Light, Thermal, And Electrical Application Patents (Class 607/1)
  • Patent number: 8594761
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: November 26, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8588924
    Abstract: This document discusses, among other things, a system and method for wirelessly transferring information electromagnetically at a first specified operating frequency range and at a second specified operating frequency range using an implantable antenna. In certain examples, the implantable antenna can include a first non-coiled segment and a first coiled segment, and the first specified operating frequency range and the second specified operating frequency range can be provided at least in part by a physical arrangement of the first coiled segment with respect to the first non-coiled segment.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Philip G. Dion
  • Patent number: 8583253
    Abstract: In one embodiment, a method, for estimating electrode resistance values, comprises: calculating an aggregate resistance value for each electrode in a group of electrodes of an implantable stimulation lead of the electrical stimulation system, wherein the calculating, for each electrode, comprises: (i) setting a respective electrode in the group of electrodes as an anode; (ii) setting electrodes in the group of electrodes other than the respective electrodes as cathodes; (iii) applying a predetermined electrical signal through the group of the electrodes using a pulse generator of the electrical stimulation system; (iv) measuring current flow or voltage resulting from application of the predetermined electrical signal through the group of the electrodes; (v) calculating the aggregate resistance value for the respective electrode in response to the measuring; calculating an individual resistance value for each electrode of the group of electrodes using the set of aggregate resistance values for the group of ele
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 12, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Yanwei Shi, Robert P. Egemo
  • Patent number: 8571670
    Abstract: A method, device and system for stimulating visual tissue, typically in the retina or visual cortex, to achieve an artificial percept of light or image. The method includes providing stimulating electrodes suitable for placement in proximity to the visual tissue and generating a series of short-duration stimulation signals having a duration of less than about 0.5 milliseconds each. The short-duration stimulation signals are applied through the stimulating electrodes with varying frequencies that are substantially matched to a spiking range of frequencies of at least one ganglion cell for perceiving brightness or image.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 29, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Shelley Fried, Frank Werblin, Matthew J. McMahon
  • Patent number: 8560084
    Abstract: A biomedical conductor assembly adapted for at least partial insertion in a living body. The conductor assembly includes a plurality of the first electrical conductors each covered with an insulator and helically wound in a first direction to form an inner coil with a lumen. A plurality of second electrical conductors each including a plurality of un-insulated wires twisted in a ropelike configuration around a central axis to form a plurality of cables. Each cable is covered with an insulator and helically wound in a second opposite direction forming an outer coil in direct physical contact with the inner coil. The inner and outer coils are covered by an insulator. A method of making the conductor assembly and implanting a neurostimulation system is also disclosed.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 15, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Jesse Geroy, John Swoyer
  • Patent number: 8551147
    Abstract: A hypertension therapy instrument comprises an infrared ray generator that can radiate infrared ray onto a human body; a heart rhythm signal generator sensing heart rhythm of the human body and outputs a heart rhythm signal containing heart rhythm information; a controlling device receiving the signal outputted by the heart rhythm signal generator and controlling a radiation intensity of the infrared ray generator based on the heart rhythm of the human body, so that the radiation intensity of the infrared ray generator changes with the heart rhythm of the human body, so as to treat hypertension; and a power supply supplying power to the infrared ray generator, the heart rhythm generator, and the controlling device.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: October 8, 2013
    Assignee: Hangzhou Dalishen Medical Device Ltd.
    Inventors: Zhanggen Shou, Renzhao Wu
  • Publication number: 20130238041
    Abstract: The present invention provides a device of integrated neuronal cells interfaced with an electronic device and a method of producing the same.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 12, 2013
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: Douglas H. Smith, Bryan Pfister, David F. Meaney
  • Patent number: 8521306
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. One lead includes a telescopic microcable including multiple distinct bare areas that form a network of stimulation electrodes. The microcable includes a diameter providing for insertion of the microcable within smaller portions of the coronary vein system. The diameter may be selected from between 0.5 and 2 French. The microcable includes multiple strands twisted together. At least some strands incorporate either a core of radiopaque material wrapped by a sheath of mechanically durable material, or vice-versa. The bare areas that form the network of stimulation electrodes are provided on outward-facing portions of at least some of the strands.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-Francois Ollivier
  • Patent number: 8521299
    Abstract: A treatment system includes a regulator implanted within a patient, a computing device storing at least one patient database associated with the patient in whom the regulator is implanted, and a data transfer device. The data transfer device provides bi-directional communication (e.g., voice communication) and a data exchange (e.g., a treatment history, a patient database, and operational instructions) between the regulator and the computing device. A programmer can obtain patient reports and/or default treatment values from the computing device based on the data exchange.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: August 27, 2013
    Assignee: EnteroMedics Inc.
    Inventors: Vineel Vallapureddy, Adrianus P. Donders, Satish Ramadhyani, Wu Wang, Hang Chan
  • Patent number: 8515548
    Abstract: An article of clothing includes a clothing fabric and a plurality of bio-medical units integrated into the clothing fabric. A bio-medical includes a power harvesting module, a communication module, a processing module, a functional module, a die, and an IC package. The die supports the power harvesting module, the processing module, the communication module, and the functional module. The IC package houses the die and includes a mechanism for adhering to the clothing fabric.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: August 20, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Jeyhan Karaoguz, Pieter Vorenkamp
  • Patent number: 8515538
    Abstract: A failure detection and warning system for monitoring a medical device wherein the system includes means structured to passively or actively detect faults occurring in the medical device being monitored, and wherein the fault includes an unprogrammed and/or undesired shut off of the medical device being monitored or an unprogrammed and/or undesired shut-off of the output of the medical device being monitored by the system.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 20, 2013
    Assignee: Flint Hills Scientific, LLC
    Inventors: Ivan Osorio, Mark G. Frei, Naresh C. Bhavaraju
  • Patent number: 8504159
    Abstract: Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods are disclosed. A method in accordance with one embodiment of the invention includes identifying an affected region, with the affected region including neuronal tissue that, at least during a pre-dysfunctional period, was in neural communication with neuronal tissue in a dysfunctional region. The affected tissue can be functionally adversely affected by neuronal dysfunction in the dysfunctional region. The method can further include applying electromagnetic signals to the neuronal tissue in the affected region. For example, the electromagnetic signals can be applied to a hypo-active neural region that is not physically damaged, and has been identified as likely to recover at least in part as a result of electromagnetic signals. Signals can be applied at sub-threshold levels to cortical and/or subcortical regions.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Bradford E. Gliner, David Himes
  • Patent number: 8489185
    Abstract: Systems, methods and devices for paired training include timing controls so that training and neural stimulation can be provided simultaneously. Paired trainings may include therapies, rehabilitation and performance enhancement training. Stimulations of nerves such as the vagus nerve that affect subcortical regions such as the nucleus basalis, locus coeruleus or amygdala induce plasticity in the brain, enhancing the effects of a variety of therapies, such as those used to treat tinnitus, stroke, traumatic brain injury and post-traumatic stress disorder.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 16, 2013
    Assignee: The Board of Regents, The University of Texas System
    Inventors: Michael Kilgard, Larry Cauller, Navzer Engineer, Christa McIntyre, Will Rosellini
  • Patent number: 8489207
    Abstract: A medical device having a unit in communication with ancillary components wherein the unit and the ancillary components each have a sensory output through which communication with a user of the medical device may be accomplished and to which the user's attention directed. In one aspect, the medical device is an AED unit with associated pads, which are an ancillary component electrically connected to the AED unit. In this illustrative example, the unit has a unit sensory output (e.g., a speaker or a display), and the pads, and/or their associated packaging, have an ancillary sensory output (e.g. a speaker or display). Programming in the AED unit controls output to the sensory outputs such that the user's attention is directed between the unit and the ancillary components.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 16, 2013
    Inventors: Gintaras A Vaisnys, Glenn W. Laub, Giovanni C Meier
  • Patent number: 8489191
    Abstract: A method for altering operation of a nerve related to a given body condition includes the steps of identifying at least one nerve root of a nerve related to the given body condition; laparoscopically implanting at least one electrode on the nerve root; and operating the electrode to electrostimulate the nerve root and alter operation of the nerve.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 16, 2013
    Inventor: Marc Possover
  • Patent number: 8489169
    Abstract: A method for making a medical electrical lead electrode assembly includes the steps of: forming an insulative carrier from an insulative material; coupling at least one conductive component to the carrier by inserting a pre-formed tab of the conductive component through the carrier, from a first side thereof to a second side thereof, so that the conductive component is secured to the carrier with the tab extending along a surface of the second side of the carrier and an inward facing surface of an electrode portion of the conductive component being disposed against a surface of the first side of the carrier; coupling an elongate flexible conductor to the tab of the component; and forming an insulative layer over the second side of the carrier, the tab and the conductor electrically coupled to the tab.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 16, 2013
    Assignee: Medtronic, Inc.
    Inventors: Sean P. Skubitz, Mary L. Boatwright, Stephen L. Bolea, Jessica L. Tower, Michael E. Metzler
  • Patent number: 8481982
    Abstract: In one aspect, the present application is directed to a radiant energy emitting device. The radiant energy emitting device comprises (A) an outer housing including at least one aperture there through, the housing being operationally configured to (1) receive and contain radiant energy therein, and (2) emit radiant energy out through the aperture to a target surface; (B) an energy emission means; and (C) a sensor means disposed about the aperture of the housing, the sensor means being in communication with the energy emission means and operationally configured to detect the spatial relationship between the sensor means and the target surface, said spatial relationship determining activation of the energy emission means.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 9, 2013
    Inventors: Scot L Johnson, Daryl L Johnson
  • Patent number: 8483810
    Abstract: An apparatus for monitoring fetal positions and fetal movements is provided. The apparatus includes a plurality of sensors, a signal pre-processor, a signal post-processor, and a fetal position judging processor. The sensors are attached on the abdomen of a maternal body to provide at least three measuring leads. The signal pre-processor receives a plurality of sensing signals from the sensors, and the signal pre-processor reduces noises in the sensing signals and amplifies the sensing signals to output a plurality of characteristic sensing signals. The signal post-processor receives the characteristic sensing signals from the signal pre-processor and separates out a plurality of fetal electrocardiograms (FECGs) corresponding to the leads. The fetal position judging processor analyzes the FECGs to obtain a characteristic waveform for each of the FECGs or directly calculates a fetal heart axis vector with respect to a front-side coordinate of the maternal body according to the FECGs.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 9, 2013
    Assignees: Industrial Technology Research Institute, National Taiwan University Hospital
    Inventors: Shiow-Harn Lee, Chien-Nan Lee
  • Patent number: 8463392
    Abstract: An external controller/charger system for an implantable medical device is disclosed, in which the external controller/charger system provides automatic switching between telemetry and charging without any manual intervention by the patient. The external controller/charger system includes an external controller which houses a telemetry coil and an external charging coil coupled to the external controller. Normally, a charging session is carried out using the external charging coil, and a telemetry session is carried out using the telemetry coil. However, when a patient requests to carry out telemetry during a charging session, the external charging coil is used instead of the internal telemetry coil.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 11, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Patent number: 8447395
    Abstract: Cells that are in the process division are vulnerable to damage by AC electric fields that have specific frequency and field strength characteristics. The selective destruction of rapidly dividing cells can therefore be accomplished by imposing an AC electric field in a target region for extended periods of time at particular frequencies with particular filed strengths. Some of the cells that divide while the field is applied will be damaged, but the cells that do not divide will not be harmed. This selectively damages rapidly dividing cells like bacteria, but does not harm normal cells that are not dividing. Since the vulnerability of the dividing cells is strongly related to the alignment between the long axis of the dividing cells and the lines of force of the electric field, improved results can be obtained when the field is sequentially imposed in different directions.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 21, 2013
    Assignee: Novocure Ltd
    Inventors: Yoram Palti, Moshe Giladi
  • Patent number: 8442644
    Abstract: Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 14, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Barry C. Muffoletto, Robert W. Siegler, Steven W. Winn, Thomas A. Skwara, Dominick J. Frustaci
  • Patent number: 8437860
    Abstract: A hearing assistance system includes a hearing assistance unit, with an interface for receiving a removable module, and a removable module configured to be retained in the interface.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 7, 2013
    Assignee: Advanced Bionics, LLC
    Inventors: Scott A. Crawford, Lee F. Hartley
  • Patent number: 8423155
    Abstract: Methods and systems of facilitating stimulation of a stimulation site within a patient include implanting a distal portion of a stimulating member such that the distal portion of the stimulating member is in communication with a stimulation site located within a patient, securing the distal portion of the stimulating member at a first securing site with a first securing device, forming at least two curves of opposite concavity with a proximal portion of the stimulating member, securing the stimulating member at a second securing site with a second securing device, and coupling a proximal end of the stimulating member to a stimulator. In some examples, the at least two curves of opposite concavity are located in between the first and second securing devices.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen N. Jaax, Andrew DiGiore
  • Patent number: 8412342
    Abstract: An implantable sound pickup system. The system comprises an intracochlear acoustic sensor implantable in a recipient's cochlea comprising: an elongate core conductor, and a piezoelectric element disposed on the surface of the core conductor configured to detect pressure waves in the perilymph of the cochlea when the acoustic sensor is at least partially implanted in the cochlea, and to produce electrical signals corresponding to the detected pressure waves.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 2, 2013
    Assignee: Hearworks PTY, Limited
    Inventors: Andy L. Zhang, Peter Seligman, Anthony Klein, Robert Cowan
  • Patent number: 8406876
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 8401609
    Abstract: Various aspects are directed to systems and methods for assessing neural activity of a neural region having multiple subfields. In certain embodiments, a method includes evoking a cellular electrical response in at least one subfield due to neural activity in the neural region, capturing image data of the electrical response at a level sufficiently detailed in space and time to differentiate between polarization-based events of two respective portions of the subfield, and then assessing neural activity by correlating space and time information, from the captured data, for the two respective portions of the sub-field. Other more specific aspects of the invention involve different preparation and neural stimulation approaches which can vary depending on the application.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 19, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Raag D. Airan, Leslie A. Meltzer
  • Patent number: 8401610
    Abstract: The invention is a rotating tip catheter-imaging probe where electromagnetic energy is delivered to the distal end of a catheter and converted to mechanical energy using a light drive apparatus. The mechanical energy is then used to rotate a mirror that redirects light in fixed pattern on a sample. The rotating element of the light drive apparatus contains vanes, which rotate about an axis and positioned with bearings to minimize friction. A chamber encompasses the rotating element and is set to a vacuum pressure. The rotational speed of the catheter tip can be controlled by varying the optical power delivered to the vanes, the vacuum pressure in the chamber, or by a braking mechanism applied to the rotating element. The vanes may be shaped in a particular geometry to increase forces on the vanes from thermally driven gas flow.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Thomas E. Milner, Nathaniel J. Kemp
  • Publication number: 20130066237
    Abstract: Methods and devices are disclosed for controlled mediation and/or improvement of inflammation, inflammation associated with pain, and pain by delivering non-ablative thermal tissue damage to portions of a region of tissue including a volume of inflamed tissue, thereby activating the immune systems pain relief response to the tissue damage.
    Type: Application
    Filed: July 2, 2012
    Publication date: March 14, 2013
    Applicant: PALOMAR MEDICAL TECHNOLOGIES, INC.
    Inventors: Michael H. Smotrich, Ilya Yaroslavsky, Gregory B. Altshuler, Richard Cohen
  • Patent number: 8391993
    Abstract: Assessment of neuron excitation is implemented by quantifying the interaction between focused and unfocused stimulation applied to a cochlear array. By applying focused and unfocused stimulation to the electrode array and comparing the difference in the responses to the two types of stimulation the interaction may be determined. The magnitude of the interaction may be related to neural excitation and using this data a neural excitation profile may be determined.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: March 5, 2013
    Assignee: Cochlear Limited
    Inventors: Christoper van den Honert, Zachary Smith, Christopher J. Long, Daniel M. Lisogurski, Robert P. Carlyon
  • Patent number: 8386053
    Abstract: Techniques for improving cardiac performance by applying stimulation to the subclavian ansae nerve of a patient are disclosed. In one example, a method comprises identifying a human patient as having a cardiac condition, and delivering stimulation therapy to a subclavian ansae nerve of a human patient with a stimulation electrode.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 26, 2013
    Assignee: Medtronic, Inc.
    Inventor: Lilian Kornet
  • Patent number: 8376013
    Abstract: A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: February 19, 2013
    Assignees: Duke University, Immunolight, LLC
    Inventors: Frederic Avery Bourke, Jr., Tuan Vo-Dinh
  • Patent number: 8369946
    Abstract: An implantable medical device and associated method classify therapy outcomes and heart rhythms in association with therapy outcome. A therapy success time interval is started in response to delivering an arrhythmia therapy. If normal sinus rhythm is detected after the therapy success time interval expires, the delivered therapy is classified as unsuccessful and the detected arrhythmia is classified as a self-terminating rhythm.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: February 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Anne M. Gillis, Katherine H. Anderson, Douglas A. Hettrick, David E. Ritscher
  • Patent number: 8367122
    Abstract: In a method for treating an affected skin region of a patient having a skin disorder, a vasodilation composition is applied to an affected skin region of a patient, the affected skin region exhibiting a skin disorder characterized by at least one abnormal blood vessel, and the affected skin region is then treated so as to non-invasively disrupt tissue architecture, e.g., by inducing ischemia, of the at least one abnormal blood vessel. A vasoconstriction composition can then be applied to the skin region to cause vasoconstriction of the at least one blood vessel in order to promote healing.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: February 5, 2013
    Assignee: BioChemics, Inc.
    Inventors: Laura Stephens, John J. Masiz, Stephen G. Carter, Zhen Zhu, Kanu Patel
  • Patent number: 8369961
    Abstract: A system for enabling telemetry in implantable medical devices is provided. An implantable medical device has radio-frequency telemetry capabilities. The device includes a housing and electronic circuitry contained within the housing. The device also includes an array of antennas connected to the electronic circuitry. According to various embodiments, the array and circuitry are adapted to facilitate far-field transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. Individual antenna elements in the array are connected simultaneously or in a mutually exclusive manner to electronic circuitry, according to various embodiments. Individual antenna element geometries are sized to optimize individual antennas each for a different range of operating frequencies, according to various embodiments. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: February 5, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Timothy J. Christman, Jason J. Edwardson, Bart A. Carey
  • Patent number: 8369955
    Abstract: The present invention relates to a method and a system for improving sensitivity of a first sensory, reflex and/or motor mechanism of a subject by stimulating a second sensory, reflex and/or motor mechanism of the subject. For that purpose a noise is applied to the second sensory, reflex and/or motor mechanism to improve the sensitivity of the first sensory, reflex and/or motor mechanism due to cross-modal SR interactions.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: February 5, 2013
    Assignee: Valorisation-Recherche, Limited Partnership
    Inventors: Jocelyn Faubert, Rafael Doti, Jesus-Eduardo Lugo-Arce
  • Patent number: 8359101
    Abstract: In one embodiment, a method electrically stimulates an area in a spinal disc. The method comprises: implanting at least one steerable lead at a placement site for stimulating a spinal disc such that the lead is disposed exterior and immediately adjacent to and circumferentially along an annulus of the spinal disc, the at least one lead including a plurality of electrodes distributed along a majority of a circumference of the annulus; connecting the lead to a signal generator; and generating electrical stimulation pulses using the generator to stimulate targeted portions of the spinal disc, wherein the stimulation of the targeted portion of the spinal disc sufficiently stimulates nerve tissue within the spinal disc to prevent communication of pain signals originating in the spinal disc without damaging tissue of the spinal disc.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: January 22, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Philip M. Finch, Scott F. Drees, John Erickson
  • Patent number: 8352044
    Abstract: A system for enabling telemetry in implantable medical devices is provided. One aspect of this disclosure relates to an implantable medical device having radio-frequency telemetry capabilities. The device includes a housing and electronic circuitry contained within the housing. The device also includes an antenna connected to the electronic circuitry, the antenna having a helical portion and a whip portion, the whip portion separate from a feed conductor and adapted to enhance a radiation pattern of the antenna. According to various embodiments, the antenna and circuitry are adapted to facilitate transmission and reception of modulated radio-frequency energy at a specified carrier frequency. At least a portion of the antenna is embedded in a dielectric compartment, according to various embodiments. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 8, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Timothy J. Christman, Jason J. Edwardson, Bart A. Carey
  • Patent number: 8340785
    Abstract: An expandable electrode cuff of an implantable stimulation system that includes a base member, a first flange member extending from a proximal end along a first side wall of the base member to a first distal end, and a second flange member extending from a proximal end along a second side wall of the base member to a second distal end. The first flange member extends over both a top wall of the base member and the second flange member, and the second flange member extends over the top wall to form a lumen. The electrode cuff is capable of being advanced between a first position corresponding to both flange members extending over the top wall, a second position corresponding to the first flange member not extending over the top wall and the second flange member extending over the top wall, and a third position corresponding to both of the flange members not extending over the top wall.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 25, 2012
    Assignee: Medtronic, Inc.
    Inventors: Eric H. Bonde, Roy L. Testerman, Timothy P. Herbert, Mark A. Christopherson, Jesse D. Geroy
  • Patent number: 8326434
    Abstract: A medical electrical lead electrode assembly includes an insulative carrier and at least one conductive component. The at least one conductive component includes an electrode portion disposed on a first side of the carrier and at least one tab extending away from the electrode portion, through the carrier to a second side of the carrier. The electrode portion of the at least one component includes an outward facing contact surface and an inward facing surface, the inward facing surface being disposed opposite the contact surface and against a surface of the first side of the carrier. The electrode assembly further includes a joint coupling a flexible elongate conductor to the tab of the at least one component on the second side of the carrier, and an insulative layer extending over the joint and the tab and the conductor, the insulative layer being bonded to the second side of the carrier.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Sean Patrick Skubitz, Mary Boatwright, Stephen L. Bolea, Jessica L. Tower, Michael E. Metzler
  • Patent number: 8313520
    Abstract: Methods for treating a migraine by cooling a patient's nasopharyngeal cavity are described. In one method, a cooling assembly is inserted into a nasal cavity through a patient's nostril. The cooling assembly includes a flexible balloon defining a chamber and a first elongate tubular member having a lumen in fluid communication with the chamber. A liquid having a temperature between about ?20° C. and about 37° C. is infused through the lumen of the first elongate tubular member into the chamber, wherein the flexible balloon expands to place it in contact with the nasal cavity. In another method, an elongate member having a plurality of ports is inserted into the nasal cavity. A perfluorocarbon spray and a gas are then delivered onto a surface of the nasal cavity through the plurality of ports.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: November 20, 2012
    Assignee: BeneChill, Inc.
    Inventors: Denise Barbut, Allan Rozenberg
  • Patent number: 8313422
    Abstract: Some embodiments provide a system for external manipulation of magnetic nanoparticles in vasculature using a remotely placed magnetic field-generating stator. In one aspect, the systems and methods relate to the control of magnetic nanoparticles in a fluid medium using permanent magnet-based or electromagnetic field-generating stator sources. Such a system can be useful for increasing the diffusion of therapeutic agents in a fluid medium, such as a human circulatory system, which can result in substantial clearance of fluid obstructions, such as vascular occlusions, in a circulatory system resulting in increased blood flow.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 20, 2012
    Assignee: Pulse Therapeutics, Inc.
    Inventor: Francis M. Creighton
  • Patent number: 8315693
    Abstract: Techniques for determining whether one or more leads are not adequately connected to a patient, e.g., for ECG monitoring, are described. The techniques involve injection of an integrated signal (which includes a test signal) into one lead, and monitoring the driven lead and the response at the other leads, including the common mode and the difference between the other leads. These “lead-off” detection techniques may be provided by an external defibrillator that provides three-wire ECG monitoring. Techniques for determining a type of a cable coupled to a defibrillator are also described. The cable-type identification may allow a defibrillator to, for example, operate in either a three-wire ECG monitoring mode or a therapy mode, based on whether a three-wire ECG cable or a defibrillation cable is coupled to the defibrillator.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 20, 2012
    Assignee: Physio-Control, Inc.
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Patent number: 8311642
    Abstract: An adjustable implant electrode system comprises an adjustable implant electrode assembly and an adjustment device for adjusting the adjustable implant electrode assembly to a desired position. The adjustable implant electrode assembly comprises an implant, a plurality of electrodes, and a plurality of magnetic components. The electrodes are disposed in the implant for providing stimulating currents according to a control signal. The magnetic components are combined with the electrodes in one-to-one correspondence. The adjustment device comprises a control unit, an excitation unit, and one or more magnetic units. The control unit is used to select one or more magnetic components to be moved from the magnetic components, and the excitation unit is used to excite the selected one or more magnetic components for the same to generate a magnetic pole, and the magnetic unit is adapted to generate a magnetic field to drive the magnetic pole and accordingly move the implant.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 13, 2012
    Assignee: National Chiao Tung University
    Inventors: Charles Tak-Ming Choi, Chien-Hua Hsu
  • Patent number: 8308628
    Abstract: Some embodiments provide a system for external manipulation of magnetic nanoparticles in vasculature using a remotely placed magnetic field-generating stator. In one aspect, the systems and methods relate to the control of magnetic nanoparticles in a fluid medium using permanent magnet-based or electromagnetic field-generating stator sources. Such a system can be useful for increasing the diffusion of therapeutic agents in a fluid medium, such as a human circulatory system, which can result in substantial clearance of fluid obstructions, such as vascular occlusions, in a circulatory system resulting in increased blood flow.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 13, 2012
    Assignee: Pulse Therapeutics, Inc.
    Inventor: Francis M. Creighton
  • Patent number: 8311635
    Abstract: The present invention is a system for mapping a high resolution image to a lower resolution electrode array and, by applying varying stimulus to neighboring electrodes, creating a perceived image greater in resolution than the electrode array. The invention is applicable to a wide range of neural stimulation devices including artificial vision and artificial hearing. By applying a sub-threshold stimulus to two neighboring electrodes where the sum of the stimuli is above the threshold of perception, a perception is created in neural tissue between the two electrodes. By adjusting the stimulus on neighboring electrodes, the location of stimulation can be altered. Further, noise can be applied to the stimulating electrode or its neighboring electrodes to reduce the threshold of stimulation.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: November 13, 2012
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Richard Williamson
  • Publication number: 20120283193
    Abstract: The present invention relates generally to methods, devices and compositions for treating mental, neurological, and cognitive diseases related to deficiencies in the biosynthesis and/or metabolism of neurotransmitters.
    Type: Application
    Filed: October 29, 2010
    Publication date: November 8, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nicholas C. Spitzer, Davide Dulcis
  • Patent number: 8306620
    Abstract: A cardiac medical device and associated method control delivery of dual chamber burst pacing pulses in response to detecting tachycardia. In one embodiment, a single chamber pacing pulse is delivered in response to detecting a tachycardia. Dual chamber pacing pulses are delivered subsequent to the single chamber pacing pulse. An intrinsic depolarization is sensed subsequent to delivering the dual chamber pacing pulses. The tachycardia episode is classified in response to the sensed intrinsic depolarization.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Troy Edward Jackson, Jeffrey M. Gillberg
  • Patent number: 8300907
    Abstract: An object of the present invention is to easily maintain the couch positioning accuracy and reduce the couch positioning time while resolving the complexity of input operations by the operator at the time of couch positioning. To accomplish the above object, calculation points are set to a CT image at the time of treatment planning, and the 3D coordinates of the set calculation point are set to a DRR image. When a couch positioning unit 115 loads the DRR image from an image server 109, it reads the coordinates of calculation points set to the DRR image and displays them on the monitor 116 together with the DRR image. Further, when DR image data is loaded into the couch positioning unit 115, the DR image is displayed on the monitor 116 and calculation points set to the DRR image are set also to the DR image.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: October 30, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Yoshihiko Nagamine, Toshie Sasaki, Takao Kidani
  • Patent number: 8301248
    Abstract: A patient's ejection fraction is maximized through simultaneous sensing and stimulating across multiple electrodes. In one exemplary embodiment, a catheter or lead having multiple electrodes connected to a pulse generator is used. The pulse generator provides individual current control of the stimulus applied to each electrode, and further includes the ability to sense intrinsic and evoked depolarization through multiple electrodes. In another exemplary embodiment, a multiplicity of individual implantable microstimulators, each having its own current source and/or sensor and electrodes, cooperate in concert to provide multi-site stimulation and sensing.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 30, 2012
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Kelly H. McClure, Todd K. Whitehurst
  • Patent number: RE44340
    Abstract: A power source for an implantable medical device, such as a spinal cord stimulator, has a controlled contoured anterior surface. Preferably, the contoured anterior surface includes a layer of a biocompatible material, such as a polymer. Also preferably, the layer provides a contour generally conforming to the profile of a human buttock. Optionally, a cosmetic implant of generally substantially the same size and shape as the power source is implanted in the opposite buttock as the power source so as to create balance.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 2, 2013
    Inventor: Stephen T. Pyles