Material Contains Transition Metal Or Compound Thereof Patents (Class 526/90)
  • Publication number: 20100210797
    Abstract: Blown films and processes of forming the same are described herein. The blown films generally include high density polyethylene exhibiting a molecular weight distribution of from about 1.5 to about 8.0 and a density of from 0.94 g/cc to less than 0.96 g/cc.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Steven Gray, David Knoeppel, Tim Coffy, Kayo Vizzini, Cyril Chevillard, Shannon Hoesing
  • Patent number: 7772337
    Abstract: This invention provides a method of making a molecular sieve catalyst composition comprising the steps of: a) combining molecular sieve crystals with binder and liquid to form a binder-sieve mixture; b) combining the binder-sieve mixture with matrix material to form a binder-sieve-matrix mixture; c) mixing the binder-sieve-matrix mixture under conditions sufficient to form a slurry having a solids content of at least 40 wt %, based on total weight of the slurry; d) progressing the mixing until slurry viscosity decreases without significant additional dilution of the slurry, so that the slurry solids content does not significantly decrease; and e) drying the decreased viscosity slurry to produce a dried molecular sieve catalyst composition having an attrition rate index of not greater than 1 wt %/hr. The aforementioned catalyst compositions can be used in processes for making olefin product from oxygenate feedstock, which olefin products can be further used for making (co)polymer products.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: August 10, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn
  • Publication number: 20100197872
    Abstract: The present invention provides a copolymer that includes at least one alkene monomer, at least one acrylate monomer and at least one the unsaturated organic acid monomer having one or more double bonds, and a method of manufacturing the same.
    Type: Application
    Filed: March 28, 2008
    Publication date: August 5, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Byoung-Ho Jeon, Yoo-Young Jung, Ki-Su Ro, Kyung-Seop Noh, Bae-Kun Shin
  • Publication number: 20100190944
    Abstract: The present invention relates to a catalyst system, to a method of manufacturing this system, and also to uses of this system. The catalyst system of the invention is characterized in that it comprises molecules of a polymer having, at one of its ends or along the chain, one or more polar functional groups; a solvent, said solvent, due to the fact of said polar functional group of said polymer, provoking and maintaining, when said molecules of the polymer are introduced thereinto, an organization of said molecules of the polymer into aggregates, micelles or vesicles so that the polar functional groups of said polymer are located inside the aggregates, micelles or vesicles formed; and a catalyst activator and a catalyst trapped in said aggregates, micelles or vesicles of said polymer. The catalyst system of the present invention may be used, for example, for catalyzing a (co)polymerization of olefins.
    Type: Application
    Filed: June 12, 2008
    Publication date: July 29, 2010
    Applicant: Centre National De La Rescherche Scientifique - CN RS
    Inventors: Henri Cramail, Cécile Bouilhac, Eric Cloutet, Daniel Taton, Alain Deffieux
  • Publication number: 20100190939
    Abstract: The present invention relates to a catalyst composition and a process for di-, tri- and/or tetramerization of ethylene, wherein the catalyst composition comprises a chromium compound, a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, or any cyclic derivatives of (A) and (B), wherein at least one of the P or N atoms of the PNPN-unit or PNPNP-unit is member of a ring system, the ring system being formed from one or more constituent compounds of structures (A) or (B) by substitution and a co-catalyst or activator.
    Type: Application
    Filed: June 16, 2008
    Publication date: July 29, 2010
    Inventors: Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke, Mohammed Hassan Al-Hazmi, Vugar O. Aliyev, Fuad Mohammed Mosa
  • Patent number: 7763691
    Abstract: Norbornene monomers with fluorene group and polymer material thereof are disclosed. The norbornene monomers with fluorene group are prepared by Diels-Alder reation. The Norbornene monomers containing fluorene groups are highly active for ring-opening-metathesis polymerization (ROMP), and the molecular weight and PDI value of the obtained polymers are controllable.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 27, 2010
    Assignee: National Taiwan University of Science & Technology
    Inventor: Der-Jang Liaw
  • Patent number: 7759443
    Abstract: Ethylenically unsaturated, particularly acrylic, monomers are polymerized using a catalyst system including a manganese carbonyl initiator, an organic halogen reactive substrate and an allylic halide chain termination agent. Desirably the manganese carbonyl initiator is a dimanganese compound, particularly dimanganese decacarbonyl (Mn2(CO)10). The catalysis mechanism appears to involve initiator homolysis, abstraction of halogen from the reactive substrate forming an organic free radical which acts as a chain initiator for polymerization and eventual reaction of the propagating chain radical with the chain terminating agent. The speed or extent of reaction may be modified by the inclusion of Lewis acids in the reaction mixture. The resulting polymers are telechelic and may have different end groups. The polymers can be reacted further to functionalize them and/or to form block copolymers.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 20, 2010
    Assignee: Croda International, Inc.
    Inventors: Richard J Harrison, Bruce C Gilbert, Andrew F Parsons, Derek J Irvine
  • Patent number: 7759406
    Abstract: The present invention provides a process for producing a polysilsesquioxane graft polymer (1) which includes applying ionizing radiation or heat to a mixture including a polysilsesquioxane compound (2) and a vinyl compound (3), a polysilsesquioxane compound including an iniferter group, and a pressure-sensitive adhesive and a pressure-sensitive adhesive sheet using the polymer. According to the present invention, a process for producing a polysilsesquioxane graft polymer which may be used as a pressure-sensitive adhesive exhibiting excellent heat resistance and cohesive force, and the like are provided. In the formula, A represents a linking group, R1 represents a hydrocarbon group which may have a substituent, R2 represents a hydrogen atom or the like, R3 represents a polar group or the like, R4 represents a hydrogen atom or the like, k1 to k3 represent arbitrary positive integers, 1 to n represent zero or an arbitrary positive integer (excluding the case where “m=n=0”), and Q represents an iniferter group.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: July 20, 2010
    Assignee: Lintec Corporation
    Inventors: Taketo Kumon, Toshifumi Kageyama, Atsuko Kimura, Toshio Sugizaki, Osamu Moriya
  • Publication number: 20100174037
    Abstract: A polymerisation process is disclosed in which polyethylene is produced in slurry in a polymerisation reactor in the presence of a Ziegler Natta catalyst and an activator, and slurry containing the polymer is withdrawn from the reactor and transferred to a flash tank operating at a pressure and temperature such that at least 50 mol % of the liquid component of the slurry is withdrawn from the flash tank as a vapour and at least 98 mol %, more preferably at least 98.5 mol %, and most preferably at least 99.5 mol %, of the vapour withdrawn from the flash tank is capable of being condensed at a temperature of between 15 and 40C without compression, wherein a by-product suppressor, which reduces the amount of by-product formed per unit of polyethylene produced by at least 10% compared with an identical polymerisation process where the by-product suppressor is not present, is used in the reactor.
    Type: Application
    Filed: August 29, 2008
    Publication date: July 8, 2010
    Applicant: INEOS MANUFACTURING BELGIUM NV
    Inventors: Benoit Koch, Daniel Marissal, Marc Parisel, Brent R. Walworth, Andre Frederich
  • Patent number: 7750172
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: July 6, 2010
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen
  • Patent number: 7741414
    Abstract: A process for transitioning between Ziegler Natta (Z/N) polymerization catalysts and Second Polymerization catalysts in a polymerization system which includes at least two polymerization reactors. During the transition, the Z/N catalyst is used in the “downstream” reactor, thereby providing a flow of polymer to finishing operations. This eliminates the need for lengthy shutdowns of finishing equipment and thereby improves the efficiency of the plant operations.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: June 22, 2010
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Stephen John Brown, Kenneth Edward Taylor, Bobbi Leigh Liebrecht
  • Patent number: 7740808
    Abstract: The present invention concerns a process and an apparatus for continuous polymerisation of olefin monomers. In particular, the present invention concerns a process and an apparatus for continuous polymerisation olefin monomers like ethylene and other monomers, wherein an olefin monomer is polymerised in slurry phase in an inert hydrocarbon diluent in at least one loop reactor. According to the invention, a polymer slurry is continuously withdrawn from the loop reactor and concentrated. The concentrated slurry is conducted to a flash unit in order to remove the remaining fluid phase, and gas obtained is compressed in a flash gas compressor before it is being fed to a distillation section. By means of the present invention it is possible reduce the size of the flash gas compressor and the capacity of the distillation sections. This significantly reduces investment cost for a continuously operated polymerization apparatus.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: June 22, 2010
    Assignee: Borealis Technology Oy
    Inventors: Marianna Vuorikari, Esa Korhonen, Henrik Andtsjö, Samuli Zitting
  • Patent number: 7741420
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, under supercritical conditions, olefin monomers with a catalyst compound, an activator, optional comonomer, and optional hydrocarbon diluent or solvent.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: June 22, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 7741416
    Abstract: The present invention relates to colloidal photonic crystals using colloidal nanoparticles and a method for the preparation thereof, wherein by adding a viscoelastic material into a solution containing the colloidal nanoparticles when preparing the colloidal photonic crystals, a uniform volume contraction occurs due to the elasticity of the viscoelastic material even when a nonuniform volume contraction occurs while drying a dispersion medium in the colloidal solution. Thus, it is possible to prepare 2 or 3 dimensional colloidal photonic crystals of large scale with no defects in less time.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: June 22, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Young-jun Hong, Sang-hyuk Im
  • Publication number: 20100151965
    Abstract: The object is to provide a rubber composition for a high-strength golf ball which has a high hardness, high resiliency, excellent processability and improved filler dispersibility, by adjusting each of the Mooney viscosity, the molecular weight distribution and the n value (the rate-dependent index for Mooney viscosity) of a high-cis-polybutadiene rubber using a cobalt catalyst to a value falling within a specific range. The rubber composition comprises 100 parts by weight of a high-cis-polybutadiene synthesized using a cobalt catalyst and 10 to 50 parts by weight of a co-crosslinking agent, wherein the high-cis-polybutadiene satisfies the following requirements (a) to (c): (a) the Mooney viscosity (ML) is 40 to 55; (b) the molecular weight distribution [a weight average molecular weight MW)/a number average molecular weight (Mn)] is 3.0 to 4.2; and (c) the rate-dependent index of Mooney viscosity (n value) is 2.3 to 3.0.
    Type: Application
    Filed: June 26, 2007
    Publication date: June 17, 2010
    Inventors: Naomi Okamoto, Mitsuharu Anbe, Takashi Wada
  • Publication number: 20100140601
    Abstract: Disclosed is a polymer compound containing a repeating unit represented by the following general formula (1). (In the formula, Rf1 and Rg1 may be the same or different, and each represents an alkyl group having 1-12 carbon atoms or the like; Rd1 and Re1 may be the same or different, and each represents a hydrogen atom or the like; and Ra1, Ra2, Ra3, Rb1, Rb2 and Rb3 may be the same or different, and each represents a hydrogen atom or the like.
    Type: Application
    Filed: May 22, 2008
    Publication date: June 10, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Takanobu Noguchi
  • Publication number: 20100144988
    Abstract: Monomodal copolymers of ethylene and molding compositions comprising such copolymers, wherein the copolymers have a density determined according to DIN EN ISO 1183-1, variant A in the range from 0.938 to 0.944 g/cm3, a melt index MFR21 determined according to ISO 1133 at 190° C. under a load of 21.6 kg in the range from 12 to 17 g/10 min, a weight average molar mass Mw, in the range from 140 000 g/mol to 330 000 g/mol, a polydispersity Mw/Mn in the range from 9 to 17, and a content of comonomer side chains per 1000 carbon atoms C x equal to or above a value defined via equation (I) Cx=128.7?134.62×d?, wherein d? is the numerical value of the density of the copolymer in g/cm3, the use of the copolymers for producing injection-molded articles, as well as injection-molded articles comprising the copolymers, and process for the preparation of such monomodal copolymers.
    Type: Application
    Filed: January 15, 2008
    Publication date: June 10, 2010
    Applicant: Basell Polyolefine GmbH
    Inventors: Klaus Foettinger, Manfred Hecker, Lothar Berger, Rainer Karer, Dieter Lilge
  • Publication number: 20100144989
    Abstract: The invention generally provides for methods for controlling polymer properties. In particular, invention provides for methods for controlling the comonomer composition distribution of polyolefins such as ethylene alpha-olefin copolymers by altering at least one or more of the following parameters: the molar ratio of hydrogen to ethylene, the molar ratio of comonomer to ethylene, the partial pressure of ethylene, and the reactor temperature without substantially changing the density and/or the melt index of the copolymer.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 10, 2010
    Applicant: Univation Technologies, LLC
    Inventors: Rainer Kolb, James M. Farley, John F. Szul, Mark P. Ossowski
  • Publication number: 20100134953
    Abstract: The present invention relates to a capacitor film comprising a biaxially oriented polypropylene wherein a) said polypropylene has a draw ratio in machine direction of at least 4.0 and a draw ratio in transverse direction of at least 4.0, and b) said polypropylene has an electrical breakdown strength EB63% according to IEC 60243-part 1 (1988) of at least 300 kV/mm at a draw ratio in machine direction and in transverse direction of 4.0.
    Type: Application
    Filed: May 7, 2008
    Publication date: June 3, 2010
    Applicant: Borealis Technology Oy
    Inventors: Manfred Stadlbauer, Eberhard Ernst, Lauri Huhtanen, Yvo Daniels, Franck Jacobs
  • Patent number: 7723447
    Abstract: The invention provides for a process to produce polymers utilizing a hydrofluorocarbon diluent.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 25, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Scott Thomas Milner, Michael Gerard Matturro, Timothy Daniel Shaffer, Robert Norman Webb, David Yen-Lung Chung, Michael Francis McDonald
  • Publication number: 20100121006
    Abstract: The present invention relates to a polyolefin that has high environmental stress cracking resistance (ESCR), a high impact property, and an excellent die swell property, and a method of preparing the same. According to the method of preparing polyolefin of the present invention, a supported hybrid metallocene catalyst and an alpha olefin comonomer having 4 or more carbon atoms are used to obtain polyolefin having the bimodal or multimodal molecular weight distribution curves during the single reactor polymerization. The polyolefin has excellent processability, a melt flow rate ratio (MFRR) that is useful to processing, excellent shapability, impact strength, tensile strength, in particular, environmental stress cracking resistance (ESCR) and full notch creep test (FNCT), thus being used to manufacture the blow molded product.
    Type: Application
    Filed: May 2, 2008
    Publication date: May 13, 2010
    Inventors: Joon-Hee Cho, Ki-Soo Lee, Yong-Gyu Han, Dae-Sik Hong, Heon-Yong Kwon, Jong-Sang Park, Seon-Kyoung Kim
  • Publication number: 20100121005
    Abstract: The present invention relates to a norbornene polymer that comprises a norbornene monomer having a photoreactive functional group, and a method of manufacturing the same. The norbornene polymer comprises at least 50 mol % of exo isomers among the norbornene monomers having the photoreactive functional group. Since the norbornene polymer according to the present invention comprises at least 50 mol % of exo isomers among the norbornene monomers having the photoreactive functional group, a molecular weight is significantly increased while the yield is not reduced during the manufacturing of the polymer. In views of the three dimensional structure, stability is ensured because the polymer has a planar structure in which the photoreactive groups between the molecules are close to each other. Therefore, the distance between the photoreactive groups is reduced, thus increasing the photoreaction rate.
    Type: Application
    Filed: March 21, 2008
    Publication date: May 13, 2010
    Inventors: Heon Kim, Sung-Ho Chun, Hye-Young Jung, Dai-Seung Choi, Kyoung-Hoon Kim, Jong-Chan Kim
  • Publication number: 20100121004
    Abstract: Disclosed is a process for purifying monomers of Formula (II): wherein R1 and R2 are independently selected from alkyl, substituted alkyl, aryl, substituted aryl, alkoxy, substituted alkoxy, and halogen; and R? is selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, alkoxy, substituted alkoxy, and halogen. After the monomer is synthesized, it is purified by column chromatography using neutral alumina and hexane as an eluent. The resulting product can also be further recrystallized using isopropanol, hexane, heptane, or toluene. Polymers formed from the purified monomer exhibit higher mobility and increased reproducibility of the mobility.
    Type: Application
    Filed: November 13, 2008
    Publication date: May 13, 2010
    Applicant: XEROX CORPORATION
    Inventors: Yuning Li, Ping Liu, Yiliang Wu
  • Patent number: 7705098
    Abstract: Chemically crosslinked polycyclooctene having excellent shape recovery properties is prepared by ring-opening metathesis polymerization of cis-cyclooctene followed by chemical crosslinking. The crosslinked polycyclooctene can be shaped, the shape memorized, a new shape imparted with the original shape being recoverable by suitable temperature adjustment. The dependence of shape memory characteristics on degree of crosslinking was established. In addition to polycyclooctene, blends thereof with other materials such as SBR, EVA, polyurethane rubbers, and inorganic fillers can be utilized to provide chemically crosslinked products having excellent and tailored shape memory properties.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: April 27, 2010
    Assignee: University of Connecticut
    Inventors: Patrick T. Mather, Changdeng Liu, Seung B. Chun, E. Bryan Coughlin
  • Publication number: 20100099835
    Abstract: Provided herein are methods for preparing vinylidene-terminated polyolefins. Further, provided herein are novel sulfide-terminated polyolefins of the formula: wherein R1 is a polyolefin group and R2 is hydrocarbyl; and methods for producing the same.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventor: Casey D. Stokes
  • Publication number: 20100093955
    Abstract: The present invention relates to a photoreactive polymer that comprises a multi-cyclic compound in a main chain, and a polymerization method thereof. Since the photoreactive polymer according to the present invention comprises a multi-cyclic compound having a high glass transition temperature as a main chain, the thermal stability is excellent, and since the mobility of the main chain is relatively high as compared to that of an additional polymer, a photoreactive group can be freely moved in the main chain of the polymer. Accordingly, it is possible to overcome a slow photoreactive rate that is considered a disadvantage of a polymer material used to prepare an alignment film for known liquid crystal display devices.
    Type: Application
    Filed: March 21, 2008
    Publication date: April 15, 2010
    Inventors: Dai-Seung Choi, Hye-Young Jung, Sung-Ho Chun, Heon Kim, Sung-Don Hong, Dong-Woo Yoo
  • Patent number: 7683145
    Abstract: A method for the emulsion polymerization of one or more olefins by reacting a ligand of general formulae Ia and Ib or a mixture of at least two ligands Ia or Ib, wherein R respectively represents one or several of the following radicals; hydrogen, halogen, nitrile, C1-C12-alkyl groups, C1-C12-alkoxy groups, C7-C13-aralkyl groups, C6-C14-aryl groups, and wherein identical or different compounds of general formulae Ia and Ib can, optionally, be concatenated by one or several bridges, with a phosphine compound PR3? and a metal compound of general formula M(L2)2 or M(L2)2 (L1)z, wherein the variables are defined as follows: M is a transition metal of groups 7-10 in the periodic system of the elements; L1 represents phosphanes (R5)xPH3-x or amines (R5)xNH3-x with identical or different radicals R5, ether (R5)2O, H2O, alkohols (R5)OH, pyridine, pyridine derivatives of formula C5H5-x(R5)xN, CO, C1-C12-alkylnitriles, C6-C14-arylnitriles or ethylenically unsaturated double bond systems, wherein x is a whole number ran
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: March 23, 2010
    Assignee: BASF SE
    Inventors: Mubarik Mahmood Chowdhry, Markus Schmid, Peter Preishuber-Pfluegl, Xavier Sava, Horst Weiss, Stefan Mecking, Florian M. Bauers
  • Publication number: 20100069587
    Abstract: A method for the preparation of copolymers of ethylene and ?-olefins having a fraction (%) of the molecular weight component of >1,000,000 of less than 6% comprises polymerising ethylene and an ?-olefin in the presence of a supported polymerisation catalyst system comprising (a) a transition metal compound (b) a porous support material, and (c) an activator characterized in that the support material has been (i) dried at a temperature in the range 0° C. to 195° C. in an inert atmosphere, and (ii) treated with an organometallic compound. The resultant supported catalyst systems show improved productivity and allow for control of the resultant polymer properties. Particularly preferred supported catalyst systems are those comprising metallocene complexes.
    Type: Application
    Filed: November 23, 2007
    Publication date: March 18, 2010
    Inventors: Sergio Mastroianni, Stefan Klaus Spitzmesser
  • Publication number: 20100063225
    Abstract: The present invention generally relates to methods for the synthesis of species including monomers and polymers. Methods of the invention comprise the use of chemical techniques including metathesis chemistry to synthesize, for example, monomers and/or polymers with desired functional groups.
    Type: Application
    Filed: September 28, 2007
    Publication date: March 11, 2010
    Applicant: Massachuetts Institute of Technology
    Inventors: Timothy M. Swager, John P. Amara
  • Patent number: 7666958
    Abstract: The invention relates to methods for producing cesium hydroxide solutions during which: cesium-containing ore is disintegrated with sulfuric acid while forming a cesium aluminum sulfate hydrate, which is poorly soluble at low temperatures; the formed cesium alum is separated away in the form of a solution from the solid ore residues; the aluminum is precipitated out of the cesium alum solution while forming a cesium sulfate solution; the formed cesium sulfate solution is reacted with barium hydroxide or stontium hydroxide while forming a cesium hydroxide solution, and; the formed cesium hydroxide solution is concentrated and purified.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: February 23, 2010
    Assignees: Sachtleben Chomie GmbH, Studiengesellschaft Kohle MBM
    Inventors: Bernd Hirthe, Bernd Proft, Jochen Winkler, Udo Blumenthal, Gerhard Fink, Klaus Hauschild
  • Patent number: 7662893
    Abstract: A method for producing a stabilized polymer comprising adding at least one kind of a phenolic antioxidant masked with an organic aluminum and represented by general formula (I) in a catalyst system or a polymerization system, before or during polymerization, on gas-phase polymerization of a monomer having an ethylenic unsaturated bonding, wherein R1 and R2, each is independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, a cycloalkyl group or an arylalkyl group; X is an alkylene group having 1 to 8 carbon atoms; R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; and R4 is an alkyl group having 1 to 30 carbon atoms.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: February 16, 2010
    Assignee: Adeka Corporation
    Inventors: Etsuo Tobita, Naoshi Kawamoto, Takahiro Horikoshi
  • Patent number: 7659355
    Abstract: The invention relates to novel air barriers made from elastomeric compositions. In particular, the invention relates to novel air barriers such as innerliners, air sleeves, and innertubes made from novel C4 to C7 isoolefin based polymers with new sequence distributions or that are substantially free of long chain branching.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Walter Harvey Waddell, David Yen-Lung Chung
  • Publication number: 20100029868
    Abstract: The present invention provides a highly active process for producing an olefin polymer, comprising: the step (I) of preliminarily polymerizing an olefin at 65° C.
    Type: Application
    Filed: February 25, 2008
    Publication date: February 4, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Tomoaki Goto
  • Patent number: 7651670
    Abstract: A Taylor reactor (1) according to FIG. 1, comprising 1. an annular reaction volume (2) which widens in the flow direction and is defined by an outer reactor wall (3), a rotor (4) which is mounted rotatably at the end (4.1) in the reactor floor (5) and at its other end (4.2) is unmounted, and a reactor floor (5) having a seal (6) for the drive shaft (7), 2. an inlet region (8) above the reactor floor (5), having at least one side feed (8.1) and/or at least one feed (8.1) through the reactor floor (5) for the reactants and/or the process media, 3. an outlet region (9) which is disposed above the annular reaction volume (2), widens further beyond the annular reaction volume (2) in the flow direction, and subsequently tapers toward a product offtake (10), 4. a product offtake (10) which at its greatest diameter opens toward the outlet region (9) and tapers in the other direction, and 5. a pressure maintenance valve (11); and its use for continuous bulk polymerization.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 26, 2010
    Assignee: BASF Coatings AG
    Inventors: Werner-Alfons Jung, Heinz-Peter Rink, Heinrich Meinecke, Josef Krull
  • Publication number: 20100010177
    Abstract: Disclosed is a method for producing a norbornene monomer composition, a norbornene polymer produced using the norbornene monomer composition, an optical film including the norbornene polymer, and a method for producing the norbornene polymer. The method includes reacting a reaction solution that contains cyclopentadiene, dicyclopentadiene, or a mixture of cyclopentadiene and dicyclopentadiene, an acetate compound, and a solvent so that a content of an exo isomer is 50 mol % or more. Variables such as a reaction temperature, a reaction time, a molar ratio between reactants, and addition of a solvent are controlled so that the exo isomer is contained in content of 50 mol % or more. Accordingly, it is possible to industrially produce an acetate norbornene addition polymer by using the acetate norbornene monomer composition containing the exo isomer in content of 50 mol % or more.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 14, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Dai-Seung Choi, Hye-Young Jung, Sung-Don Hong, Jung-Min Lee, Hee-Jean Lee, Sung-Ho Chun
  • Publication number: 20090318642
    Abstract: Use of a catalyst composition treated with a surface modifier in the polymerization of olefins for lowering the gel content in the resulting polyolefin, wherein the surface modifier has a polar residue capable of interacting with the surface of the catalyst composition and a lipophilic residue and is selected from carboxylate metal salts, nitrogen containing catalyst surface modifiers, phosphorus containing catalyst surface modifiers, oxygen containing catalyst surface modifiers, sulfur containing catalyst surface modifiers, fluoro containing polymeric catalyst surface modifiers or mixtures thereof and wherein the gel content is determined by using pressed plate gel analysis method.
    Type: Application
    Filed: December 29, 2006
    Publication date: December 24, 2009
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Esa Kokko, Janne Maaranen, John Severn, Marjaana Lommi, Alexander Krajete, Tore Dreng
  • Publication number: 20090312505
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: August 28, 2006
    Publication date: December 17, 2009
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Patent number: 7632772
    Abstract: The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: December 15, 2009
    Inventor: Zheng-Yun James Zhan
  • Publication number: 20090292087
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Publication number: 20090281258
    Abstract: Amine blend cure promoters comprising aromatic and tertiary alkyl amines are disclosed for promoting the cure of unsaturated polymer resins with a peroxide initiator, as well as methods for promoting the cure of such resins.
    Type: Application
    Filed: September 28, 2006
    Publication date: November 12, 2009
    Applicant: Albemarle Corporation
    Inventor: Wenfeng Kuang
  • Publication number: 20090270566
    Abstract: Polymerization process and polymers formed therefrom are described herein. The polymerization processes generally include introducing an olefin monomer into a reaction vessel, introducing a single-site transition metal catalyst into the reaction vessel, introducing a multi-functional block copolymer non-ionic surfactant into the reaction vessel, contacting the olefin monomer with the catalyst system in the presence of the non-ionic surfactant within the reaction vessel under polymerization conditions to form a polyolefin and withdrawing the polyolefin from the reaction vessel.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 29, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Joseph L. Thorman, Steven Borgfeld
  • Publication number: 20090264603
    Abstract: A process for producing a cyclic olefin random copolymer by copolymerizing ethylene with a specific cyclic olefin in the presence of a polymerization catalyst containing a transition metal catalyst component and a co-catalyst component, wherein in the process for producing a cyclic olefin random copolymer, at least one component of the transition metal catalyst component and the co-catalyst component is brought into contact with the cyclic olefin, and then brought into contact with the ethylene.
    Type: Application
    Filed: September 20, 2006
    Publication date: October 22, 2009
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Toshitaka Kosaka, Takeshi Suzuki, Tomohiro Yamaguchi
  • Patent number: 7601787
    Abstract: A process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a Ziegler-Natta catalyst system in two slurry reaction zones. Most of the polyethylene (70-95 wt. %) is produced in one of the zones, while a smaller fraction is produced in the other zone. The ratio of the weight average molecular weight of the smaller fraction to that of the larger fraction is greater than 8:1. The resulting polyethylene blend, which should have both high melt strength and high extrudate swell, will be useful for blow-molding applications.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 13, 2009
    Assignee: Equistar Chemicals, IP
    Inventors: Harilaos Mavridis, Manivakkam J. Shankernararayanan
  • Patent number: 7601423
    Abstract: Ethylene-based copolymer microparticles and functional group-containing ethylene-based copolymer microparticles that have particle diameter smaller than that of conventional polyethylene fine-particles, no inter-particle agglomeration, very narrow particle size distribution, and high sphericity are provided, in which requirements (A) to (E): (A) The intrinsic viscosity [?] measured in decalin at 135° C. is in the range of 0.1 to 50 dl/g, (B) at least 95 wt % or more of particles pass through a mesh screen with an opening of 37 ?m, (C) the median diameter (d50) measured by laser diffraction scattering is 3 ?m?d50?25 ?m, (D) the circularity coefficient is 0.85 or more, and (E) the variation coefficient of particle diameter (Cv) is 20% or less. Non-agglomerated spherical magnesium-containing microparticles used as magnesium-containing carrier component for olefin-polymerization catalysts that can manufacture the above microparticles are also provided.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 13, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Nakayama, Naoto Matsukawa, Junji Saito, Hideki Bando, Yoshiho Sonobe, Kenji Michiue, Makoto Mitani, Terunori Fujita
  • Publication number: 20090253872
    Abstract: An acetylene-based polymer, comprising n recurring units represented by the following Formula (1): ?CH?CA?n??(1) wherein, n is an integer of 10 to 10,000; each A represents a group selected from a naphthyl group, a phenanthryl group, a pyrenyl group and an anthryl group, which is mono- or di-substituted with a group selected from alkyl groups, alkyl groups substituted with aromatic hydrocarbon groups, R1—O— groups, —S—R2 groups, —NR3R4 groups, a cyano group, a carboxyl group, R5SO2— groups, —COOR6 groups, —CON(R7)(R8) groups and —COR9 groups (each of R1, R5, R6 and R9 is an alkyl group, each of R2, R3, R4, R7 and R8 is a hydrogen atom or an alkyl group); and the recurring units may be the same as or different from each other.
    Type: Application
    Filed: November 24, 2006
    Publication date: October 8, 2009
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: Kenji Tsuchihara
  • Publication number: 20090247716
    Abstract: Provided herein are methods for a vinylidene terminated polyolefin comprising: a. ionizing a polyolefin in the presence of a Lewis acid to form an ionized polyolefin; b. reacting the ionized polyolefin from step (a) with one or more dihydrocarbylmonosulfides; and c. reacting the product of step (b) with one or more proton acceptor compounds. In some embodiments, the dihydrocarbylmonosulfide has the formula: R1—S—R2 wherein R1 and R2 are each, independently, hydrocarbyl.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 1, 2009
    Inventor: Casey D. Stokes
  • Publication number: 20090227748
    Abstract: The present invention relates to a process for preparing olefin polymers by polymerization or copolymerization of at least one olefin of the formula Ra—CH?CH—Rb, where Ra and Rb are identical or different and are each a hydrogen atom or a hydrocarbon radical having from 1 to 20 carbon atoms, or Ra and Rb together with the atoms connecting them can form a ring, at a temperature of from ?60 to 200° C. and a pressure of from 0.
    Type: Application
    Filed: August 31, 2006
    Publication date: September 10, 2009
    Applicant: BASELL POLYOLEFINE GMBH
    Inventor: Robert Larry Jones
  • Patent number: 7585923
    Abstract: Embodiments of our invention relate generally to methods of monitoring and controlling polymerization reactions including reactions producing multimodal polymer products using multiple catalysts in a single reactor. Embodiments of the invention provide methods of rapidly monitoring and controlling polymerization reactions without the need to sample and test the polymer properties. The method uses reactor control data and material inventory data in a mathematical leading indicator function to control the reactor conditions, and thereby the products produced under those conditions.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: September 8, 2009
    Assignee: Univation Technologies, LLC
    Inventors: David Jack Sandell, Marjorie E. King, Fred David Ehrman
  • Patent number: 7582715
    Abstract: The invention relates to new polymerization processes including diluents including hydrofluorocarbons and their use to produce novel polymers substantially free of long chain branching. In particular, the invention relates to copolymers of an isoolefin, preferably isobutylene, and a multiolefin, preferably a conjugated diene, more preferably isoprene, substantially free of long chain branching.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: September 1, 2009
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Scott Thomas Milner, Timothy Daniel Shaffer, David Yen-Lung Chung
  • Publication number: 20090215972
    Abstract: A process for the polymerisation of ethylene or the copolymerisation of ethylene and alpha-olefins in the presence of a catalyst system comprising—as components (a) a transition metal compound, (b) a non-aluminoxane activator, and (c) optionally a support, comprises the use of a prepolymer prepared by contact of the catalyst components with ethylene and/or one of more alpha-olefins at a temperature in the range 60° C. to 100° C. The prepolymer may be isolated or used in situ for the polymerisation of ethylene or the copolymerisation of ethylene and alpha-olefins in particular 1-hexene. By use of the process thermal stability of the catalyst is improved leading to increased activity without any deterioration in polymer morphology.
    Type: Application
    Filed: February 15, 2006
    Publication date: August 27, 2009
    Inventors: Yahya Ahmad Banat, Jean-Richard Llinas, Sergio Mastroianni, Gunter Weickert, Joelle Marie-Louise Collomb