Electrolytic Erosion Of A Workpiece For Shape Or Surface Change (e.g., Etching, Polishing, Etc.) (process And Electrolyte Composition) Patents (Class 205/640)
  • Publication number: 20040245119
    Abstract: A method of electro-polishing a copper plated wafer. The method includes providing an opening which is at least as long as the copper plated wafer. The method includes dispensing an electrolyte through the opening such that the electrolyte contacts the copper plated wafer, and while dispensing the electrolyte through the opening, relative movement is effected between the opening and the copper plated wafer. The opening can have a uniform width, be convex, concave, or take any other shape depending on the application. The copper plated wafer can be moved linearly across the opening and can also be rotated. The electrolyte can be delivered to a process tank having a containment device thereon which provides the opening. As such, the opening functions an overflow weir.
    Type: Application
    Filed: June 5, 2003
    Publication date: December 9, 2004
    Inventors: Steven Reder, Michael Berman
  • Publication number: 20040245091
    Abstract: A gapfill process is provided using cycling of HDP-CVD deposition, etching, and deposition step. The fluent gas during the first deposition step includes an inert gas such as He, but includes H2 during the remainder deposition step. The higher average molecular weight of the fluent gas during the first deposition step provides some cusping over structures that define the gap to protect them during the etching step. The lower average molecular weight of the fluent gas during the remainder deposition step has reduced sputtering characteristics and is effective at filling the remainder of the gap.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Applicant: Applied Materials, Inc.
    Inventors: M Ziaul Karim, Bikram Kapoor, Anchuan Wang, DongQing Li, Katsunary Ozeki, Manoj Vellaikal, Zhuang Li
  • Patent number: 6821409
    Abstract: The present invention applies an electrochemical etching solution to a material layer, preferably a metal layer, disposed on a workpiece, in the presence of a current. This electrochemical etching solution supplies to the material on the substrate surface the species to form an intermediate compound on the surface that can be more easily mechanically removed as intermediate compound fragments than the material. By removing the intermediate compound fragments, the process allows more efficient use of the supplied current to form another layer of intermediate compound that can also be mechanically removed, rather than using the current to result in another compound on the surface of the material that eventually dissolves into the solution. In another aspect of the invention, such intermediate compound particulates are externally generated and used to mechanically remove the surface layer of the material.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: November 23, 2004
    Assignee: ASM-Nutool, Inc.
    Inventors: Bulent M. Basol, Cyprian E. Uzoh, Paul Lindquist, Homayoun Talieh
  • Patent number: 6821447
    Abstract: A method of surface treatment of friction members includes providing a friction member made of PMMC material. A transfer layer is formed on the active surface of the friction member of removing the top layer of the matrix material to expose a surface with the embedded reinforcing particles.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: November 23, 2004
    Assignees: Norsk Hydro ASA, Volvo Car Corporation
    Inventors: Torkil Storstein, Claes Kuylenstierna, Jouko Kalmi
  • Publication number: 20040217012
    Abstract: A process and a device for the galvanic surface treatment of work pieces are disclosed. The device comprises a closed process chamber wherein a work piece is received, the work piece having at least one surface exposed toward the process chamber. A process fluid is fed via inlet openings into the process chamber and is removed via outlet openings from the process chamber. At least one electrode is provided that is connected to a DC power source, while the work piece is connected to the opposite pole of the power source. The process fluid is pumped through the process chamber along a surface to be treated, while a plurality of inlet openings and outlet openings are arranged in an alternating configuration in a common surface opposite the treatment surface.
    Type: Application
    Filed: February 9, 2004
    Publication date: November 4, 2004
    Inventor: Gerhard Gramm
  • Publication number: 20040211675
    Abstract: The present invention relates to a method for removing metal oxides from a substrate surface. In one particular embodiment, the method comprises: providing a substrate, a first, and a second electrode that reside within a target area; passing a gas mixture comprising a reducing gas through the target area; supplying an amount of energy to the first and/or the second electrode to generate electrons within the target area wherein at least a portion of the electrons attach to a portion of the reducing gas and form a negatively charged reducing gas; and contacting the substrate with the negatively charged reducing gas to reduce the metal oxides on the surface of the substrate.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 28, 2004
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick
  • Patent number: 6808617
    Abstract: A polishing method and polishing apparatus able to easily flatten an initial unevenness with an excellent efficiency of removal of excess copper film and suppress damage to a lower interlayer insulation film, and a plating method and plating apparatus able to deposit a flat copper film. The polishing method comprises the steps of measuring thickness equivalent data of a film on a wafer, making a cathode member smaller than the surface face a region thereof, interposing an electrolytic solution between the surface and the cathode member, applying a voltage using the cathode member as a cathode and the film an anode, performing electrolytic polishing by electrolytic elution or anodic oxidation and chelation and removal of a chelate film in the same region preferentially from projecting portions of the film until removing the target amount of film obtained from the thickness equivalent data, and repeating steps of moving the cathode member to another region to flattening the regions over the entire surface.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: October 26, 2004
    Assignee: Sony Corporation
    Inventors: Shuzo Sato, Yuji Segawa, Akira Yoshio, Takeshi Nogami
  • Patent number: 6802954
    Abstract: The present invention is directed to a method of creating porous anode foil for use in multiple anode stack configuration electrolytic capacitors, producing a pore structure that is microscopic in pore diameter and spacing, allowing for increased energy density with a minimal increase in ESR. Initially, an anode metal foil is etched, according to a conventional etch process, to produce an enlargement of surface area. The etched foil is then placed into the electrochemical drilling solution of the present invention. Alternatively, the etched foil may be masked, so that only small areas of the etched foil are exposed, prior to being placed in the electrochemical drilling solution. A DC power supply is used to electrochemically etch the masked or unmasked foil in the electrochemical drilling solution of the present invention such that pores on the order of a few microns diameter are produced through the foil.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: October 12, 2004
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas V. Graham, Thomas F. Strange
  • Patent number: 6803322
    Abstract: The present invention pertains to a more efficient system and method for forming rectifying junction contacts in PIN alloy-semiconductor devices using photoelectrical and chemical etching. The present invention provides a means of creating rectifying junction contacts on alloy-semiconductor devices such as CdTe and CdZnTe, among others. In addition, the present invention also provides a simple and low cost method for revealing wafer surface morphology of alloy-semiconductors, thus providing an efficient and effective means for selecting single grain semiconductor substrates. Further, the present invention provides radiation detectors employing such alloy-semiconductor devices having improved rectifying junctions as the detector element.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: October 12, 2004
    Assignee: Science Applications International Corporation
    Inventors: Raulf M. Polichar, Kuo-Tong Chen
  • Publication number: 20040188272
    Abstract: The present invention relates to a method for reducing the degradation of reactive compounds during transport of such reactive compounds from one location to another location by electropolishing the surface that the reactive compound contacts during transport, minimizing the internal surface area to volume ratio or the transport equipment, and minimizing or eliminating the dead volume in the transport equipment to reduce the degradation of the product during transport.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 30, 2004
    Inventors: Jeremy Daniel Blanks, Velliyur Nott Mallikarjuna Rao
  • Patent number: 6793797
    Abstract: A method for alternately electrodepositing and electro-mechanically polishing to selectively fill a semiconductor feature with metal including a) providing an anode assembly and a semiconductor wafer disposed in spaced apart relation including an electrolyte there between the semiconductor wafer including a process surface including anisotropically etched features arranged for an electrodeposition process; b) applying an electric potential across the anode assembly and the semiconductor wafer to induce an electrolyte flow at a first current density to electrodeposit a metal filling portion onto the process surface; c) reversing the electric potential to reverse the electrolyte flow at a second current density to electropolish the process surface in an electropolishing process; and, d) sequentially repeating the steps b and c to electrodeposit at least a second metal filling portion to substantially fill the anisotropically etched features.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: September 21, 2004
    Assignee: Taiwan SEmiconductor Manufacturing Co., Ltd
    Inventors: Shih-Wei Chou, Ming-Hsing Tsai, Winston Shue, Mong-Song Liang
  • Patent number: 6790336
    Abstract: A copper damascene process for a mechanically weak low k dielectric layer is described. Electropolishing is used to etch back the copper. A sacrificial conductive layer beneath the barrier layer assures complete planarization of the copper.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: September 14, 2004
    Assignee: Intel Corporation
    Inventor: Tatyana Andryushchenko
  • Patent number: 6783657
    Abstract: The present invention provides methods and systems for the electrolytic removal of platinum and/or other of the Group 8-11 metals from substrates.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: August 31, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock, Donald L. Westmoreland
  • Patent number: 6783658
    Abstract: A target material is electropolished by applying a voltage between an anode electrode and a counter electrode while bringing the anode electrode into contact with the surface of the target material. The anode electrode is formed of an electrode material having a current density not higher than 10 mA/cm2 upon application of a voltage of +2.5V vs. silver/silver chloride electrode within a 0.1 M perchloric acid solution in an electrochemical measurement using a potentiostat.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 31, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshitaka Matsui, Hiroshi Kosukegawa, Masako Kodera, Naoto Miyashita
  • Patent number: 6773576
    Abstract: A particular anode assembly can be used to supply a solution for any of a plating operation, a planarization operation, and a plating and planarization operation to be performed on a semiconductor wafer. The anode assembly includes a rotatable shaft disposed within a chamber in which the operation is performed, an anode housing connected to the shaft, and a porous pad support plate attached to the anode housing. The support plate has a top surface adapted to support a pad which is to face the wafer, and, together with the anode housing, defines an anode cavity. A consumable anode may be provided in the anode cavity to provide plating material to the solution. A solution delivery structure by which the solution can be delivered to said anode cavity is also provided. The solution delivery structure may be contained within the chamber in which the operation is performed. A shield can also be mounted between the shaft and an associated spindle to prevent leakage of the solution from the chamber.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: August 10, 2004
    Assignee: NuTool, Inc.
    Inventors: Rimma Volodarsky, Konstantin Volodarsky, Cyprian Uzoh, Homayoun Talieh, Douglas W. Young
  • Patent number: 6770188
    Abstract: A structural body material layer is formed directly on a base substrate or via a sacrificing layer or a peeling layer, a groove is fabricated electrochemically along an outer configuration shape of a part constituting an object at the structural body material layer and thereafter, only the sacrificing layer or the base substrate is selectively removed or the part is mechanically separated from the peeling layer to thereby separate the part and the base substrate and provide the part constituting the object or fabricate a part having a movable portion by partially restricting a portion to be separated.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 3, 2004
    Assignee: Seiko Instruments Inc.
    Inventors: Masayuki Suda, Naoya Watanabe, Kazuyoshi Furuta
  • Publication number: 20040140223
    Abstract: A system and method are described for radially positioning a workpiece for electrochemical machining. In one embodiment, a pressurized air chamber is configured to contain pressurized air. In addition, an expandable diaphragm is configured to position the workpiece radially relative to an electrode assembly in response to the pressurized air being released into the pressurized air chamber.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 22, 2004
    Inventor: Dustin A. Cochran
  • Publication number: 20040140224
    Abstract: A system and method are described for holding and releasing a workpiece for electrochemical machining. In one embodiment, a workpiece holder has a workpiece surface that couples to the workpiece when negative pressure is applied to provide a seal between the workpiece and the workpiece surface. A plenum located within the workpiece holder has a proximal end capable of being removably coupled to the workpiece. A piston is configured to move upward in the plenum and to lift the workpiece off of the workpiece surface in response to positive pressure being applied.
    Type: Application
    Filed: December 22, 2003
    Publication date: July 22, 2004
    Inventors: Mark Greg Steele, Dustin Alan Cochran
  • Patent number: 6764713
    Abstract: A method of processing a wafer includes placing a wafer atop a wafer chuck, wherein the chuck has a base and an upper body in which the upper body is coupled to the base by a flexible coupling that allows the upper body to tilt relative to the base. The wafer is engaged to a hollow sleeve and forms a floor creating an enclosed vessel to retain a processing fluid. Once the vessel is filled, the wafer is then processed utilizing the processing fluid. Further, the wafer tilts allowing for a compliant engagement of the wafer and the sleeve to prevent or reduce leakage of the processing fluid.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: July 20, 2004
    Assignee: Mattson Technology, Inc.
    Inventor: Joseph Wytman
  • Publication number: 20040134792
    Abstract: Embodiments of a ball assembly are provided. In one embodiment, a ball assembly includes a housing, a ball, a conductive adapter and a contact element. The housing has an annular seat extending into a first end of an interior passage. The conductive adapter is coupled to a second end of the housing. The contact element electrically couples the adapter and the ball with is retained in the housing between seat and the adapter.
    Type: Application
    Filed: June 26, 2003
    Publication date: July 15, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yongqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler
  • Patent number: 6754955
    Abstract: Using sinker electrode discharge machining tools, damaged portions of partitions of the turbine which have been removed and replaced with weld material of increased thickness may be shaped and contoured to blend with the suction and pressure sides of the partitions. The diaphragm containing the partitions is located in a tank containing dielectric material. A numerically controlled EDM machine directs first and second sinker EDM tools having surfaces corresponding to designed surfaces of the trailing edge portions of the partitions applied to contour and shape the opposite surfaces of the weld material to blend with the pressure and suction sides of the partitions. A third EDM tool is used to shape the juncture at opposite ends of each partition with the arcuate surfaces of the inner and outer bands.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 29, 2004
    Assignee: General Electric Company
    Inventors: Ralph J. Carl, Jr., John Francis Nolan, Bin Wei, Todd Joseph Fischer
  • Patent number: 6756307
    Abstract: The present invention pertains to apparatus and methods for electroplanarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by use of a flexible planar cathode and a spacing pad thereon. Methods of the invention are electropolishing methods. During electroplanarization, the flexible planar cathode conforms to the global contour of the work piece (e.g. a wafer) while the spacing pad conforms to local topography of the metal layer being planarized. In this way, dishing is reduced in the final planarized metal layer.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: June 29, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: John Kelly, Wilbert G. H. van den Hoek, John S. Drewery
  • Patent number: 6752916
    Abstract: A method for determining an end point of a planarization process for removing metal from a surface of a substrate submerged in an electrolytic solution or slurry. A first electrode is provided which is operable to contact the surface of the substrate, such as a working electrode of a potentiostat system. A second electrode is provided which is operable to contact the electrolytic solution, such as a reference electrode of the potentiostat system. The first electrode is contacted to the surface of the substrate and an electrochemical property is measured, such as the electrochemical potential between the first and second electrodes, where the electrochemical property is indicative of an electrochemical characteristic of the substrate-slurry system. The planarization process is preferably stopped when a substantial change in the electrochemical potential of the system is measured.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: June 22, 2004
    Assignee: LSI Logic Corporation
    Inventors: Yan Fang, Jayanthi Pallinti, Ronald J. Nagahara
  • Publication number: 20040112759
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using sulfonic acid compositions.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Lawrence A. Zazzera, Michael J. Parent, William M. Lamanna, Susrut Kesari
  • Patent number: 6743350
    Abstract: An electrode for rejuvenating a cooling passage within an airfoil, the electrode including a tip, an end, a conductive core extending between the tip and the end, and an insulating coating disposed on the conductive core. The insulating coating exposes a number of conductive strips of the conductive core extending between the tip and the end. The insulating coating forms a number of insulating portions and further exposes a number of spacer portions of the conductive core longitudinally positioned between the insulating portions. The insulating portions substantially span a distance between the tip and the end and are positioned between the conductive strips.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: June 1, 2004
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Robert Alan Johnson, Bin Wei, Hsin-Pang Wang, Lawrence Bernard Kool
  • Publication number: 20040094430
    Abstract: A method and apparatus for forming a fluid dynamic pressure groove in a fluid dynamic pressure bearing. The method is accomplished by imparting an electrochemical dissolving effect to each machined surface of multiple workpieces, each of these workpieces serving as a part of the fluid dynamic pressure bearing and forming at least one fluid dynamic pressure grove on each machined surface. Each groove may have a specified shape, dimension and surface condition. The same electrolyte is directed from a common electrolyte tank to each machining device used on the multiple workpieces.
    Type: Application
    Filed: August 7, 2003
    Publication date: May 20, 2004
    Applicant: Minebea Co., Ltd.
    Inventors: Hiroshi Yoshikawa, Tomoyuki Yasuda
  • Publication number: 20040094431
    Abstract: A lithographic printing plate substrate web is brush grained with some of the brushes having the bristles moving over the web along a first track and some additional brushes having the bristles moving over the web along a second track at an angle of at least 5° to the first track. Some of the brushes may have the axis of rotation perpendicular to the direction of movement of the web in the conventional manner and at least one additional brush having the axis of rotation at an angle to the direction of movement of the web. There may be a plurality of such additional brushes, usually two, with the additional brushes being angled with respect to each other. In one embodiment, the bristles of the additional brush track over the web in a direction perpendicular to the web movement. Subsequent to brush graining, the brush grained surface is electrochemically grained.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 20, 2004
    Applicant: Howard A. Fromson
    Inventors: Howard A. Fromson, William J. Rozell
  • Patent number: 6736956
    Abstract: The present invention is directed to a method of etching anode foil in a non-uniform manner which increases the overall capacitance gain of the foil while retaining foil strength. In particular, by using a mask to protect a mesh grid of the foil from further etching, a previously etched foil can be further etched, prior to the widening step. Alternatively, the mask may be used in the initial etch, eliminating the need for the second process. In effect the foil may be etched to a higher degree in select regions, leaving a web of more lightly etched foil defined by the mask to retain strength. According to the present invention, the foil is placed between two masks with a grid of openings which expose the foil in these areas to the etching solution. The exposed area can be as little as 10% of the total foil to as much as 95% of the total foil, preferably 30% to 70% of the total foil area.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: May 18, 2004
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas V. Graham, Thomas Flavian Strange
  • Patent number: 6733649
    Abstract: A semiconductor workpiece holder for use in processing a semiconductor workpiece includes a workpiece support operatively mounted to support a workpiece in position for processing. A finger assembly is operatively mounted upon the workpiece support and includes a finger tip. The finger assembly is movable between an engaged position in which the finger tip is engaged against the workpiece, and a disengaged position in which the finger tip is moved away from the workpiece. Preferably, at least one electrode forms part of the finger assembly and includes an electrode contact for contacting a surface of said workpiece. At least one protective sheath covers at least some of the electrode contact. According to one aspect of the invention, a sheathed electrode having a sheathed electrode tip is positioned against a semiconductor workpiece surface in a manner engaging the workpiece surface with said sheathed electrode tip.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 11, 2004
    Assignee: Semitool, Inc.
    Inventors: Martin Bleck, Kenneth C. Haugan, Larry R. Radloff, Harry Geyer
  • Patent number: 6726815
    Abstract: An electrochemical etching cell (1) is proposed for etching an etching body (15) made at least superficially of an etching material. The etching cell (1) has at least one chamber filled with an electrolyte, and is provided with a first electrode (13), which at least superficially has a first electrode material, and with a second electrode (13′) which at least superficially has a second electrode material. Furthermore, the etching body (15) is in contact, at least region-wise, with the electrolyte. In this context, the first electrode material and the second electrode material are selected such that, after the etching, the etching body (15) is not contaminated and/or is not impaired in its properties by the electrode materials. In particular, the electrode materials are the same materials as the etching material. Also proposed is a method for etching an etching body (15) using this etching cell (1), the first and/or the second electrode (13, 13′) being used as a sacrificial electrode.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: April 27, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Hans Artmann, Wilhelm Frey, Franz Laermer
  • Patent number: 6726823
    Abstract: A wafer chuck assembly for holding a wafer during electroplating and/or electropolishing of the wafer includes a wafer chuck for receiving the wafer. The wafer chuck assembly also includes an actuator assembly for moving the wafer chuck between a first and a second position. When in the first position, the wafer chuck is opened. When in the second position, the wafer chuck is closed.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: April 27, 2004
    Assignee: ACM Research, Inc.
    Inventors: Hui Wang, Felix Gutman, Voha Nuch
  • Patent number: 6723224
    Abstract: Generally, a method and apparatus for electro-chemical polishing a metal layer disposed on a substrate is provided. In one embodiment, the electro-chemical polishing apparatus generally includes a substrate support having a plurality of contact members, a cathode and at least one nozzle. The nozzle is adapted to centrally dispose a polishing fluid on the substrate supported by the substrate support. The cathode is adapted to couple the polishing fluid to a negative terminal of a power source. A positive terminal of the power source is electrically coupled through the contact members to the conductive layer of the substrate. The nozzle creates a turbulent flow in the portion of the polishing fluid boundary layer proximate the center of the substrate which enhances the polishing rate at the center of the substrate.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: April 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Joseph Yahalom, Srinivas Gandikota, Christopher R. McGuirk, Deenesh Padhi
  • Patent number: 6722942
    Abstract: Various embodiments of a planarization device and methods of using the same are provided. In one aspect, a device for planarizing a surface of a semiconductor workpiece is provided that includes a table for holding a quantity of an electrically conducting solution thereon. A member is included for holding the semiconductor workpiece such that the surface is in contact with the solution and operates as a working electrode. The member has a first conductor for establishing electrical connection with the semiconductor workpiece. A counter electrode is provided for making electrical connection with the solution and a reference electrode is provided for making electrical connection with the solution with a known electrode potential. A power source is operable to control the electric potential between the working electrode and the counter electrode. Slurry consumption may be dramatically reduced and static etch rate due to aborts may be virtually eliminated.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: April 20, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher H. Lansford, Jeremy S. Lansford, Bradley J. Yellitz
  • Patent number: 6719892
    Abstract: A process for selective removal of a nickel alloy brazing composition from a nickel-base alloy component includes the steps of providing a brazed assembly including nickel-base alloy components joined by nickel alloy brazing composition; immersing the assembly in an electrolyte; and applying a potential across the electrolyte at a magnitude wherein the nickel-base alloy components are electrochemically passive and the nickel alloy brazing composition dissolves whereby the brazing composition is removed from the components.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: April 13, 2004
    Assignee: United Technologies Corporation
    Inventors: Mark Jaworowski, Michael A Kryzman
  • Publication number: 20040060827
    Abstract: The present invention relates to a control loop to be used in a system for stripping a coating from a part. The control loop comprises an electrometer for measuring a potential between the part and a reference electrode and generating a voltage output signal, an operational amplifier for comparing the voltage output signal to a set point voltage and for producing an output signal to be used to reduce the difference between the voltage output signal and the set point voltage, and a high current power transistors for supplying a current to the part.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Inventor: Curtis Heath Riewe
  • Patent number: 6712952
    Abstract: The present invention pertains to a method for removing a substance (X) from a solid metal or semi-metal compound (M1X) by electrolysis in a melt of M2Y, which comprises conducting the electrolysis under conditions such that reaction of X rather than M2 deposition occurs at a electrode surface, and that X dissolves in the electrolyte M2Y. The substance X is either removed from the surface (i.e., M1X) or by means of diffusion extracted from the case material. The temperature of the fused salt is chosen below the melting temperature of the metal M1. The potential is chosen below the decomposition potential of the electrolyte.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: March 30, 2004
    Assignee: Cambridge Univ. Technical Services, Ltd.
    Inventors: Derek John Fray, Thomas William Farthing, Zheng Chen
  • Patent number: 6709565
    Abstract: The present invention pertains to apparatus and methods for planarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by increasing the fluid agitation in raised regions with respect to recessed regions. That is, the agitation of the electropolishing bath fluid is agitated or exchanged as a function of elevation on the metal film profile. The higher the elevation, the greater the movement or exchange rate of bath fluid. In preferred methods of the invention, this agitation is achieved through the use of a microporous electropolishing pad that moves over (either near or in contact with) the surface of the wafer during the electropolishing process. Thus, methods of the invention are electropolishing methods, which in some cases include mechanical polishing elements.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: March 23, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Robert J. Contolini, Eliot K. Broadbent, John S. Drewery
  • Patent number: 6706166
    Abstract: A method for improving an electrodeposited metal film uniformity and preventing metal deposition and peeling of deposited metal from an electrode during an electrodeposition and electropolishing process including providing a first anode electrode assembly and a semiconductor wafer plating surface disposed in an electrolyte bath including a plating metal for deposition onto the semiconductor wafer plating surface; providing at least one additional anode electrode assembly including the plating metal disposed peripheral to the first anode electrode assembly for selectively applying the cathodic electrical potential during an electropolishing process; and, periodically alternating between an electrodeposition process and electropolishing process with respect to the semiconductor wafer plating surface such that the plating metal is preferentially plated onto the at least one additional electrode assembly.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 16, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Shih-Wei Chou, Ming-Hsing Tsai
  • Publication number: 20040040863
    Abstract: A method and an apparatus for electrochemically removing a metal from a substrate surface with an electrolyte and an electrode that has a surface defining a shape suitable to cause substantially uniform removal of a metal-containing surface.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Whonchee Lee, Scott Meikle, Trung Doan, Eugene P. Marsh
  • Patent number: 6699380
    Abstract: Embodiments of the invention generally provide a substrate processing system and method. The substrate processing system generally includes two primary components. The first component is an interface section having at least one first substrate transfer robot positioned therein, and the second component is at least one processing module in communication with the interface section, the at least one processing module having a pretreatment and post treatment cell, a processing cell, at a second substrate transfer robot positioned therein. The substrate processing method generally includes transporting a dry substrate to a processing module via a dry interface. Once the substrate is positioned in the processing module, a robot transfers the substrate between a treatment cell and a processing cell contained within the processing module to complete a predetermined sequence of processing steps.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 2, 2004
    Assignee: Applied Materials Inc.
    Inventors: Guan-Shian Chen, Michael X. Yang
  • Patent number: 6695962
    Abstract: An anode assembly by which a solution can be supplied to a surface of a semiconductor substrate includes a housing defining an internal housing volume into which the solution can flow. A closure is provided for the internal housing volume, and the solution can be discharged from the internal housing volume through the closure towards the surface of the semiconductor substrate. A filter divides the internal housing volume into a first chamber and a second chamber located between the first chamber and the closure. During supply of the solution to the surface, a flow of the solution into the second chamber occurs at a higher rate than a flow of the solution into the first chamber, and the flows are blended in the second chamber.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: February 24, 2004
    Assignee: NuTool Inc.
    Inventors: Cyprian E. Uzoh, Homayoun Talieh, Bulent M. Basol
  • Publication number: 20040020788
    Abstract: Systems and methods for electrochemically processing. A contact element defines a substrate contact surface positionable in contact a substrate during processing. In one embodiment, the contact element comprises a wire element. In another embodiment the contact element is a rotating member. In one embodiment, the contact element comprises a noble metal.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Rashid Mavliev, Stan Tsai, Yongqi Hu, Paul Butterfield, Antoine Manens, Liang-Yuh Chen
  • Publication number: 20040023610
    Abstract: Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
    Type: Application
    Filed: June 6, 2003
    Publication date: February 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Antoine P. Manens, Siew S. Neo, Stan D. Tsai, Liang-Yuh Chen, Paul D. Butterfield, Yuan A. Tian, Sen-Hou Ko
  • Patent number: 6685814
    Abstract: An apparatus and method for an electrodeposition or electroetching system. A thin metal film is deposited or etched by electrical current through an electrolytic bath flowing toward and in contact with a target on which the film is disposed. Uniformity of deposition or etching is promoted, particularly at the edge of the target film, by, baffle and shield members through which the bath passes as it flows toward the target. The baffle has a plurality of openings disposed to control the localized current flow across the cross section of the workpiece/wafer. Disposed near the edge of the target, the shield member shapes the potential field and the current line so that it is uniform.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: February 3, 2004
    Assignee: International Business Machines Corporation
    Inventors: Cyprian E. Uzoh, Hariklia Deligianni, John O. Dukovic
  • Publication number: 20040011653
    Abstract: The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 22, 2004
    Inventors: Dale W. Collins, Richard H. Lane, Rita J. Klein
  • Patent number: 6676826
    Abstract: A method for production of a rotor for centrifugal compressor, wherein the said rotor is produced from a monolithic disc, which is provided with a central hole. The method consists of use, within an isolating medium, of at least one first electrode which has polarity opposite the polarity of the rotor, wherein the said first electrode operates starting from the outer diameter of the monolithic disc, in order to produce the blades and the cavities of the said rotor, and wherein the processing takes place with a continuous path, consisting of a first step of roughing, followed by a second step of finishing with a tool which has a shape similar to that of the electrode used for the first roughing step, in order to produce an accurate geometry of the blades.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: January 13, 2004
    Assignee: Nuovo Pignone Holding S.p.A.
    Inventors: Verter Battistini, Umberto Mariotti
  • Patent number: 6670099
    Abstract: A support for a lithographic printing plate with no damage in appearance such as unevenness in the form of streaks and with excellent pit homogeneity. A support for a lithographic printing plate obtained by subjecting a surface of an aluminum alloy plate to a surface treatment including alkali etching and an electrochemical graining treatment, wherein the aluminum alloy plate shows dispersion of 50% or lower for each element, the dispersion being defined by an specific equation with regard to contents of Fe, Si, Mn, Mg and Sn in a surface layer portion thereof which is from the surface to a depth of 1 &mgr;m.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: December 30, 2003
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Atsuo Nishino, Akio Uesugi
  • Publication number: 20030230493
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 18, 2003
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Patent number: 6663765
    Abstract: Method and device for manufacturing of expandable cylindrical metal meshes for use in expandable stents and in particular for customized manufacturing. The method includes determining the type and size of the stent to be implanted, electrochemically forming the stent with desired pattern of meshes and implanting the stent into patient. The method comprises using a cathode with desired pattern of meshes and a tubular blank, from which the stent is formed. Between the cathode and the blank is delivered an electrolyte and the cathode and the blank are simultaneously rotated during electrochemical forming process.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: December 16, 2003
    Inventor: David Cherkes
  • Publication number: 20030226764
    Abstract: Methods and apparatuses for electrochemical-mechanical processing of microelectronic workpieces. One embodiment of an electrochemical processing apparatus in accordance with the invention comprises a workpiece holder configured to receive a microelectronic workpiece, a workpiece electrode, a first remote electrode, and a second remote electrode. The workpiece electrode is configured to contact a processing side of the workpiece when the workpiece is received in the workpiece holder. The first and second remote electrodes are spaced apart from the workpiece holder. The apparatus can also include an AC power supply, a DC power supply, and a switching assembly. The switching assembly is coupled to the workpiece electrode, the first remote electrode, the second remote electrode, the AC power supply, and the DC power supply.
    Type: Application
    Filed: March 4, 2002
    Publication date: December 11, 2003
    Inventors: Scott E. Moore, Whonchee Lee, Scott G. Meikle, Trung T. Doan