 Moffatt
8415258 April 9, 2013 Akae
8415259 April 9, 2013 Lee et al.
8440259 May 14, 2013 Chiang et al.
8444120 May 21, 2013 Gregg et al.
8445075 May 21, 2013 Xu et al.
8450191 May 28, 2013 Wang
8465811 June 18, 2013 Ueda
8466411 June 18, 2013 Arai
8470187 June 25, 2013 Ha
8484846 July 16, 2013 Dhindsa
8492170 July 23, 2013 Xie et al.
8496377 July 30, 2013 Harr et al.
8496756 July 30, 2013 Cruse et al.
8497213 July 30, 2013 Yasui et al.
8501599 August 6, 2013 Ueno
8506162 August 13, 2013 Schick et al.
8506713 August 13, 2013 Takagi
8529701 September 10, 2013 Morita
8535767 September 17, 2013 Kimura
D691974 October 22, 2013 Osada et al.
8551892 October 8, 2013 Nakano
8562272 October 22, 2013 Lenz
8563443 October 22, 2013 Fukazawa
8569184 October 29, 2013 Oka
8586484 November 19, 2013 Matsuyama et al.
8591659 November 26, 2013 Fang et al.
8592005 November 26, 2013 Ueda
D695240 December 10, 2013 Iida et al.
8608885 December 17, 2013 Goto et al.
8614047 December 24, 2013 Ayothi et al.
8616765 December 31, 2013 Darabnia et al.
8617411 December 31, 2013 Singh
8633115 January 21, 2014 Chang et al.
D698904 February 4, 2014 Milligan et al.
8642488 February 4, 2014 Liu et al.
8647722 February 11, 2014 Kobayashi et al.
8664627 March 4, 2014 Ishikawa et al.
8667654 March 11, 2014 Gros-Jean
8668957 March 11, 2014 Dussarrat et al.
8669185 March 11, 2014 Onizawa
8679958 March 25, 2014 Takamure et al.
D702188 April 8, 2014 Jacobs
8683943 April 1, 2014 Onodera et al.
8710580 April 29, 2014 Sakuma et al.
8711338 April 29, 2014 Liu et al.
D705745 May 27, 2014 Kurs et al.
D705762 May 27, 2014 Yu
8664127 March 4, 2014 Bhatia et al.
8720965 May 13, 2014 Hino et al.
8721791 May 13, 2014 Choi et al.
8722510 May 13, 2014 Watanabe et al.
8722546 May 13, 2014 Fukazawa et al.
8726837 May 20, 2014 Patalay et al.
8728832 May 20, 2014 Raisanen
8742668 June 3, 2014 Nakano et al.
8759223 June 24, 2014 Sapre et al.
8764085 July 1, 2014 Urabe
8771807 July 8, 2014 Xiao et al.
8779502 July 15, 2014 Sakuma et al.
8784950 July 22, 2014 Fukazawa et al.
8784951 July 22, 2014 Fukazawa et al.
8785215 July 22, 2014 Kobayashi et al.
8785311 July 22, 2014 Miyoshi
8790743 July 29, 2014 Omari
8790749 July 29, 2014 Omori et al.
8802201 August 12, 2014 Raisanen et al.
8820809 September 2, 2014 Ando et al.
8821640 September 2, 2014 Cleary et al.
8841182 September 23, 2014 Chen et al.
8845806 September 30, 2014 Aida et al.
8846502 September 30, 2014 Haukka et al.
D715410 October 14, 2014 Lohmann
8864202 October 21, 2014 Schrameyer
D716742 November 4, 2014 Jang et al.
8877655 November 4, 2014 Shero et al.
8882923 November 11, 2014 Saido
8883270 November 11, 2014 Shero et al.
8901016 December 2, 2014 Ha et al.
8911553 December 16, 2014 Baluja et al.
8911826 December 16, 2014 Adachi et al.
8912101 December 16, 2014 Tsuji et al.
D720838 January 6, 2015 Yamagishi et al.
8927906 January 6, 2015 Tadokoro et al.
8933375 January 13, 2015 Dunn et al.
8940646 January 27, 2015 Chandrasekharan
D723153 February 24, 2015 Borkholder
8945305 February 3, 2015 Marsh
8945306 February 3, 2015 Tsuda
8945339 February 3, 2015 Kakimoto
8946830 February 3, 2015 Jung et al.
8956971 February 17, 2015 Huakka
8956983 February 17, 2015 Swaminathan
D723330 March 3, 2015 York
D724553 March 17, 2015 Choi
D724701 March 17, 2015 Yamagishi et al.
D725168 March 24, 2015 Yamagishi
8967608 March 3, 2015 Mitsumori et al.
8974868 March 10, 2015 Ishikawa et al.
8986456 March 24, 2015 Fondurulia et al.
8991214 March 31, 2015 Hoshino et al.
8991887 March 31, 2015 Shin et al.
8993054 March 31, 2015 Jung et al.
8993457 March 31, 2015 Ramkumar et al.
D726365 April 7, 2015 Weigensberg
D726884 April 14, 2015 Yamagishi et al.
8999102 April 7, 2015 Miyoshi et al.
9005539 April 14, 2015 Halpin et al.
9017481 April 28, 2015 Pettinger et al.
9017933 April 28, 2015 Liu et al.
9018093 April 28, 2015 Tsuji et al.
9018111 April 28, 2015 Milligan et al.
9018567 April 28, 2015 de Ridder et al.
9021985 May 5, 2015 Alokozai et al.
9023737 May 5, 2015 Beynet et al.
9023738 May 5, 2015 Kato et al.
9029253 May 12, 2015 Milligan et al.
9029272 May 12, 2015 Nakano
D732145 June 16, 2015 Yamagishi
D732644 June 23, 2015 Yamagishi et al.
D733261 June 30, 2015 Yamagishi et al.
D733262 June 30, 2015 Yamagishi et al.
D733843 July 7, 2015 Yamagishi
D734377 July 14, 2015 Hirakida
D735836 August 4, 2015 Yamagishi et al.
9096931 August 4, 2015 Yednak et al.
9099505 August 4, 2015 Kusakabe
9111972 August 18, 2015 Takeshita et al.
9117657 August 25, 2015 Nakano et al.
9117866 August 25, 2015 Marquardt et al.
D739222 September 22, 2015 Chadbourne
9123510 September 1, 2015 Nakano et al.
9123577 September 1, 2015 Fujimoto et al.
9129897 September 8, 2015 Pore et al.
9136108 September 15, 2015 Matsushita et al.
9136180 September 15, 2015 Machkaoutsan
9142393 September 22, 2015 Okabe et al.
9142437 September 22, 2015 Fosnight et al.
9153441 October 6, 2015 Takamure et al.
9166012 October 20, 2015 Sim et al.
9169975 October 27, 2015 Sarin et al.
9171714 October 27, 2015 Mori
9171716 October 27, 2015 Fukuda
D742202 November 3, 2015 Cyphers et al.
D743357 November 17, 2015 Vyne
D743513 November 17, 2015 Yamagishi
9174178 November 3, 2015 Yudovsky et al.
9175394 November 3, 2015 Berger et al.
9177784 November 3, 2015 Raisanen et al.
9184047 November 10, 2015 Liu et al.
9190263 November 17, 2015 Ishikawa et al.
9190264 November 17, 2015 Yuasa et al.
9196483 November 24, 2015 Lee et al.
9202727 December 1, 2015 Dunn et al.
9214333 December 15, 2015 Sims et al.
9228259 January 5, 2016 Hauldca et al.
9240412 January 19, 2016 Xie et al.
9245742 January 26, 2016 Haukka
9252024 February 2, 2016 Lam et al.
9257274 February 9, 2016 Kang et al.
9263298 February 16, 2016 Matsumoto et al.
9267850 February 23, 2016 Aggarwal
9281277 March 8, 2016 Baek et al.
9284642 March 15, 2016 Nakano
9297705 March 29, 2016 Aggarwal
9299557 March 29, 2016 Tolle et al.
9299595 March 29, 2016 Dunn et al.
D753269 April 5, 2016 Yamagishi et al.
D753629 April 12, 2016 Plattard
9305836 April 5, 2016 Gates et al.
9312155 April 12, 2016 Mori
9315897 April 19, 2016 Byun
9324811 April 26, 2016 Weeks
9324846 April 26, 2016 Camillo
9337054 May 10, 2016 Hunks et al.
9341296 May 17, 2016 Yednak
9343297 May 17, 2016 Fukazawa et al.
9343308 May 17, 2016 Isii
9343343 May 17, 2016 Mori
9343350 May 17, 2016 Arai
9349620 May 24, 2016 Kamata et al.
9353441 May 31, 2016 Chung
9355876 May 31, 2016 Rejuter et al.
9365924 June 14, 2016 Nonaka
9368352 June 14, 2016 Takamure et al.
9370863 June 21, 2016 Tsuji et al.
9384987 July 5, 2016 Jung et al.
9390909 July 12, 2016 Pasquale et al.
9394608 July 19, 2016 Shero et al.
9396934 July 19, 2016 Tolle
9396956 July 19, 2016 Fukazawa
9404587 August 2, 2016 Shugrue
9412564 August 9, 2016 Milligan
9412582 August 9, 2016 Sasaki et al.
9425078 August 23, 2016 Tang et al.
9443725 September 13, 2016 Liu et al.
9447498 September 20, 2016 Shiba et al.
9449793 September 20, 2016 Shaji et al.
9455138 September 27, 2016 Fukazawa
9464352 October 11, 2016 Nakano et al.
9478414 October 25, 2016 Kobayashi et al.
9478415 October 25, 2016 Kimura
D770993 November 8, 2016 Yoshida et al.
9484191 November 1, 2016 Winkler
9514927 December 6, 2016 Tolle et al.
9514932 December 6, 2016 Mallick et al.
9543180 January 10, 2017 Kamiya
9556516 January 31, 2017 Takamure
9558931 January 31, 2017 Tang
9564314 February 7, 2017 Takamure et al.
9574268 February 21, 2017 Dunn et al.
9589770 March 7, 2017 Winkler
9605342 March 28, 2017 Alokozai et al.
9605343 March 28, 2017 Winkler
9607837 March 28, 2017 Namba
D783351 April 11, 2017 Fujino et al.
9613801 April 4, 2017 Carcasi et al.
9627221 April 18, 2017 Zaitsu et al.
D785766 May 2, 2017 Sato
D787458 May 23, 2017 Kim et al.
9640416 May 2, 2017 Arai
9640448 May 2, 2017 Ikegawa et al.
9647114 May 9, 2017 Margetis
9657845 May 23, 2017 Shugrue
9659799 May 23, 2017 Lawson
9663857 May 30, 2017 Nakano et al.
D789888 June 20, 2017 Jang et al.
9685320 June 20, 2017 Kang et al.
9691771 June 27, 2017 Lansalot-Matras
9698031 July 4, 2017 Kobayashi et al.
9708707 July 18, 2017 Ditizio et al.
9708708 July 18, 2017 Isobe et al.
9711345 July 18, 2017 Shiba et al.
D793352 August 1, 2017 Hill
D793572 August 1, 2017 Kozuka et al.
9735024 August 15, 2017 Zaitsu
9741559 August 22, 2017 Shimura et al.
9748145 August 29, 2017 Kannan et al.
D796458 September 5, 2017 Jang et al.
9754779 September 5, 2017 Ishikawa
9754818 September 5, 2017 Shiu et al.
9759489 September 12, 2017 Kaneko
9790595 October 17, 2017 Jung et al.
9793115 October 17, 2017 Tolle
9793135 October 17, 2017 Zaitsu et al.
9793148 October 17, 2017 Yamagishi et al.
D802546 November 14, 2017 Jang et al.
9808246 November 7, 2017 Shelton et al.
9812319 November 7, 2017 Fukazawa et al.
9812320 November 7, 2017 Pore et al.
9859151 January 2, 2018 Niskanen
9875891 January 23, 2018 Henri et al.
9887082 February 6, 2018 Pore et al.
9890456 February 13, 2018 Tolle et al.
9891521 February 13, 2018 Kang et al.
9892908 February 13, 2018 Pettinger et al.
9892913 February 13, 2018 Margetis et al.
9895715 February 20, 2018 Haukka et al.
9899291 February 20, 2018 Kato
9899405 February 20, 2018 Kim
9905420 February 27, 2018 Margetis et al.
9909492 March 6, 2018 Tang
9909214 March 6, 2018 Suemori
9911676 March 6, 2018 Tang
9916980 March 13, 2018 Knaepen
9929011 March 27, 2018 Hawryluk et al.
9960072 May 1, 2018 Coomer
9984869 May 29, 2018 Blanquart
10032628 July 24, 2018 Xie et al.
10023960 July 17, 2018 Alokozai
10032792 July 24, 2018 Kim et al.
10043661 August 7, 2018 Kato et al.
10053774 August 21, 2018 Tolle et al.
10083836 September 25, 2018 Milligan
10087522 October 2, 2018 Raisanen et al.
10087525 October 2, 2018 Schmotzer et al.
10090316 October 2, 2018 Ootsuka
10103040 October 16, 2018 Oosterlaken et al.
10134757 November 20, 2018 Chun et al.
RE47170 December 18, 2018 Beynet et al.
10167557 January 1, 2019 Hawkins et al.
20010001953 May 31, 2001 Griffiths et al.
20010003191 June 7, 2001 Kovacs et al.
20010006070 July 5, 2001 Shang
20010007645 July 12, 2001 Honma
20010014514 August 16, 2001 Geusic
20010017103 August 30, 2001 Takeshita et al.
20010018267 August 30, 2001 Shinriki et al.
20010019777 September 6, 2001 Tanaka et al.
20010019900 September 6, 2001 Hasegawa
20010020715 September 13, 2001 Yamasaki
20010028924 October 11, 2001 Sherman
20010031535 October 18, 2001 Agnello et al.
20010038783 November 8, 2001 Nakashima et al.
20010040511 November 15, 2001 Bushner et al.
20010046765 November 29, 2001 Cappellani et al.
20010048981 December 6, 2001 Suzuki
20010049080 December 6, 2001 Asano
20010049202 December 6, 2001 Maeda et al.
20020001974 January 3, 2002 Chan
20020001976 January 3, 2002 Danek
20020005400 January 17, 2002 Gat et al.
20020009119 January 24, 2002 Matthew et al.
20020011210 January 31, 2002 Satoh et al.
20020011211 January 31, 2002 Halpin
20020013792 January 31, 2002 Imielinski et al.
20020014204 February 7, 2002 Pyo
20020014483 February 7, 2002 Suzuki et al.
20020016829 February 7, 2002 Defosse
20020023677 February 28, 2002 Zheng
20020025688 February 28, 2002 Kato
20020031644 March 14, 2002 Malofsky et al.
20020041931 April 11, 2002 Suntola et al.
20020043337 April 18, 2002 Goodman et al.
20020081826 June 27, 2002 Rotondaro et al.
20020064592 May 30, 2002 Datta et al.
20020064598 May 30, 2002 Wang et al.
20020069222 June 6, 2002 McNeely
20020076507 June 20, 2002 Chiang et al.
20020078893 June 27, 2002 Van Os et al.
20020079714 June 27, 2002 Soucy et al.
20020088542 July 11, 2002 Nishikawa et al.
20020096211 July 25, 2002 Zheng
20020098627 July 25, 2002 Pomarede et al.
20020108670 August 15, 2002 Baker et al.
20020109115 August 15, 2002 Cederstav et al.
20020110695 August 15, 2002 Yang et al.
20020110991 August 15, 2002 Li
20020112114 August 15, 2002 Blair et al.
20020114886 August 22, 2002 Chou et al.
20020115252 August 22, 2002 Haukka et al.
20020124883 September 12, 2002 Zheng
20020127350 September 12, 2002 Ishikawa et al.
20020134511 September 26, 2002 Ushioda et al.
20020136214 September 26, 2002 Do et al.
20020136909 September 26, 2002 Yang
20020139775 October 3, 2002 Chang
20020146512 October 10, 2002 Rossman
20020151327 October 17, 2002 Levitt
20020152244 October 17, 2002 Dean et al.
20020155219 October 24, 2002 Wang et al.
20020164420 November 7, 2002 Derderian et al.
20020172768 November 21, 2002 Endo et al.
20020174106 November 21, 2002 Martin
20020179011 December 5, 2002 Jonnalagadda et al.
20020184111 December 5, 2002 Swanson
20020187650 December 12, 2002 Blalock et al.
20020187656 December 12, 2002 Tan et al.
20020197849 December 26, 2002 Mandal
20030002562 January 2, 2003 Yerlikaya et al.
20030003607 January 2, 2003 Kagoshima
20030003635 January 2, 2003 Paranjpe et al.
20030003696 January 2, 2003 Gelatos et al.
20030010451 January 16, 2003 Tzu
20030010452 January 16, 2003 Park et al.
20030012632 January 16, 2003 Saeki
20030015294 January 23, 2003 Wang
20030015596 January 23, 2003 Evans
20030017268 January 23, 2003 Hu
20030019428 January 30, 2003 Ku et al.
20030019580 January 30, 2003 Strang
20030022468 January 30, 2003 Shioya et al.
20030022523 January 30, 2003 Irino et al.
20030023338 January 30, 2003 Chin et al.
20030024901 February 6, 2003 Ishikawa
20030025146 February 6, 2003 Narwankar et al.
20030029303 February 13, 2003 Hasegawa et al.
20030029381 February 13, 2003 Nishibayashi
20030029475 February 13, 2003 Hua et al.
20030035002 February 20, 2003 Moles
20030036272 February 20, 2003 Shamouilian et al.
20030040158 February 27, 2003 Saitoh
20030040841 February 27, 2003 Nasr et al.
20030042419 March 6, 2003 Katsumata et al.
20030049372 March 13, 2003 Cook et al.
20030049375 March 13, 2003 Nguyen et al.
20030049937 March 13, 2003 Suzuki
20030054670 March 20, 2003 Wang et al.
20030059535 March 27, 2003 Luo et al.
20030059980 March 27, 2003 Chen et al.
20030065413 April 3, 2003 Liteplo et al.
20030066541 April 10, 2003 Sun et al.
20030066826 April 10, 2003 Lee et al.
20030071015 April 17, 2003 Chinn et al.
20030075925 April 24, 2003 Lindfors et al.
20030082296 May 1, 2003 Elers et al.
20030082307 May 1, 2003 Chung et al.
20030091938 May 15, 2003 Fairbaim et al.
20030094133 May 22, 2003 Yoshidome et al.
20030109107 June 12, 2003 Hsieh et al.
20030109951 June 12, 2003 Hsiung et al.
20030111013 June 19, 2003 Oosterlaken et al.
20030111963 June 19, 2003 Tolmachev et al.
20030116087 June 26, 2003 Nguyen
20030168750 September 11, 2003 Basceri et al.
20030121608 July 3, 2003 Chen
20030133854 July 17, 2003 Tabata et al.
20030134038 July 17, 2003 Paranjpe
20030141820 July 31, 2003 White et al.
20030143328 July 31, 2003 Chen
20030157436 August 21, 2003 Manger et al.
20030159656 August 28, 2003 Tan
20030162412 August 28, 2003 Chung
20030168001 September 11, 2003 Sneh
20030168699 September 11, 2003 Honda
20030170583 September 11, 2003 Nakashima
20030173490 September 18, 2003 Lappen
20030180458 September 25, 2003 Sneh
20030183156 October 2, 2003 Dando
20030183856 October 2, 2003 Wieczorek et al.
20030188685 October 9, 2003 Wang
20030192875 October 16, 2003 Bicker et al.
20030198587 October 23, 2003 Kaloyeros
20030201541 October 30, 2003 Kim
20030205202 November 6, 2003 Funaki et al.
20030209323 November 13, 2003 Yokogaki
20030209326 November 13, 2003 Lee et al.
20030209746 November 13, 2003 Horii
20030211735 November 13, 2003 Rossman
20030217915 November 27, 2003 Ouellet
20030219972 November 27, 2003 Green
20030226840 December 11, 2003 Dalton
20030228772 December 11, 2003 Cowans
20030231698 December 18, 2003 Yamaguchi
20030232138 December 18, 2003 Tuominen et al.
20030232491 December 18, 2003 Yamaguchi
20040002224 January 1, 2004 Chono et al.
20040009307 January 15, 2004 Koh et al.
20040009679 January 15, 2004 Yeo et al.
20040010772 January 15, 2004 McKenna et al.
20040013577 January 22, 2004 Ganguli et al.
20040013818 January 22, 2004 Moon et al.
20040016637 January 29, 2004 Yang
20040018304 January 29, 2004 Chung et al.
20040018307 January 29, 2004 Park et al.
20040018723 January 29, 2004 Byun et al.
20040018750 January 29, 2004 Sophie et al.
20040023516 February 5, 2004 Londergan et al.
20040026372 February 12, 2004 Takenaka et al.
20040029052 February 12, 2004 Park et al.
20040036129 February 26, 2004 Forbes et al.
20040037675 February 26, 2004 Zinger et al.
20040048439 March 11, 2004 Soman
20040048492 March 11, 2004 Ishikawa et al.
20040050325 March 18, 2004 Samoilov
20040062081 April 1, 2004 Drewes
20040063289 April 1, 2004 Ohta
20040071897 April 15, 2004 Verplancken et al.
20040077182 April 22, 2004 Lim et al.
20040079960 April 29, 2004 Shakuda
20040080697 April 29, 2004 Song
20040082171 April 29, 2004 Shin et al.
20040087141 May 6, 2004 Ramanathan et al.
20040094402 May 20, 2004 Gopalraja
20040099213 May 27, 2004 Adomaitis et al.
20040101622 May 27, 2004 Park et al.
20040103914 June 3, 2004 Cheng et al.
20040106249 June 3, 2004 Huotari
20040124131 July 1, 2004 Aitchison
20040124549 July 1, 2004 Curran
20040126990 July 1, 2004 Ohta
20040129211 July 8, 2004 Blonigan et al.
20040129671 July 8, 2004 Ji et al.
20040134429 July 15, 2004 Yamanaka
20040144311 July 29, 2004 Chen
20040144980 July 29, 2004 Ahn et al.
20040146644 July 29, 2004 Xia et al.
20040151844 August 5, 2004 Zhang et al.
20040151845 August 5, 2004 Nguyen et al.
20040152287 August 5, 2004 Sherrill et al.
20040159343 August 19, 2004 Shimbara et al.
20040168627 September 2, 2004 Conley et al.
20040169032 September 2, 2004 Murayama et al.
20040187777 September 30, 2004 Okamoto et al.
20040187790 September 30, 2004 Bader
20040187928 September 30, 2004 Ambrosina
20040198069 October 7, 2004 Metzner et al.
20040200499 October 14, 2004 Harvey et al.
20040203251 October 14, 2004 Kawaguchi et al.
20040206305 October 21, 2004 Choi et al.
20040209477 October 21, 2004 Buxbaum et al.
20040211357 October 28, 2004 Gadgil
20040212947 October 28, 2004 Nguyen
20040213921 October 28, 2004 Leu
20040214399 October 28, 2004 Ahn et al.
20040214445 October 28, 2004 Shimizu et al.
20040217217 November 4, 2004 Han et al.
20040219793 November 4, 2004 Hishiya et al.
20040221807 November 11, 2004 Verghese et al.
20040231600 November 25, 2004 Lee
20040238523 December 2, 2004 Kuibira et al.
20040241998 December 2, 2004 Hanson
20040247779 December 9, 2004 Selvamanickam et al.
20040250600 December 16, 2004 Bevers et al.
20040253867 December 16, 2004 Matsumoto
20040261712 December 30, 2004 Hayashi et al.
20040266011 December 30, 2004 Lee et al.
20050000428 January 6, 2005 Shero et al.
20050003662 January 6, 2005 Jurisch et al.
20050008799 January 13, 2005 Tomiyasu et al.
20050019026 January 27, 2005 Wang et al.
20050019494 January 27, 2005 Moghadam et al.
20050020071 January 27, 2005 Sonobe et al.
20050023624 February 3, 2005 Ahn et al.
20050034674 February 17, 2005 Ono
20050037154 February 17, 2005 Koh et al.
20050037610 February 17, 2005 Cha
20050042778 February 24, 2005 Peukert
20050048797 March 3, 2005 Fukazawa
20050051093 March 10, 2005 Makino et al.
20050054228 March 10, 2005 March
20050059262 March 17, 2005 Yin et al.
20050064207 March 24, 2005 Senzaki et al.
20050064719 March 24, 2005 Liu
20050066893 March 31, 2005 Soininen
20050069651 March 31, 2005 Miyoshi
20050070123 March 31, 2005 Hirano
20050070729 March 31, 2005 Kiyomori et al.
20050072357 April 7, 2005 Shero et al.
20050074983 April 7, 2005 Shinriki et al.
20050092247 May 5, 2005 Schmidt
20050092249 May 5, 2005 Kilpela et al.
20050092733 May 5, 2005 Ito et al.
20050095770 May 5, 2005 Kumagai et al.
20050098107 May 12, 2005 Du Bois
20050100669 May 12, 2005 Kools et al.
20050101154 May 12, 2005 Huang
20050101843 May 12, 2005 Quinn et al.
20050106893 May 19, 2005 Wilk
20050110069 May 26, 2005 Kil et al.
20050118804 June 2, 2005 Byun et al.
20050118837 June 2, 2005 Todd
20050120805 June 9, 2005 Lane
20050120962 June 9, 2005 Ushioda et al.
20050123690 June 9, 2005 Derderian et al.
20050130427 June 16, 2005 Seok-Jun
20050132957 June 23, 2005 El-Raghy
20050133161 June 23, 2005 Carpenter et al.
20050141591 June 30, 2005 Sakano
20050142361 June 30, 2005 Nakanishi
20050145338 July 7, 2005 Park et al.
20050153571 July 14, 2005 Senzaki
20050172895 August 11, 2005 Kijima et al.
20050173003 August 11, 2005 Laverdiere et al.
20050175789 August 11, 2005 Helms
20050181535 August 18, 2005 Yun et al.
20050181555 August 18, 2005 Haukka et al.
20050187647 August 25, 2005 Wang et al.
20050191828 September 1, 2005 Al-Bayati et al.
20050199013 September 15, 2005 Vandroux et al.
20050208718 September 22, 2005 Lim et al.
20050211167 September 29, 2005 Gunji
20050212119 September 29, 2005 Shero
20050214457 September 29, 2005 Schmitt et al.
20050214458 September 29, 2005 Meiere
20050208778 September 22, 2005 Li
20050218462 October 6, 2005 Ahn et al.
20050221021 October 6, 2005 Strang
20050221618 October 6, 2005 AmRhein et al.
20050223982 October 13, 2005 Park et al.
20050223994 October 13, 2005 Blomiley et al.
20050227502 October 13, 2005 Schmitt et al.
20050229848 October 20, 2005 Shinriki
20050229849 October 20, 2005 Silvetti et al.
20050229972 October 20, 2005 Hoshi et al.
20050233477 October 20, 2005 Yamazaki et al.
20050241176 November 3, 2005 Shero et al.
20050241763 November 3, 2005 Huang et al.
20050245058 November 3, 2005 Lee et al.
20050249876 November 10, 2005 Kawahara et al.
20050250340 November 10, 2005 Chen et al.
20050251990 November 17, 2005 Choi
20050252449 November 17, 2005 Nguyen et al.
20050255257 November 17, 2005 Choi et al.
20050258280 November 24, 2005 Goto et al.
20050260347 November 24, 2005 Narwankar et al.
20050260850 November 24, 2005 Loke
20050263072 December 1, 2005 Balasubramanian et al.
20050263075 December 1, 2005 Wang et al.
20050263932 December 1, 2005 Heugel
20050271813 December 8, 2005 Kher et al.
20050274323 December 15, 2005 Seidel et al.
20050277271 December 15, 2005 Beintner
20050282101 December 22, 2005 Adachi
20050285097 December 29, 2005 Shang et al.
20050287725 December 29, 2005 Kitagawa
20050287771 December 29, 2005 Seamons et al.
20060000411 January 5, 2006 Seo
20060013674 January 19, 2006 Elliott et al.
20060013946 January 19, 2006 Park et al.
20060014384 January 19, 2006 Lee et al.
20060014397 January 19, 2006 Seamons et al.
20060016783 January 26, 2006 Wu
20060019033 January 26, 2006 Muthukrishnan et al.
20060019502 January 26, 2006 Park et al.
20060021572 February 2, 2006 Wolden
20060021703 February 2, 2006 Umotoy et al.
20060024439 February 2, 2006 Tuominen et al.
20060026314 February 2, 2006 Franchuk et al.
20060040054 February 23, 2006 Pearlstein et al.
20060040508 February 23, 2006 Ji
20060046518 March 2, 2006 Hill et al.
20060051520 March 9, 2006 Behle et al.
20060051925 March 9, 2006 Alm et al.
20060057828 March 16, 2006 Omura
20060060930 March 23, 2006 Metz et al.
20060062910 March 23, 2006 Meiere
20060063346 March 23, 2006 Lee et al.
20060068104 March 30, 2006 Ishizaka
20060068121 March 30, 2006 Lee et al.
20060068125 March 30, 2006 Radhakrishnan
20060087638 April 27, 2006 Hirayanagi
20060096540 May 11, 2006 Choi
20060099782 May 11, 2006 Ritenour
20060105566 May 18, 2006 Waldfried et al.
20060107898 May 25, 2006 Blomberg
20060110934 May 25, 2006 Fukuchi
20060113675 June 1, 2006 Chang et al.
20060113806 June 1, 2006 Tsuji et al.
20060128142 June 15, 2006 Whelan et al.
20060128168 June 15, 2006 Ahn et al.
20060130767 June 22, 2006 Herchen
20060137609 June 29, 2006 Puchacz et al.
20060147626 July 6, 2006 Blomberg
20060148180 July 6, 2006 Ahn et al.
20060154424 July 13, 2006 Yang et al.
20060156981 July 20, 2006 Fondurulia
20060163612 July 27, 2006 Kouvetakis et al.
20060166428 July 27, 2006 Kamioka
20060172531 August 3, 2006 Lin et al.
20060175669 August 10, 2006 Kim et al.
20060177855 August 10, 2006 Utermohlen
20060182885 August 17, 2006 Lei et al.
20060188360 August 24, 2006 Bonora et al.
20060191555 August 31, 2006 Yoshida et al.
20060193979 August 31, 2006 Meiere et al.
20060196420 September 7, 2006 Ushakov et al.
20060199357 September 7, 2006 Wan et al.
20060205223 September 14, 2006 Smayling
20060205231 September 14, 2006 Chou et al.
20060208215 September 21, 2006 Metzner et al.
20060211243 September 21, 2006 Ishizaka et al.
20060211259 September 21, 2006 Maes
20060213439 September 28, 2006 Ishizaka
20060216942 September 28, 2006 Kim et al.
20060219169 October 5, 2006 Chen et al.
20060223301 October 5, 2006 Vanhaelemeersch et al.
20060226117 October 12, 2006 Bertram et al.
20060228496 October 12, 2006 Choi
20060228863 October 12, 2006 Zhang et al.
20060228888 October 12, 2006 Lee et al.
20060236934 October 26, 2006 Choi et al.
20060240574 October 26, 2006 Yoshie
20060240662 October 26, 2006 Conley et al.
20060249253 November 9, 2006 Dando
20060251827 November 9, 2006 Nowak
20060252228 November 9, 2006 Jeng
20060252351 November 9, 2006 Kundracik
20060257563 November 16, 2006 Doh et al.
20060257584 November 16, 2006 Derderian et al.
20060258078 November 16, 2006 Lee et al.
20060258173 November 16, 2006 Xiao et al.
20060260545 November 23, 2006 Ramaswamy et al.
20060263522 November 23, 2006 Byun
20060264060 November 23, 2006 Ramaswamy et al.
20060264066 November 23, 2006 Bartholomew
20060266289 November 30, 2006 Verghese et al.
20060269690 November 30, 2006 Watanabe et al.
20060269692 November 30, 2006 Balseanu
20060275933 December 7, 2006 Du Bois et al.
20060278524 December 14, 2006 Stowell
20060283629 December 21, 2006 Kikuchi et al.
20060286774 December 21, 2006 Singh et al.
20060286775 December 21, 2006 Singh et al.
20060286817 December 21, 2006 Kato et al.
20060286818 December 21, 2006 Wang et al.
20060286819 December 21, 2006 Seutter
20060291982 December 28, 2006 Tanaka
20070006806 January 11, 2007 Imai
20070010072 January 11, 2007 Bailey et al.
20070012402 January 18, 2007 Sneh
20070020167 January 25, 2007 Han et al.
20070020830 January 25, 2007 Speranza
20070020953 January 25, 2007 Tsai et al.
20070022954 February 1, 2007 Iizuka et al.
20070026148 February 1, 2007 Arai et al.
20070028842 February 8, 2007 Inagawa et al.
20070031598 February 8, 2007 Okuyama et al.
20070031599 February 8, 2007 Gschwandtner et al.
20070032045 February 8, 2007 Kasahara et al.
20070032082 February 8, 2007 Ramaswamy et al.
20070034477 February 15, 2007 Inui
20070037343 February 15, 2007 Colombo et al.
20070037412 February 15, 2007 Dip et al.
20070042117 February 22, 2007 Kupurao et al.
20070049053 March 1, 2007 Mahajani
20070054499 March 8, 2007 Jang
20070056843 March 15, 2007 Ye et al.
20070056850 March 15, 2007 Ye et al.
20070059948 March 15, 2007 Metzner et al.
20070062439 March 22, 2007 Wada et al.
20070062453 March 22, 2007 Ishikawa
20070065578 March 22, 2007 McDougall