Of Specified Material Other Than Unalloyed Aluminum Patents (Class 257/741)
  • Patent number: 8390125
    Abstract: An integrated circuit structure includes a semiconductor substrate, a through-silicon via (TSV) extending into the semiconductor substrate, a pad formed over the semiconductor substrate and spaced apart from the TSV, and an interconnect structure formed over the semiconductor substrate and electrically connecting the TSV and the pad. The interconnect structure includes an upper portion formed on the pad and a lower portion adjacent to the pad, and the upper portion extends to electrically connect the TSV.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hong Tseng, Sheng Huang Jao
  • Publication number: 20130049746
    Abstract: A semiconductor chip package and a method to manufacture a semiconductor chip package are disclosed. An embodiment of the present invention comprises a substrate and a semiconductor chip disposed on the substrate and laterally surrounded by a packaging material. The package further comprises a current rail adjacent the semiconductor chip, the current rail isolated from the semiconductor chip by an isolation layer, a first external pad, and a via contact contacting the current rail with the first external pad.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Infineon Technologies AG
    Inventors: Volker Strutz, Stefan Landau, Udo Ausserlechner
  • Publication number: 20130048994
    Abstract: A Thin Film Transistor (TFT) has a capping layer disposed on the surface of at least one of source and drain electrodes on a substrate, a protective film disposed on the capping layer, and a conductive layer electrically connected to the capping layer via a contact hole formed in the protective layer film.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 28, 2013
    Applicant: Samsung Display Co., Ltd.
    Inventors: Shin-Il CHOI, Yong-Hwan RYU, Hong-Sick PARK, Seung-Ha CHOI
  • Publication number: 20130049109
    Abstract: A metal gate structure comprises a metal layer partially filling a trench of the metal gate structure. The metal layer comprises a first metal sidewall, a second metal sidewall and a metal bottom layer. By employing an uneven protection layer during an etching back process, the thickness of the first metal sidewall is less than the thickness of the metal bottom layer and the thickness of the second metal sidewall is less than the thickness of the metal bottom layer. The thin sidewalls allow extra space for subsequent metal-fill processes.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Soon Lim, Da-Yuan Lee, Kuang-Yuan Hsu
  • Publication number: 20130049200
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to fond an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A silicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Publication number: 20130049199
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Patent number: 8384205
    Abstract: A method of manufacturing an electronic device package. Coating a first side of a metallic layer with a first insulating layer and coating a second opposite side of the metallic layer with a second insulating layer. Patterning the first insulating layer to expose bonding locations on the first side of the metallic layer, and patterning the second insulating layer such that remaining portions of the second insulating layer on the second opposite side are located directly opposite to the bonding locations on the first side. Selectively removing portions of the metallic layer that are not covered by the remaining portions of the second insulating layer on the second opposite side to form separated coplanar metallic layers. The separated coplanar metallic layers include the bonding locations. Selectively removing remaining portions of the second insulating layer thereby exposing second bonding locations on the second opposite sides of the separated coplanar metallic layers.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: February 26, 2013
    Assignee: LSI Corporation
    Inventors: Qwai Low, Patrick Variot
  • Patent number: 8384217
    Abstract: By forming an aluminum nitride layer by a self-limiting process sequence, the interface characteristics of a copper-based metallization layer may be significantly enhanced while nevertheless maintaining the overall permittivity of the layer stack at a lower level.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 26, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christof Streck, Volker Kahlert
  • Publication number: 20130043590
    Abstract: The present application discloses a method of manufacturing a semiconductor structure. According to at least one embodiment, a first etch stop layer is formed over a conductive feature and a substrate, and the conductive feature is positioned over the substrate. A second etch stop layer is formed over the first etch stop layer. A first etch is performed to form an opening in the second etch stop layer, and the opening exposes a portion of the first etch stop layer. A second etch is performed to extend the opening downwardly by removing a portion of the exposed first etch stop layer, and the extended opening exposes a portion of the conductive feature.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mei-Hsuan LIN, Chih-Hsun LIN, Chih-Kang CHAO, Ling-Sung WANG
  • Publication number: 20130043589
    Abstract: Disclosed herein are various methods of forming methods of forming a non-planar cap layer above a conductive line on a semiconductor device, and to devices incorporating such a non-planar cap layer. In one illustrative example, the method includes forming a conductive structure in a layer of insulating material, recessing an upper surface of the conductive structure relative to an upper surface of the layer of insulating material such that the recessed upper surface of the conductive structure and the upper surface of the layer of insulating material are positioned in different planes and, after recessing the upper surface of the conductive structure, forming a first cap layer on the conductive structure and the layer of insulating material.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ryoung-Han Kim, Errol Todd Ryan
  • Patent number: 8378496
    Abstract: The interlayer connection of the substrate is formed by a contact-hole filling (4) of a semiconductor layer (11) and metallization (17) of a recess (16) in a reverse-side semiconductor layer (13), wherein the semiconductor layers are separated from each other by a buried insulation layer (12), at whose layer position the contact-hole filling or the metallization ends.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: February 19, 2013
    Assignee: austriamicrosystems AG
    Inventors: Franz Schrank, Martin Schrems, Jochen Kraft
  • Publication number: 20130040422
    Abstract: Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
    Type: Application
    Filed: September 13, 2012
    Publication date: February 14, 2013
    Applicant: FERRO CORPORATION
    Inventors: Nazarali Merchant, Aziz S. Shaikh, Srinivasan Sridharan
  • Publication number: 20130020705
    Abstract: Methods form an integrated circuit structure by forming at least a portion of a plurality of devices within and/or on a substrate and patterning trenches in an inter-layer dielectric layer on the substrate adjacent the devices. The patterning forms relatively narrow trenches and relatively wide trenches. The methods then perform an angled implant of a compensating material into the trenches. The angle of the angled implant implants a greater concentration of the compensating material in the regions of the substrate at the bottom of the wider trenches relative to an amount of compensating material implanted in the regions of the substrate at the bottom of the narrower trenches. The methods then deposit a metallic material within the trenches and heat the metallic material to form silicide from the metallic material.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicants: GLOBALFOUNDRIES, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Viraj Y. Sardesai, Cung D. Tran, Bin Yang
  • Publication number: 20130020706
    Abstract: In accordance with an embodiment, a semiconductor device includes a substrate, a line-and-space structure, a first film and a second film. The line-and-space structure includes line patterns arranged on the substrate parallel to one another at a predetermined distance. The first film is formed on side surfaces and bottom surfaces of the line patterns by an insulating film material. The second film is formed on the line-and-space structure across a space between the line patterns by a material showing low wettability to the first film. Space between the line patterns includes an air gap in which at least a bottom surface of the first film is totally exposed.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 24, 2013
    Inventors: Takashi FURUHASHI, Miyoko SHIMADA, Ichiro MIZUSHIMA, Shinichi NAKAO
  • Publication number: 20130020704
    Abstract: Methods of directly bonding a first semiconductor structure to a second semiconductor structure include directly bonding at least one device structure of a first semiconductor structure to at least one device structure of a second semiconductor structure in a conductive material-to-conductive material direct bonding process. In some embodiments, at least one device structure of the first semiconductor structure may be caused to project a distance beyond an adjacent dielectric material on the first semiconductor structure prior to the bonding process. In some embodiments, one or more of the device structures may include a plurality of integral protrusions that extend from a base structure. Bonded semiconductor structures are fabricated using such methods.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Mariam Sadaka
  • Publication number: 20130020707
    Abstract: A 3D IC based system including: a first semiconductor layer including first alignment marks and first transistors, wherein the first transistors are interconnected by at least one metal layer including aluminum or copper; a second mono-crystallized semiconductor layer including second transistors and overlaying the at least one metal layer, wherein the at least one metal layer is in-between the first semiconductor layer and the second mono-crystallized semiconductor layer; and wherein the second transistors include a plurality of N-type transistors and P-type transistors, and wherein the second mono-crystallized semiconductor layer is transferred from a reusable donor wafer.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 24, 2013
    Applicant: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Deepak Sekar, Brian Cronquist, Ze'ev Wurman
  • Patent number: 8357998
    Abstract: In a method of manufacturing a semiconductor package including a wire binding process, a first end of the bonding wire is bonded to a first pad so as to form a first bond portion. A second end of the bonding wire is bonded to a second pad, wherein an interface surface between the bonding wire and the second pad has a first connecting area. The bonded second end of the bonding wire is scrubbed so as to form a second bond portion, wherein a new interface surface between the bonding wire and the second pad has a second connecting area larger than the first connecting area. A remainder of the bonding wire is separated from the second bond portion.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: January 22, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Wen Pin Huang, Cheng Tsung Hsu, Cheng Lan Tseng, Chih Cheng Hung, Yu Chi Chen
  • Patent number: 8358007
    Abstract: A method of manufacture of an integrated circuit system includes: fabricating a substrate having an integrated circuit; applying a low-K dielectric layer over the integrated circuit; forming a via and a trench, in the low-K dielectric layer, over the integrated circuit; forming a structure surface by a chemical-mechanical planarization (CMP) process; and applying a direct implant to the structure surface for forming an implant layer and a metal passivation layer including repairing damage, to the low-K dielectric layer, caused by the CMP process.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 22, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Dong Kyun Sohn, Wuping Liu, Fan Zhang, Juan Boon Tan, Jing Hui Li, Bei Chao Zhang, Luying Du, Wei Liu, Yeow Kheng Lim
  • Publication number: 20130009309
    Abstract: In one implementation, an apparatus includes a semiconductor die, a lead, a non-conductive epoxy, and a conductive epoxy. The semiconductor die includes an upper surface and a lower surface opposite the upper surface. The lead is electrically coupled to the upper surface of the semiconductor die. The non-conductive epoxy is disposed on a first portion of the lower surface of the semiconductor die. The conductive epoxy is disposed on a second portion of the lower surface of the semiconductor die. In some implementations, a conductive wire extends from the lead to the upper surface of the semiconductor die to electrically couple the lead to the upper surface of the semiconductor die.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Inventors: Jatinder Kumar, David Chong
  • Patent number: 8350388
    Abstract: Disclosed is a component built-in wiring board, including a first insulating layer; a second insulating layer positioned in a laminated state on the first insulating layer; a semiconductor element buried in the second insulating layer, having a semiconductor chip with terminal pads and having surface mounting terminals arrayed in a grid shape connected electrically with the terminal pads; an electric/electronic component further buried in the second insulating layer; a wiring pattern sandwiched between the first insulating layer and the second insulating layer, including a first mounting land for the semiconductor element and a second mounting land for the electric/electronic component; a first connecting member connecting electrically the surface mounting terminal of the semiconductor element with the first mounting land; and a second connecting member connecting electrically the terminals of the electric/electronic component with the second mounting land, made of a same material as a material of the first c
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 8, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Kenji Sasaoka
  • Publication number: 20130001779
    Abstract: A stack package includes a first package having a first semiconductor chip and a first encapsulation member which seals the first semiconductor chip. A second package is stacked on the first package, and includes a second semiconductor chip and a second encapsulation member which seals the second semiconductor chip. Flexible conductors are disposed within the first encapsulation member of the first package in such a way as to electrically connect the first package and the second package.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: SK HYNIX INC.
    Inventors: Tae Min KANG, You Kyung HWANG, Jae-hyun SON, Dae Woong LEE, Byoung Do LEE, Yu Hwan KIM
  • Publication number: 20130001781
    Abstract: An interconnect structure is provided which includes at least one patterned and cured low-k material located directly on a surface of a substrate; and at least one least one conductively filled region embedded within an interconnect pattern located within the at least one patterned and cured low-k material, wherein the at least one conductively filled region has an inflection point at a lower region of the interconnect pattern that is in proximity to an upper surface of the substrate and the interconnect region having an upper region that has substantially straight sidewalls.
    Type: Application
    Filed: September 1, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maxime Darnon, Qinghuang Lin
  • Patent number: 8344513
    Abstract: A system and a method for protecting through-silicon vias (TSVs) is disclosed. An embodiment comprises forming an opening in a substrate. A liner is formed in the opening and a barrier layer comprising carbon or fluorine is formed along the sidewalls and bottom of the opening. A seed layer is formed over the barrier layer, and the TSV opening is filled with a conductive filler. Another embodiment includes a barrier layer formed using atomic layer deposition.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Weng-Jin Wu
  • Publication number: 20120326318
    Abstract: A method for forming a metal-semiconductor alloy layer uses particular thermal annealing conditions to provide a stress free metal-semiconductor alloy layer through interdiffusion of a buried semiconductor material layer and a metal-semiconductor alloy forming metal layer that contacts the buried semiconductor material layer within an aperture through a capping layer beneath which is buried the semiconductor material layer. A resulting semiconductor structure includes the metal-semiconductor alloy layer that further includes an interconnect portion beneath the capping layer and a contiguous via portion that penetrates at least partially through the capping layer. Such a metal-semiconductor alloy layer may be located interposed between a substrate and a semiconductor device having an active doped region.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Lavoie, Francois Pagette, Anna W. Topol
  • Publication number: 20120326319
    Abstract: A semiconductor device and method for forming the same provide a through silicon via (TSV) surrounded by a dielectric liner. The TSV and dielectric liner are surrounded by a well region formed by thermal diffusion. The well region includes a dopant impurity type opposite the dopant impurity type of the substrate. The well region may be a double-diffused well with an inner portion formed of a first material and with a first concentration and an outer portion formed of a second material with a second concentration. The surrounding well region serves as an isolation well, reducing parasitic capacitance.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Chi-Yeh YU
  • Publication number: 20120326320
    Abstract: The present invention relates to a semiconductor device and the manufacturing method thereof. First, a hole is formed on a first side of a substrate. Then, an isolation layer is formed on an inner side of the hole and the hole is filled with a semiconductor material. Next, functional structures are formed on the first side of the substrate, the substrate is thinned from its second side opposite to the first side to expose the semiconductor material in the hole, and then the semiconductor material in the hole is removed to form a through hole penetrating through the substrate. The through hole is filled with a conductive material, thereby obtaining a final through substrate via (TSV) for facilitating electrical connection between different chips. By using a semiconductor material as TSV dummy material before filling the TSV with metal, the method can be better compatible with the standard process flow.
    Type: Application
    Filed: November 30, 2011
    Publication date: December 27, 2012
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Zhongshan Hong
  • Publication number: 20120326321
    Abstract: Techniques for modular chip fabrication are provided. In one aspect, a modular chip structure is provided. The modular chip structure comprises a substrate; a carrier platform attached to the substrate, the carrier platform comprising a plurality of conductive vias extending through the carrier platform; and a wiring layer on the carrier platform in contact with one or more of the conductive vias, wherein the wiring layer comprises one or more wiring levels and is configured to divide the carrier platform into a plurality of voltage islands; and chips, chip macros or at least one chip in combination with at least one chip macro assembled on the carrier platform.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Alain Caron, John Ulrich Knickerbocker
  • Publication number: 20120326309
    Abstract: The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: PAUL S ANDRY, Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Emily R. Kinser, Cornelia K. Tsang, Richard P. Volant
  • Publication number: 20120326316
    Abstract: Metal contact formation for molecular device junctions by surface-diffusion-mediated deposition (SDMD) is described. In an example, a method of fabricating a molecular device junction by surface-diffusion-mediated deposition (SDMD) includes forming a molecular layer above a first region of a substrate. A region of metal atoms is formed above a second region of the substrate proximate to, but separate from, the first region of the substrate. A metal contact is then formed by migrating metal atoms from the region of metal atoms onto the molecular layer.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Inventors: Richard L. McCreery, Andrew P. Bonifas, Vicki Wai-Shum Lui
  • Patent number: 8338828
    Abstract: A packaged integrated circuit includes a substrate having a wire layout pattern and a solder mask layer. An integrated circuit attached to a surface of the substrate is electrically connected to the wire layout pattern. An encapsulation material covers at least the integrated circuit and the solder mask layer. One or more crack seal rings are disposed on the solder mask surface. The crack seal rings are copper traces with terminals that allow current to be applied to the traces. A broken trace (open circuit condition) is indicative of a crack in the package. Thus, electrical testing is performed to detect physical defects.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 25, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Boon Yew Low, Teck Beng Lau, Vemal Raja Manikam
  • Patent number: 8338950
    Abstract: An electronic component has a substrate, a die bonding pad provided on an upper surface of the substrate, a semiconductor element bonded onto the die bonding pad by a die bonding resin, a conductive pattern disposed adjacent to the die bonding pad, and a coating member covering the conductive pattern. At least an outer peripheral portion of a surface of the die bonding pad is made of an inorganic material. The inorganic material of the outer peripheral portion is exposed. The die bonding pad and the conductive pattern are separated by an air gap such that the coating member does not come into contact with the die bonding pad.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: December 25, 2012
    Assignee: OMRON Corporation
    Inventors: Kazuyuki Ono, Yoshio Tanaka, Kiyoshi Nakajima, Naoto Kuratani, Tomofumi Maekawa
  • Publication number: 20120319282
    Abstract: Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a top surface and portions of the side walls of the interconnect structure covered in a dissimilar material. In some embodiments, the dissimilar material can be a conductive material or a nano-alloy. The interconnect structure can be formed by removing a portion of the interconnect structure, and covering the interconnect structure with the dissimilar material. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Belgacem Haba, Craig Mitchell
  • Publication number: 20120320549
    Abstract: The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
    Type: Application
    Filed: December 17, 2010
    Publication date: December 20, 2012
    Applicant: Schweizer Electronic AG
    Inventors: Thomas Gottwald, Alexander Neumann
  • Publication number: 20120313116
    Abstract: A chip on film (COF) is disclosed in the present disclosure, which comprises an adhesive base layer, a driving integrated circuit (IC), an adhesive layer and a copper layer. The driving IC is embedded on a surface of the adhesive base layer; the adhesive layer is located under the adhesive base layer; the copper layer is located under the adhesive layer. The adhesive base layer is formed with a heat and pressure spreading structure. A heat and pressure spreading structure is disposed on the adhesive base layer of the COF so that deformation or unevenness of the glass substrate in the bonded area can be avoided when the COF is thermally pressed to the glass substrate of the LCD. These guarantees the consistency between the bonded area and the unbounded area, the bonded area and the unbounded area of the glass substrate will have the same transmissivity and luminance.
    Type: Application
    Filed: August 31, 2011
    Publication date: December 13, 2012
    Applicant: Shenzhen China Star Optoelectronics Technology Co. Ltd.
    Inventors: Liang-Chan Liao, Po-Shen Lin, Yu Wu
  • Patent number: 8330272
    Abstract: A packaged microelectronic element includes a microelectronic element having a front surface and a plurality of first solid metal posts extending away from the front surface. A substrate has a major surface and a plurality of conductive elements exposed at the major surface and joined to the first solid metal posts. In particular examples, the conductive elements can be bond pads or can be second posts having top surfaces and edge surfaces extending at substantial angles away therefrom. Each first solid metal post includes a base region adjacent the microelectronic element and a tip region remote from the microelectronic element, the base region and tip region having respective concave circumferential surfaces. Each first solid metal post has a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 11, 2012
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Publication number: 20120306079
    Abstract: A semiconductor device includes a substrate, a surface electrode of aluminum-containing material formed on the substrate, a metal film of solderable material formed on the surface electrode, and an end-securing film securing an end of the metal film and having a portion on the surface electrode and also having an overlapping portion which is formed integrally with the portion on the surface electrode and which overlaps the end of the metal film.
    Type: Application
    Filed: March 2, 2012
    Publication date: December 6, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Seiya NAKANO, Yoshifumi Tomomatsu
  • Publication number: 20120306086
    Abstract: A semiconductor device according to an embodiment includes an insulating substrate, a wiring layer formed on a first main surface of the insulating substrate, and a semiconductor element mounted on the wiring layer. In this semiconductor device, the wiring layer includes a first copper-containing material containing copper and a metal having the thermal expansion coefficient smaller than that of copper and the thermal expansion coefficient of the first copper-containing material is smaller than that of copper.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takahiro Sugimura, Takashi Tsuno
  • Publication number: 20120305977
    Abstract: An embodiment of the present invention provides a manufacturing method of an interposer including: providing a semiconductor substrate having a first surface, a second surface and at least a through hole connecting the first surface to the second surface; electrocoating a polymer layer on the first surface, the second surface and an inner wall of the through hole; and forming a wiring layer on the electrocoating polymer layer, wherein the wiring layer extends from the first surface to the second surface via the inner wall of the through hole. Another embodiment of the present invention provides an interposer.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Inventors: Ying-Nan WEN, Chien-Hung LIU, Wei-Chung YANG
  • Patent number: 8324022
    Abstract: A method for manufacturing a three-dimensional, electronic system includes: providing a first integrated circuit structure in a first substrate, wherein the first integrated circuit structure has a first contact pad at a first main side of the first substrate; providing a second substrate with a second main side; forming a vertical contact area in the second substrate; after step (c) forming a semiconductor layer on the second main side of the second substrate; forming a semiconductor device of a second integrated circuit structure in the second substrate with the semiconductor layer; removing the substrate material from a side of the second substrate opposite the second main side, so that the vertical contact area at the opposite side is electrically exposed; arranging the first and second substrates on top of each other aligning the vertical contact area with the contact pad, so that an electrical connection between the first and second integrated circuit structures is produced via the vertical contact area
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 4, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Peter Ramm, Armin Klumpp
  • Publication number: 20120299195
    Abstract: A stacked via structure for reducing vertical stiffness includes: a plurality of stacked vias, each via disposed on a disc-like structure. The disc-like structure includes a platted through hole landing with a thickness of substantially 3 ?m. The platted through hole landing includes an etched pattern and a copper top surface.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karan Kacker, Douglas O. Powell, David L. Questad, David J. Russell, Sri M. Sri-Jayantha
  • Patent number: 8319341
    Abstract: A gate structure of a semiconductor device includes an intermediate structure, wherein the intermediate structure includes a titanium layer and a tungsten silicide layer. A method for forming a gate structure of a semiconductor device includes forming a polysilicon-based electrode. An intermediate structure, which includes a titanium layer and a tungsten silicide layer, is formed over the polysilicon-based electrode. A metal electrode is formed over the intermediate structure.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: November 27, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Min-Gyu Sung, Hong-Seon Yang, Heung-Jae Cho, Yong-Soo Kim, Kwan-Yong Lim
  • Publication number: 20120292765
    Abstract: Provided is a semiconductor device having a wiring layer formed of damascene wiring. The semiconductor device includes: a first wiring having a width equal to or larger than 0.5 ?m; a second wiring adjacent to the first wiring and arranged with a space less than 0.5 ?m from the first wiring; and a third wiring adjacent to the second wiring and arranged with a space equal to or smaller than 0.5 ?m from the first wiring. In the semiconductor device, the second wiring and the third wiring are structured to have the same electric potential.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Daisuke OSHIDA
  • Publication number: 20120292774
    Abstract: A semiconductor device of the present invention includes a semiconductor element having an electrode pad; a substrate over which the semiconductor element is mounted and has an electrical bonding part; and a bonding wire electrically connecting the electrode pad to the electrical bonding part, wherein a main metal component of the electrode pad is the same or different from a main metal component of the bonding wire, and when the main metal component of the electrode pad is different from the main metal components of the bonding wire, a rate of interdiffusion of the main metal components of the bonding wire and the electrode pad at a junction of the bonding wire and the electrode pad under a post-curing temperature of an encapsulating resin is lower than that of interdiffusion of gold (Au) and aluminum (Al) at a junction of aluminum (Al) and gold (Au) under the post-curing temperature.
    Type: Application
    Filed: January 20, 2011
    Publication date: November 22, 2012
    Inventor: Shingo Itoh
  • Publication number: 20120292764
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of dummy line patterns arranged at a first pitch on an underlying region, forming first mask patterns having predetermined mask portions formed on long sides of the dummy line patterns, each of the first mask patterns having a closed-loop shape and surrounding each of the dummy line patterns, removing the dummy line patterns, forming a second mask pattern having a first pattern portion which covers end portions of the first mask patterns and inter-end portions each located between adjacent ones of the end portions, etching the underlying region using the first mask patterns and the second mask pattern as a mask to form trenches each located between adjacent ones of the predetermined mask portions, and filling the trenches with a predetermined material.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Inventors: Eiji Ito, Hideyuki Kinoshita, Tetsuya Kamigaki, Koji Hashimoto
  • Publication number: 20120292754
    Abstract: One exemplary disclosed embodiment comprises a semiconductor package including multiple transistors having a common drain coupled to an exposed conductive clip. A driver integrated circuit (IC) may control the transistors for various power applications. By exposing a top surface of the exposed conductive clip outside of a mold compound of the package, enhanced thermal performance is provided. Additionally, the conductive clip provides a short distance, high current carrying route between transistors of the package, providing higher electrical performance and reduced form factor compared to conventional designs with individually packaged transistors.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Eung San Cho
  • Patent number: 8314484
    Abstract: In a structure of a semiconductor device, a Si chip and a metal leadframe are jointed by metallic bond via a porous joint layer made of high conductive metal, having a three-dimensional network structure and using Ag as a bonding material, and a film containing Zn oxide or Al oxide is formed on a surface of a semiconductor assembly contacting to a polymer resin. In this manner, by the joint with the joint layer having the porous structure mainly made of Ag, thermal stress load of the Si chip can be reduced, and fatigue life of the joint layer itself can be improved. Besides, since adhesion of the polymer resin to the film can be enhanced by the anchor effect, occurrence of cracks in a bonding portion can be prevented, so that a highly-reliable Pb-free semiconductor device can be provided.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: November 20, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Ryoichi Kajiwara, Shigehisa Motowaki, Kazutoshi Ito, Toshiaki Ishii, Katsuo Arai, Takuya Nakajo, Hidemasa Kagii
  • Publication number: 20120286424
    Abstract: A die stack including a die having an annular via with a recessed conductive socket and methods of forming the die stack provide a structure for use in a variety of electronic systems. In an embodiment, a die stack includes a conductive pillar on the top of a die inserted into the recessed conductive socket of another die.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Inventor: Dave Pratt
  • Publication number: 20120280398
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 8, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Publication number: 20120280397
    Abstract: A method of manufacturing a semiconductor device includes forming an interlayer dielectric layer, forming trenches by etching the interlayer dielectric layer, forming a copper (Cu) layer to fill the trenches, and implanting at least one of an inert element, a nonmetallic element, and a metallic element onto a surface of the Cu layer.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 8, 2012
    Inventors: Jung Geun KIM, Whee Won Cho, Eun Soo Kim
  • Publication number: 20120280386
    Abstract: A microelectronic assembly includes a substrate having a first surface and a second surface remote from the first surface. A microelectronic element overlies the first surface and first electrically conductive elements are exposed at one of the first surface and the second surface. Some of the first conductive elements are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the substrate and the bases, each wire bond defining an edge surface extending between the base and the end surface. An encapsulation layer extends from the first surface and fills spaces between the wire bonds such that the wire bonds are separated by the encapsulation layer. Unencapsulated portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the encapsulation layer.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: TESSERA, INC.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi