Including External Interconnections Consisting Of Multilayer Structure Of Conductive And Insulating Layers Inseparably Formed On Semiconductor Body (epo) Patents (Class 257/E23.142)

  • Publication number: 20130113117
    Abstract: Embodiments of the present disclosure can be used to both reduce the size and cost and improve the performance and power consumption of next generation wireless communication devices. In particular, embodiments enable board and semiconductor substrate area savings by using the fabrication package (which encapsulates the semiconductor substrate) as a design element in the design of next generation wireless communication devices. Specifically, embodiments use the substrate of the fabrication package to integrate into it components of the wireless radio transceiver (which are conventionally integrated into the semiconductor substrate) and other discrete components of the communication device (which are conventionally placed on the board of the device). As such, reduced board and semiconductor area can be realized.
    Type: Application
    Filed: March 1, 2012
    Publication date: May 9, 2013
    Inventors: Nikolaos HARALABIDIS, Konstantinos Vavelidis, Kosmas-Christos Tsilipanos
  • Patent number: 8426968
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 23, 2013
    Assignee: Sagacious Investment Group L.L.C.
    Inventor: Ernest E. Hollis
  • Patent number: 8426244
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 23, 2013
    Assignee: Sagacious Investment Group L.L.C.
    Inventor: Ernest E. Hollis
  • Patent number: 8426970
    Abstract: Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 23, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zachary Fresco, Chi-I Lang, Sandra G. Malhotra, Tony P. Chiang, Thomas R. Boussie, Nitin Kumar, Jinhong Tong, Anh Duong
  • Publication number: 20130093078
    Abstract: A device includes an inter-layer dielectric, a device die under the inter-layer dielectric; and a die-attach film under the inter-layer dielectric and over the device die, wherein the die-attach film is attached to the device die. A plurality of redistribution lines includes portions level with the die-attach film. A plurality of Z-interconnects is electronically coupled to the device die and the plurality of redistribution lines. A polymer-comprising material is under the inter-layer dielectric. The device die, the die-attach film, and the plurality of Z-interconnects are disposed in the polymer-comprising material.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lin, Ming-Da Cheng, Meng-Tse Chen, Wen-Hsiung Lu, Kuei-Wei Huang, Chung-Shi Liu
  • Publication number: 20130093074
    Abstract: An integrated circuit structure can include a first die including a first surface and a second surface and a second die including a first surface and a second surface. The first surface of the first die can be coupled to the second surface of the second die. The integrated circuit structure also can include a heat sink coupled to the first surface of the first die and the first surface of the second die.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: Xilinx, Inc.
    Inventor: Douglas M. Grant
  • Patent number: 8421243
    Abstract: A layered chip package includes a main body, and wiring disposed on a side surface of the main body. The main body includes: a main part including a plurality of layer portions stacked; a plurality of first terminals disposed on the top surface of the main part and connected to the wiring; and a plurality of second terminals disposed on the bottom surface of the main part and connected to the wiring. The plurality of layer portions include a first-type layer portion and a second-type layer portion. The first-type layer portion includes a conforming semiconductor chip, and a plurality of first-type electrodes that are connected to the semiconductor chip and the wiring. The second-type layer portion includes a defective semiconductor chip, and a plurality of second-type electrodes that are connected to the wiring and not to the semiconductor chip.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: April 16, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Patent number: 8415776
    Abstract: A semiconductor device (1) includes a wiring (10) and dummy conductor patterns (20). The wiring (10) is a wiring through which a current with a frequency of 5 GHz or higher flows. Near the wiring (10), the dummy conductor patterns (20) are formed. A planar shape of each of the dummy conductor patterns (20) is equivalent to a shape with an internal angle larger than 180°.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 9, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Publication number: 20130082403
    Abstract: Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: Broadcom Corporation
    Inventors: Jesus Alfonso Castaneda, Arya Reza Behzad, Ahmadreza Rofougaran, Sam Ziqun Zhao, Michael Boers
  • Patent number: 8410613
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 2, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8404582
    Abstract: Interconnect structures having self-aligned dielectric caps are provided. At least one metallization level is formed on a substrate. A dielectric cap is selectively deposited on the metallization level.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: David V Horak, Takeshi Nogami, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8399990
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 19, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye
  • Publication number: 20130062772
    Abstract: In a method for fabricating a semiconductor device, first, a first metal interconnect is formed in an interconnect formation region, and a second metal interconnect is formed in a seal ring region. Subsequently, by chemical mechanical polishing or etching, the upper portions of the first metal interconnect and the second metal interconnect are recessed to form recesses. A second insulating film filling the recesses is then formed above a substrate, and the upper portion of the second insulating film is planarized. Next, a hole and a trench are formed to extend halfway through the second insulating film, and ashing and polymer removal are performed. Subsequently to this, the hole and the trench are allowed to reach the first metal interconnect and the second metal interconnect.
    Type: Application
    Filed: November 12, 2012
    Publication date: March 14, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: PANASONIC CORPORATION
  • Patent number: 8395258
    Abstract: Semiconductor elements and methods for fabricating semiconductor elements that allow semiconductor elements having the same function to utilize different packaging methods. An exemplary semiconductor element includes a first semiconductor element portion, including an internal circuit, electrodes electrically connected to the internal circuit, and a first insulating layer covering the internal circuit while exposing the electrodes; and a second semiconductor element portion electrically connected to the electrodes and formed on the first insulating layer, the second semiconductor element portion including a wiring layer having a first pad and a second pad, and a second insulating layer configured to cover either one of the first pad or the second pad while exposing the other one of the first pad and the second pad.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: March 12, 2013
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Junichi Ikeda
  • Publication number: 20130056848
    Abstract: The present invention discloses an inductive element formed by through silicon via interconnections. The inductive element formed by means of the special through silicon via interconnection by using through silicon via technology features advantages such as high inductance and density. Moreover, the through silicon via interconnection integrated process forming the inductive element is compatible with the ordinary through silicon interconnection integrated process without any other steps, thus making the process simple and steady. The inductive element using the present invention is applicable to the through silicon via package manufacturing of various chips, especially the package manufacturing of power control chips and radio-frequency chips.
    Type: Application
    Filed: May 19, 2011
    Publication date: March 7, 2013
    Applicant: FUDAN UNIVERSITY
    Inventors: Pengfei Wang, Qingqing Sun, Wei Zhang
  • Patent number: 8389406
    Abstract: There is provided a method of manufacturing a semiconductor device including: preparing a semiconductor substrate, forming a first insulating layer, a first redistribution layer, a second insulating layer, a second redistribution layer, and at least one of first processing, in which, after the first electrically conductive material is filled in the first opening to form a first via interconnect, the first redistribution layer is formed on the first insulating layer with the first electrically conductive material such that the first redistribution layer is electrically connected to the first via interconnect; or second processing, in which, after the second electrically conductive material is filled in the second opening to form a second via interconnect, the second redistribution layer is formed on the second insulating layer with the second electrically conductive material such that the second redistribution layer is electrically connected to the second via interconnect.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 5, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Hideyuki Sameshima, Tomoo Ono
  • Publication number: 20130043584
    Abstract: A package stack structure may an upper package include an upper package substrate having a first edge and a second edge opposite to the first edge. The upper package substrate has a first region arranged near the first edge and a second region arranged near the second edge. A first upper semiconductor device is mounted on the upper package substrate. The package stack structure may also include a lower package having a lower package substrate and a lower semiconductor device. The lower package is connected to the upper package through a plurality of inter-package connectors. The plurality of the inter-package connectors may include first inter-package connectors configured to transmit data signals; second inter-package connectors configured to transmit address/control signals; third inter-package connectors configured to provide a supply voltage for an address/control circuit; and fourth inter-package connectors configured to provide a supply voltage for a data circuit.
    Type: Application
    Filed: February 17, 2012
    Publication date: February 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: HEUNG-KYU KWON, SEONG-HO SHIN, YUN-SEOK CHOI, YONG-HOON KIM
  • Patent number: 8378341
    Abstract: A semiconductor device of the present invention has a first interconnect layer formed over the semiconductor substrate, and a semiconductor element; the first interconnect layer has an insulating layer, and a first interconnect filled in a surficial portion of the insulating layer; the semiconductor element has a semiconductor layer, a gate insulating film, and a gate electrode; the semiconductor layer is positioned over the first interconnect layer; the gate insulating film is positioned over or below semiconductor layer; and the gate electrode is positioned on the opposite side of the semiconductor layer while placing the gate insulating film in between.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: February 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshihiro Hayashi, Naoya Inoue, Kishou Kaneko
  • Patent number: 8373272
    Abstract: An integrated circuit device comprising an improved bonding pad structure. The device has a semiconductor substrate. A plurality of active MOS devices are formed on the semiconductor substrate. The device has an interlayer dielectric layer overlying the plurality of active MOS devices and at least one single metal bonding pad formed on the interlayer dielectric layer and directly over at least one of the active devices. At least four edge regions are formed on a square shape of the at least one single metal bonding pad. An angled cut region is formed on each of the four edge regions. The device has a buffer metal layer free region located between the plurality of active MOS devices and the at least one single metal bonding pad. The buffer metal layer free region does not have a buffer metal layer in the interlayer dielectric layer.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Chi Kang Liu, Talee Yu
  • Patent number: 8373251
    Abstract: A first semiconductor chip includes a first inductor and a second inductor, and a second semiconductor chip includes a third inductor and a fourth inductor. The first inductor is connected to a first receiving circuit of the first semiconductor chip, and the second inductor is connected to a second transmitting circuit of the second semiconductor chip through a first bonding wire. The third inductor is connected to a second receiving circuit of the second semiconductor chip, and the fourth inductor is connected to a first transmitting circuit of the first semiconductor chip through a second bonding wire.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: February 12, 2013
    Assignees: Renesas Electronics Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Uchida, Masayuki Furumiya, Hiroshi Sakakibara, Takashi Iwadare, Yoshiyuki Sato, Makoto Eguchi, Masato Taki, Hidetoshi Morishita, Kozo Kato, Jun Morimoto
  • Publication number: 20130026659
    Abstract: A method for producing a MEMS component including the steps of simultaneously embedding structure elements during producing the multi-level conductive path layer stack which structure elements are to be subsequently exposed, subsequently producing a recess that extends from a substrate backside to the multi-level conductive path layer stack, exposing the micromechanical structure elements in the multi-level conductive path layer stack through the recess. In order to increase process precision a reference mask for defining a lateral position or a lateral extension of the micromechanical structure elements to be exposed is produced, wherein the reference mask is either arranged on the substrate front side between the substrate and the multi-level conductive path layer stack or in a layer of the multi-level conductive path layer stack which layer is more proximal to the substrate than the structure element to be exposed.
    Type: Application
    Filed: March 22, 2011
    Publication date: January 31, 2013
    Applicant: IHP GmbH - Innovations for High Performance Microelectronics
    Inventors: Mehmet Kaynak, Bernd Tillack, Rene Scholz
  • Patent number: 8354751
    Abstract: An interconnect structure having enhanced electromigration resistance is provided in which a lower portion of a via opening includes a multi-layered liner. The multi-layered liner includes, from a patterned surface of a dielectric material outwards, a diffusion barrier, a multi-material layer and a metal-containing hard mask. The multi-material layer includes a first material layer comprised of residue from an underlying dielectric capping layer, and a second material layer comprised of residue from an underlying metallic capping layer. The present invention also provides a method of fabricating such an interconnect structure which includes the multi-layered liner within a lower portion of a via opening formed within a dielectric material.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8350386
    Abstract: The present invention adds one or more thick layers of polymer dielectric and one or more layers of thick, wide metal lines on top of a finished semiconductor wafer, post passivation. The thick, wide metal lines may be used for long signal paths and can also be used for power buses or power planes, clock distribution networks, critical signal, and re-distribution of I/O pads for flip chip applications. Photoresist define electroplating, sputter/etch, or dual and triple damascene techniques are used for forming the metal lines and via fill.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 8, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Publication number: 20130001805
    Abstract: The respective main electrodes of the semiconductor switching elements such as IGBTs, which are respectively mounted on the plurality of insulating boards, are electrically connected to each other via the conductor member. This configuration makes it possible to suppress the occurrence of the resonant voltage due to the junction capacity and the parasitic inductance of each semiconductor switching element.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 3, 2013
    Inventors: Katsunori AZUMA, Kentaro Yasuda, Takahiro Fujita, Katsuaki Saito, Yoshihiko Koike, Michiaki Hiyoshi
  • Publication number: 20130001781
    Abstract: An interconnect structure is provided which includes at least one patterned and cured low-k material located directly on a surface of a substrate; and at least one least one conductively filled region embedded within an interconnect pattern located within the at least one patterned and cured low-k material, wherein the at least one conductively filled region has an inflection point at a lower region of the interconnect pattern that is in proximity to an upper surface of the substrate and the interconnect region having an upper region that has substantially straight sidewalls.
    Type: Application
    Filed: September 1, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maxime Darnon, Qinghuang Lin
  • Patent number: 8344474
    Abstract: In a sophisticated metallization system, self-aligned air gaps may be provided in a locally selective manner by using a radiation sensitive material for filling recesses or for forming therein the metal regions. Consequently, upon selectively exposing the radiation sensitive material, a selective removal of exposed or non-exposed portions may be accomplished, thereby resulting in a highly efficient overall manufacturing flow.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 1, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Seidel, Thomas Werner
  • Publication number: 20120326331
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a first substrate; attaching vertical interconnects along a periphery of the first substrate; mounting an integrated circuit over the first substrate, the integrated circuit surrounded by the vertical interconnects; and mounting a second substrate directly on the vertical interconnects and the integrated circuit.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: Byung Joon Han, In Sang Yoon, JoHyun Bae
  • Publication number: 20120326291
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching a flip chip to the substrate; attaching a heat slug to the substrate and the flip chip; and forming a moldable underfill having a top underfill surface on the substrate, the flip chip, and the heat slug, the moldable underfill having a characteristic of being liquid at room temperature and the top underfill surface over the flip chip.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: DaeSik Choi, Oh Han Kim, Jung SeIl
  • Patent number: 8338964
    Abstract: A stacked-chip device includes a first inductive chip having a first function, a second inductive chip having a second function different from the first function, which is stacked on the first inductive chip, and a third inductive chip having the second function, which is stacked on the second inductive chip. Each of the first, second and third inductive chips has transmitting inductors which transmit data and receiving inductors which receive data. The transmitting inductors and the receiving inductors are disposed in line symmetry to an axis of symmetry. The axes of symmetry of the first, second and third inductive chips are overlapped. Each of the second and third inductive chips is disposed in upside-down or back to front to the first inductive chip.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: December 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yukihiro Urakawa
  • Patent number: 8338231
    Abstract: A method includes providing a carrier; applying a dielectric layer to the carrier; applying a metal layer to the dielectric layer; placing a first semiconductor chip on the metal layer with contact pads of the first semiconductor chip facing the metal layer; covering the first semiconductor chip with an encapsulation material; and removing the carrier.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: December 25, 2012
    Assignee: Infineon Technologies AG
    Inventor: Georg Meyer-Berg
  • Publication number: 20120319237
    Abstract: Corner-rounded structures and methods of manufacture are provided. The method includes forming at least two conductive wires with rounded corners on a substrate. The method further includes forming a insulator film on the substrate and between the at least two conductive wires with the rounded corners.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward C. COONEY, III, Jeffrey P. GAMBINO, Zhong-Xiang HE, Thomas L. MCDEVITT, Gary L. MILO
  • Publication number: 20120313235
    Abstract: The present disclosure provides an embodiment of a micro-electro-mechanical system (MEMS) structure, the MEMS structure comprising a MEMS substrate; a first and second conductive plugs of a semiconductor material disposed on the MEMS substrate, wherein the first conductive plug is configured for electrical interconnection and the second conductive plug is configured as an anti-stiction bump; a MEMS device configured on the MEMS substrate and electrically coupled with the first conductive plug; and a cap substrate bonded to the MEMS substrate such that the MEMS device is enclosed therebetween.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Hua Chu, Kuei-Sung Chang, Chung-Hsien Lin
  • Patent number: 8319334
    Abstract: An electronic device includes at least one semiconductor chip, each semiconductor chip defining a first main face and a second main face opposite to the first main face. A first metal layer is coupled to the first main face of the at least one semiconductor chip and a second metal layer is coupled to the second main face of the at least one semiconductor chip. A third metal layer overlies the first metal layer and a fourth metal layer overlies the second metal layer. A first through-connection extends from the third metal layer to the fourth metal layer, the first through-connection being electrically connected with the first metal layer and electrically disconnected from the second metal layer. A second through-connection extends from the third metal layer to the fourth metal layer, the second through-connection being electrically connected with the second metal layer and electrically disconnected from the first metal layer.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: November 27, 2012
    Assignee: Infineon Technologies AG
    Inventor: Martin Standing
  • Patent number: 8318539
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a carrier having a planar surface and a cavity therein, a first barrier between the planar surface and a first interconnect, and a second barrier between the cavity and a second interconnect; providing a substrate; mounting an integrated circuit over the substrate; mounting the carrier to the substrate with the first interconnect and the second interconnect attached to the substrate and with the planar surface over the integrated circuit; forming an encapsulation between the substrate and the carrier covering the integrated circuit, the encapsulation having an encapsulation recess under the planar surface and over the integrated circuit; and removing a portion of the carrier to expose the encapsulation, a portion of the first barrier to form a first contact pad, and a portion of the second barrier to form a second contact pad.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 27, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: NamJu Cho, HeeJo Chi, HanGil Shin
  • Publication number: 20120292741
    Abstract: Interconnect structures that include a passive element, such as a thin film resistor or a metal-insulator-metal (MIM) capacitor, methods for fabricating an interconnect structure that includes a passive element, and design structures embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, such as a radiofrequency integrated circuit. A top surface of a dielectric layer is recessed relative to a top surface of a conductive feature in the dielectric layer. The passive element is formed on the recessed top surface of the dielectric layer and includes a layer of a conductive material that is coplanar with, or below, the top surface of the conductive feature.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Timothy Dalton, Ebenezer E. Eshun, Sarah L. Grunow, Zhong-Xiang He, Anthony K. Stamper
  • Publication number: 20120292746
    Abstract: A microelectronic device includes a substrate having at least one microelectronic component on a surface thereof, a conductive via electrode extending through the substrate, and a stress relief structure including a gap region therein extending into the surface of the substrate between the via electrode and the microelectronic component. The stress relief structure is spaced apart from the conductive via such that a portion of the substrate extends therebetween. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: March 13, 2012
    Publication date: November 22, 2012
    Inventors: Dosun LEE, Kiyoung YUN, Yeonglyeol PARK, Gilheyun CHOI, Kisoon BAE, Kwangjin MOON
  • Publication number: 20120286432
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base carrier; providing a first integrated circuit having a first integrated circuit inactive side and a first integrated circuit active side; coupling a second integrated circuit, having a second integrated circuit inactive side and a second integrated circuit active side, to the first integrated circuit in an active-to-active configuration; attaching the first integrated circuit over the base carrier; attaching a redistribution structure over the first integrated circuit; and forming a base encapsulation over the redistribution structure, the base encapsulation having a recess partially exposing the redistribution structure.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Inventors: Byung Tai Do, Reza Argenty Pagaila
  • Patent number: 8310056
    Abstract: In a semiconductor device, a lower multi-layered interconnect structure, an intermediate via-level insulating interlayer, and an upper multi-layered interconnect structure are stacked in this order in a region overlapped with a bonding pad in a plan view; upper interconnects and vias of the upper multi-layered interconnect structure are formed so as to be connected to the bonding pad in the pad placement region; the intermediate via-level insulating interlayer has no electro-conductive material layer, which connect the interconnects or vias in the upper multi-layered interconnect structure with interconnects or vias in the lower multi-layered interconnect structure, formed therein; and the ratio of area occupied by the vias in the via-level insulating interlayers contained in the lower multi-layered interconnect structure is smaller than the ratio of area occupied by the vias in the via-level insulating interlayers contained in the upper multi-layered interconnect structure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Noriaki Oda, Shinichi Chikaki
  • Patent number: 8310061
    Abstract: A stacked integrated circuit having a first die with a first surface and a second die with a second surface facing the first surface, the stacked integrated circuit includes a capacitor. The capacitor is formed by a first conducting plate on a region of the first surface, a second conducting plate on a region of the second surface substantially aligned with the first conducting plate, and a dielectric between the first conducting electrode and the second conducting electrode.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: November 13, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Arvind Chandrasekaran
  • Patent number: 8310055
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided in which a plurality of patterns are simultaneously formed to have different widths and the pattern densities of some regions are increased using double patterning.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-ju Park, Jae-ho Min, Myeong-cheol Kim, Dong-chan Kim, Jae-hwang Sim
  • Publication number: 20120280398
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 8, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Publication number: 20120273964
    Abstract: A manufacturing method of a semiconductor device includes: forming an insulating layer above a substrate; forming a recessed section in the insulating layer; forming, on the insulating layer, a mask pattern having a first opening which exposes the recessed section, and a second opening which is arranged outside the first opening and does not expose the recessed section; forming a first conductive member and a second conductive member by respectively depositing a conductive material in the first opening and the second opening; and polishing and removing the first conductive member and the second conductive member on the upper side of the insulating layer so as to leave the first conductive member in the recessed section.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 1, 2012
    Applicant: Fujitsu Limited
    Inventors: Tsuyoshi KANKI, Shoichi Suda, Shinya Sasaki
  • Patent number: 8299615
    Abstract: Methods and structures for controlling wafer curvature during fabrication of integrated circuits caused by stressed films. The methods include controlling the conductor density of wiring levels, adding compensating stressed film layers and disturbing the continuity of stress films with the immediately lower layer. The structure includes integrated circuits having compensating stressed film layers.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Mohammed Fazil Fayaz, Jeffery Burton Maxson, Anthony Kendall Stamper, Daniel Scott Vanslette
  • Publication number: 20120267626
    Abstract: A method includes simulating characteristics of a first transmission line having a first length, and simulating characteristics of a second transmission line having a second length greater than the first length. A calculation is then performed on the characteristics of the first transmission line and the characteristics of the second transmission line to generate intrinsic characteristics of a third transmission line having a length equal to a difference of the second length and the first length.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Ying Cho, Jiun-Kai Huang, Wen-Sheh Huang, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20120267800
    Abstract: A semiconductor wafer contains semiconductor die. A first conductive layer is formed over the die. A resistive layer is formed over the die and first conductive layer. A first insulating layer is formed over the die and resistive layer. The wafer is singulated to separate the die. The die is mounted to a temporary carrier. An encapsulant is deposited over the die and carrier. The carrier and a portion of the encapsulant and first insulating layer is removed. A second insulating layer is formed over the encapsulant and first insulating layer. A second conductive layer is formed over the first and second insulating layers. A third insulating layer is formed over the second insulating layer and second conductive layer. A third conductive layer is formed over the third insulating layer and second conductive layer. A fourth insulating layer is formed over the third insulating layer and third conductive layer.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 25, 2012
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye, Pandi Chelvam Marimuthu, Kai Liu
  • Publication number: 20120248587
    Abstract: A miniature component includes an MMIC microwave chip encapsulated in an individual package for surface-mounting capable of operating at a frequency F0 very much higher than 45 GHz; and at least one contactless microwave port, by electromagnetic coupling, ensuring the transmission of coupling signals at a working frequency F0.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 4, 2012
    Applicant: UNITED MONOLITHIC SEMICONDUCTORS S.A
    Inventors: Pierre-Franck Alleaume, Claude Toussain
  • Patent number: 8278749
    Abstract: A semiconductor module comprises components in one wafer level package. The module comprises an integrated circuit (IC) chip embedded within a package molding compound. The package comprises a molding compound package layer coupled to an interface layer for integrating an antenna structure and a bonding interconnect structure to the IC chip. The bonding interconnect structure comprises three dimensional interconnects. The antenna structure and bonding interconnect structure are coupled to the IC chip and integrated within the interface layer in the same wafer fabrication process.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Lachner, Linus Maurer, Maciej Wojnowski
  • Publication number: 20120241961
    Abstract: Disclosed herein is a semiconductor apparatus including: a first semiconductor part including a first wiring; a second semiconductor part which is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring; and a metallic oxide formed by a reaction between oxygen and a metallic material which reacts with oxygen more easily than hydrogen does, the metallic oxide having been diffused into a region which includes a joint interface between the first wiring and the second wiring and the inside of at least one of the first wiring and the second wiring.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 27, 2012
    Applicant: Sony Corporation
    Inventors: Yoshihisa Kagawa, Naoki Komai
  • Publication number: 20120228774
    Abstract: A barrier insulating film is constituted from a first SiCN film formed with a tetramethylsilane gas flow rate lower than usual, a second SiCN film formed over the first SiCN film and formed with a usual tetramethylsilane gas flow rate, and a SiCO film formed over the second SiCN film.
    Type: Application
    Filed: February 9, 2012
    Publication date: September 13, 2012
    Inventors: Takahisa FURUHASHI, Naohito Suzumura
  • Patent number: 8264011
    Abstract: CMOS inverters are included in a standard cell. Power supply lines are electrically connected to CMOS inverters, and include lower layer interconnects and upper layer interconnect. Lower layer interconnects extend along a boundary of standard cells adjacent to each other and on the boundary. Upper layer interconnects are positioned more inside in standard cell than lower layer interconnects, as viewed from a plane. CMOS inverters are electrically connected through upper layer interconnects to lower layer interconnects. Thus, a semiconductor device is obtained that can achieve both higher speeds and higher integration.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 11, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Nobuhiro Tsuda