Of Specified Material Other Than Unalloyed Aluminum Patents (Class 257/741)
  • Patent number: 10249546
    Abstract: Reverse decoration can be used to detect defects in a device. The wafer can include NAND stacks or other devices. The defect can be a channel bridge, a void, or other types of defects. Reverse decoration can preserve a defect and/or can improve defect detection. A portion of a layer may be removed from a device. A layer also may be added to the device, such as on the defect, and some of the layer may be removed.
    Type: Grant
    Filed: December 24, 2016
    Date of Patent: April 2, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Philip Measor, Robert Danen, Paul MacDonald
  • Patent number: 10224285
    Abstract: A semiconductor structure having a Group III-N semiconductor layer disposed on a substrate. A multi-layer, electrical contact structure in contact with the Group III-N semiconductor layer includes a gold-free contact layer in contact with the Group III-N semiconductor layer; and a gold-free electrically conductive etch stop layer electrically connected to the gold-free contact layer. An electrically conductive via passes through the substrate to the etch stop layer. The structure includes a plurality of electrode structures, each one providing a corresponding one of a source electrode structure, drain electrode structure and a gate electrode structure. The source electrode structure, drain electrode structure and gate electrode structure include: an electrical contact structure and an electrode contact. The electrode contacts have the same gold-free structure and have co-planar upper surfaces.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 5, 2019
    Assignee: Raytheon Company
    Inventors: Jeffrey R. LaRoche, Eduardo M. Chumbes, Kelly P. Ip, Thomas E. Kazior
  • Patent number: 10204932
    Abstract: An array substrate and a manufacturing method thereof are provided. The array substrate includes a display area (02) and a fan-out area (01) disposed at the periphery of the display area (02), the manufacturing method comprising forming a line pattern (212) disposed in at least one of the display area (02) and the fan-out area (01), wherein forming a line pattern disposed in at least one of the display area and the fan-out area includes the following steps: forming a metal layer (210); forming an intermediate pattern (211) by performing a first patterning process on the metal layer; and forming the line pattern disposed in at least one of the display area (02) and the fan-out area (01) by performing a second patterning process on the intermediate pattern.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: February 12, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Lijuan Yang
  • Patent number: 10199504
    Abstract: Embodiments of the present invention disclose a thin film transistor and a manufacturing method thereof, an array substrate, and a display device, which relates to the field of display technology, and solves the problem that the adhesion of the electrode thin film with the adjacent thin film layer in the thin film transistor of the prior art is relatively bad. More specifically, an embodiment of the present invention provides a thin film transistor, comprising a gate, a source, a drain and a buffer layer, the buffer layer is located at one side or two sides of the gate, the source or the drain, the material of the buffer layer is a copper alloy material, the copper alloy material contains nitrogen element or oxygen element, the copper alloy material further contains aluminum element.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: February 5, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zhengliang Li, Qi Yao, Zhanfeng Cao, Bin Zhang, Xiaolong He, Jincheng Gao, Xiangchun Kong, Wei Zhang
  • Patent number: 10177118
    Abstract: To miniaturize metal columns. A semiconductor device includes a metal column (14) that extends in a stretching direction; a polymer layer (16) that surrounds the metal column from a direction crossing the stretching direction; and a guide (12) that surrounds the polymer layer in the crossing direction so as to be spaced from the metal column with the polymer layer interposed therebetween. A method for manufacturing semiconductor devices includes a step of filling a mixture (20) containing metal particles (22) and polymers (24) in a guide (12); and a step of subjecting the mixture to a heat treatment so that the polymers agglomerate to the guide to form a polymer layer (16) that makes contact with the guide and the metal particles agglomerate away from the guide with the polymer layer interposed therebetween to form a metal column (14) that stretches in a stretching direction of the guide from the metal particles.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 8, 2019
    Assignees: TOHOKU UNIVERSITY, TOSHIBA MEMORY CORPORATION
    Inventors: Mitsumasa Koyanagi, Tetsu Tanaka, Takafumi Fukushima, Kang-Wook Lee
  • Patent number: 10164115
    Abstract: An embodiment includes an apparatus comprising: a non-planar fin having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one finFET. Other embodiments are described herein.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 25, 2018
    Assignee: Intel Corporation
    Inventors: Neville L. Dias, Chia-Hong Jan, Walid M. Hafez, Roman W. Olac-Vaw, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu
  • Patent number: 10137534
    Abstract: A bonding wire includes a Cu alloy core material, and a Pd coating layer formed on the Cu alloy core material. The bonding wire contains at least one element selected from Ni, Zn, Rh, In, Ir, and Pt. A concentration of the elements in total relative to the entire wire is 0.03% by mass or more and 2% by mass or less. When measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, a crystal orientation <100> angled at 15 degrees or less to a wire axis direction has a proportion of 50% or more among crystal orientations in the wire axis direction. An average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire is 0.9 ?m or more and 1.3 ?m or less.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 27, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10101918
    Abstract: Systems and methods for generating hint information associated with a host command are disclosed. In one implementation, a processor of a host system determines whether the host system has initiated a procedure that will send a command to a non-volatile memory system. The processor analyzes at least one of metadata or payload data associated with the command to determine whether the processor is able to generate hint information associated with the at least one of metadata or payload data. The processor generates hint information based on the analysis of the at least one of metadata or payload data, sends the hint information to the non-volatile memory system, and sends the command to the non-volatile memory system.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: October 16, 2018
    Assignee: SanDisk Technologies LLC
    Inventors: Judah Gamliel Hahn, Joseph R. Meza, William L. Guthrie
  • Patent number: 10074472
    Abstract: A structure includes an encapsulating material, and a coil including a through-conductor. The through-conductor is in the encapsulating material, with a top surface of the through-conductor coplanar with a top surface of the encapsulating material, and a bottom surface of the through-conductor coplanar with a bottom surface of the encapsulating material. A metal plate is underlying the encapsulating material. A slot is in the metal plate and filled with a dielectric material. The slot has a portion overlapped by the coil.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: September 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuei-Tang Wang, Wei-Ting Chen, Vincent Chen, Hao-Yi Tsai, Ming Hung Tseng, Hung-Yi Kuo, Chen-Hua Yu
  • Patent number: 10023715
    Abstract: Provided are: an elastomer structure containing carbon nanotubes; and a method for producing the elastomer structure. In a CNT elastomer having a mesh shaped carbon nanotube aggregate on a surface layer thereof, the mesh shaped carbon nanotube aggregate can impart a shape-retaining property to the elastomer. Therefore, the elastomer can be molded along the shape of a mold, and it becomes possible to mold a carbon nanotube elastomer having a fine dimension. The elastomer structure containing carbon nanotubes according to the present invention is provided with mesh shaped carbon nanotube aggregate which are embedded in a surface layer of the elastomer structure containing carbon nanotubes and are not protruded from the surface of the elastomer structure containing carbon nanotubes.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 17, 2018
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kenji Hata, Atsuko Sekiguchi
  • Patent number: 10014285
    Abstract: A semiconductor device may include a first conductive pattern disposed in a first interlayer insulating film, a second conductive pattern disposed in a second interlayer insulating film positioned on the first interlayer insulating film, a through electrode partially penetrating through the first interlayer insulating film and the second interlayer insulating film. The through electrode electrically connects the first conductive pattern and the second conductive pattern. The device further includes a first pattern completely surrounding side surfaces of the through electrode, and a second pattern between the first pattern and the through electrode. The second pattern is separated from the first pattern and the through electrode. The device includes a third pattern connecting the first pattern and the second pattern.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: July 3, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Hyun Kim, Seung-Hoon Kim, Sang-Il Jung
  • Patent number: 10008407
    Abstract: A method of forming a semiconductor device can include forming an insulation layer using a material having a composition selected to provide resistance to subsequent etching process. The composition of the material can be changed to reduce the resistance of the material to the subsequent etching process at a predetermined level in the insulation layer. The subsequent etching process can be performed on the insulation layer to remove an upper portion of the insulation layer above the predetermined level and leave a lower portion of the insulation layer below the predetermined level between adjacent conductive patterns extending through the lower portion of the insulation layer. A low-k dielectric material can be formed on the lower portion of the insulation layer between the adjacent conductive patterns to replace the upper portion of the insulation layer above the predetermined level.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 26, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Jin Lee, Byung-Hee Kim, Sang-Hoon Ahn, Woo-Kyung You, Jong-Min Baek, Nae-In Lee
  • Patent number: 9970113
    Abstract: A method for coating metallic surfaces with an aqueous composition, which contains an aqueous solution of a zinc salt, by flooding, spraying and/or immersion, wherein, for spraying or immersion, the initial temperature of the substrate lies in the range from 5 to 400° C., in that, for flooding, the initial temperature of the substrate lies in the range from 100 to 400° C. and in that an anticorrosive nanocrystalline zinc oxide layer is formed on the metallic surface. Corresponding aqueous composition, the nanocrystalline zinc oxide layer and the use of the coated substrates are also disclosed.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: May 15, 2018
    Assignee: Chemetall GmbH
    Inventors: Özlem Özcan, Guido Grundmeier, Peter Schubach
  • Patent number: 9941374
    Abstract: A semiconductor device and methods of forming the same are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions, a channel between the first and second S/D regions, a gate engaging the channel, and a contact feature connecting to the first S/D region. The contact feature includes first and second contact layers. The first contact layer has a conformal cross-sectional profile and is in contact with the first S/D region on at least two sides thereof. In embodiments, the first contact layer is in direct contact with three or four sides of the first S/D region so as to increase the contact area. The first contact layer includes one of a semiconductor-metal alloy, an III-V semiconductor, and germanium.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: April 10, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Chung-Cheng Wu, Chia-Hao Chang, Chih-Hao Wang, Jean-Pierre Colinge, Chun-Hsiung Lin, Wai-Yi Lien, Ying-Keung Leung
  • Patent number: 9905763
    Abstract: The present disclosure relates to OLED and PV devices including transparent electrodes that are formed of conductive nanostructures and methods of improving light out-coupling in OLED and input-coupling in PV devices.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 27, 2018
    Assignee: CAM Holding Corporation
    Inventor: Florian Pschenitzka
  • Patent number: 9899376
    Abstract: An integrated circuit with transistor regions formed on a substrate. Each transistor region includes a channel region and a terminal region. The channel region is positioned along a traverse dimension, and it includes a channel edge region along a longitudinal dimension. The terminal region is positioned adjacent to the channel region, and it is doped with a first dopant of a first conductivity type. Each transistor region may include an edge block region, which is positioned along the longitudinal dimension and adjacent to the channel edge region. The edge block region is doped with a second dopant of a second conductivity type opposite to the first conductivity type. The channel region doped with a dopant and having a first doping concentration. Each transistor region may include an edge recovery region overlapping with the channel edge region and having a second doping concentration higher than the first doping concentration.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: February 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiaoju Wu, C. Matthew Thompson
  • Patent number: 9876094
    Abstract: A method for fabricating a semiconductor device is provided. The method includes forming a gate electrode and a source or drain disposed at opposite sides of the gate electrode, forming an interlayer insulating layer covering the gate electrode and the source or drain, forming a contact hole exposing the source or drain in the interlayer insulating layer, forming a silicide layer on a bottom surface of the contact hole, and forming a spacer on sidewalls of the contact hole and an upper surface of the silicide layer.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 23, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Deok-Han Bae, Kyung-Soo Kim, Chul-Sung Kim, Woo-Cheol Shin, Hwi-Chan Jun
  • Patent number: 9864246
    Abstract: Disclosed are an array substrate and a display device which belong to the technical field of displays, and are intended to solve the technical problem of large width of the bezel of a liquid crystal display device. The array substrate is provided thereon with a fan-out zone which includes a plurality of conducting lines. At least one of the conducting lines includes a first metal wire and a second metal wire which are serially connected to each other. The second metal wire has a unit resistivity larger than that of the first metal wire. The conducting lines have different lengths, and the second metal wire in a shorter conducting line is longer than the second metal wire in a longer conducting line.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: January 9, 2018
    Assignee: Shenzhen China Star Optoelectronics Technology Co., LTd.
    Inventor: Yanfeng Fu
  • Patent number: 9859154
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a dielectric layer over the semiconductor substrate. The dielectric layer has a protection region and a lower portion that is between the protection region and the semiconductor substrate. The protection region contains more carbon than the dielectric layer. The semiconductor device structure also includes a conductive feature penetrating through the protection region, and a lower portion of the conductive feature is surrounded by the lower portion of the dielectric layer.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Kuan Lee, Hsin-Yen Huang, Hai-Ching Chen
  • Patent number: 9853005
    Abstract: An improvement is achieved in the reliability of a semiconductor device. Over a semiconductor substrate, an interlayer insulating film is formed and, over the interlayer insulating film, a pad is formed. Over the interlayer insulating film, an insulating film is formed so as to cover the pad. In the insulating film, an opening is formed to expose a part of the pad. The pad is a pad to which a copper wire is to be electrically coupled and which includes an Al-containing conductive film containing aluminum as a main component. Over the Al-containing conductive film in a region overlapping the opening in plan view, a laminated film including a barrier conductor film, and a metal film over the barrier conductor film is formed. The metal film is in an uppermost layer. The barrier conductor film is a single-layer film or a laminated film including one or more layers of films selected from the group consisting of a Ti film, a TiN film, a Ta film, a TaN film, a W film, a WN film, a TiW film, and a TaW film.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: December 26, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takehiko Maeda, Akira Yajima, Satoshi Itou, Fumiyoshi Kawashiro
  • Patent number: 9818644
    Abstract: The present disclosure provides an interconnect structure, including a substrate, a first conductive feature over the substrate, a second conductive feature over the first conductive feature, and a dielectric layer surrounding the first conductive feature and the second conductive feature. A width of the first conductive feature and a width of the second conductive feature are between 10 nm and 50 nm. The present disclosure also provides a method for manufacturing an interconnect structure, including (1) forming a via opening and a line trench in a dielectric layer, (2) forming a 1-dimensional conductive feature in the via opening, (3) forming a conformal catalyst layer over a sidewall of the line trench, a bottom of the line trench, and a top of the 1-dimensional conductive feature, and (4) removing the conformal catalyst layer from the bottom of the line trench and the top of the 1-dimensional conductive feature.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: November 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shin-Yi Yang, Hsi-Wen Tien, Ming-Han Lee, Hsiang-Huan Lee, Shau-Lin Shue
  • Patent number: 9818716
    Abstract: A power module is fabricated, employing a clad metal that is formed by pressure-laminating aluminum and copper, in such a manner that the aluminum layer of the clad metal is bonded such as by ultrasonic bonding to the surface electrode of the power semiconductor chip and a wire is bonded to the copper layer thereof to establish electrical circuit. The clad metal is thermally treated in advance at a temperature higher than the operating temperature of the power semiconductor chip to sufficiently form intermetallic compounds at the interface between the aluminum layer and the copper layer for the intermetallic compounds so as not to grow in thickness after the bonding processes.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: November 14, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Junji Fujino, Yoshihisa Uchida, Shohei Ogawa, Soichi Sakamoto, Tatsunori Yanagimoto
  • Patent number: 9795031
    Abstract: The present disclosure discloses a wiring board used to connect a driving chip and a display panel, a flexible display panel and a display device. Signal output ends on the driving chip and signal input ends on the display panel may be arranged in pairs; and the wiring board may include fanout lines each of which is configured to connect a pair of signal output end and the signal input end. The wiring board may include a substrate; a plurality of segments of first connection lines having first resistivity is arranged on a first surface of the substrate; a plurality of segments of second connection lines having second resistivity is arranged on a second surface of the substrate opposite to the first surface. At least parts of the fanout lines are formed by connecting the first connection lines and the second connection lines.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: October 17, 2017
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Song Song, Kazuyoshi Nagayama
  • Patent number: 9735079
    Abstract: A package substrate for chip/chips package wrapped by a molding compound is disclosed. The molding compound functions as a stiffener for the thin film package substrate. One embodiment discloses at least one redistribution layer (RDL) is prepared and the RDL is wrapped by a molding compound. The molding compound wraps four lateral sides and bottom side of the RDL. A top side of the RDL is made for a chip to mount and a bottom side of the RDL is planted a plurality of solder balls so that the bottom side of the chip package is adaptive to mount onto a system board in a later process.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: August 15, 2017
    Inventor: Dyi-Chung Hu
  • Patent number: 9735235
    Abstract: A method of forming a nanowire includes providing a substrate. The substrate is etched to form at least one fin. Subsequently, a first epitaxial layer is formed on an upper portion of the fin. Later, an undercut is formed on a middle portion the fin. A second epitaxial layer is formed to fill into the undercut. Finally, the fin, the first epitaxial layer and the second epitaxial layer are oxidized to condense the first epitaxial layer and the second epitaxial layer into a germanium-containing nanowire.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 15, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tsai-Yu Wen, Chin-Sheng Yang, Chun-Jen Chen, Tsuo-Wen Lu, Yu-Ren Wang
  • Patent number: 9728425
    Abstract: Space-efficient underfilling techniques for electronic assemblies are described. According to some such techniques, an underfilling method may comprise mounting an electronic element on a surface of a substrate, dispensing an underfill material upon the surface of the substrate within a dispense region for forming an underfill for the electronic element, and projecting curing rays upon at least a portion of the dispensed underfill material to inhibit an outward flow of dispensed underfill material from the dispense region, and the underfill material may comprise a non-visible light (NVL)-curable material. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 2, 2016
    Date of Patent: August 8, 2017
    Assignee: INTEL CORPORATION
    Inventors: Joshua D. Heppner, Serge Roux, Michael J. Baker, Javier A. Falcon
  • Patent number: 9607858
    Abstract: The invention provides a method of forming at least one Metal Germanide contact on a substrate for providing a semiconducting device (100) by providing a first layer (120) of Germanium (Ge) and a second layer of metal. The invention provides a step of reacting the second layer with the first layer with high energy density pulses for obtaining a Germanide metal layer (160A) having a substantially planar interface with the underlying first (Ge) layer.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 28, 2017
    Assignees: Laser Systems & Solutions of Europe (LASSE) Screen Semiconductor Solutions Co. Ltd., University College Cork—National University of Ireland, Cork
    Inventors: Ray Duffy, Maryam Shayesteh, Karim Huet
  • Patent number: 9601498
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 21, 2017
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Rueckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Patent number: 9570299
    Abstract: Techniques for forming nanostructured materials are provided. In one aspect of the invention, a method for forming nanotubes on a buried insulator includes the steps of: forming one or more fins in a SOI layer of an SOI wafer, wherein the SOI wafer has a substrate separated from the SOI layer by the buried insulator; forming a SiGe layer on the fins; annealing the SiGe layer under conditions sufficient to drive-in Ge from the SiGe layer into the fins and form a SiGe shell completely surrounding each of the fins; and removing the fins selective to the SiGe shell, wherein the SiGe shell which remains forms the nanotubes on the buried insulator. A nanotube structure and method of forming a nanotube device are also provided.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Hong He, Ali Khakifirooz, Juntao Li
  • Patent number: 9553039
    Abstract: The semiconductor device comprises a semiconductor substrate (10) with a metallization (111) having an upper terminal layer (22) located at a front side (20) of the substrate. The metallization forms a through-substrate via (23) from the upper terminal layer to a rear terminal layer (13) located opposite to the front side at a rear side (21) of the substrate. The through-substrate via comprises a void (101), which may be filled with air or another gas. A solder ball (100) closes the void without completely filling it. A variety of interconnections for three dimensional integration is offered by this scheme.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: January 24, 2017
    Assignee: AMS AG
    Inventors: Cathal Cassidy, Martin Schrems, Franz Schrank
  • Patent number: 9554460
    Abstract: A process for the manufacture of a reflective conductive film comprising: (i) a reflective polymeric substrate comprising a polymeric base layer and a polymeric binding layer, wherein the polymeric material of the base layer has a softening temperature TS-B, and the polymeric material of the binding layer has a softening temperature TS-HS; and (ii) a conductive layer comprising a plurality of nanowires, wherein said nanowires are bound by the polymeric matrix of the binding layer such that the nanowires are dispersed at least partially in the polymeric matrix of the binding layer, said process comprising the steps of providing a reflective polymeric substrate comprising a polymeric base layer and a polymeric binding layer; disposing said nanowires on the exposed surface of the binding layer; and heating the composite film to a temperature T1 wherein T1 is equal to or greater than TS?HS, and T1 is at least about 5° C. below TS-B.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: January 24, 2017
    Assignee: Dupont Teijin Films U.S. Limited Partnership
    Inventors: Tina Wright, Xavier Bories-Azeau
  • Patent number: 9524923
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a substrate, a through silicon via hole, an interlayer dielectric, a liner layer and a conductor. The through silicon via hole is formed in the substrate. The interlayer dielectric is formed on the substrate. The interlayer dielectric defines an opening corresponding to the through silicon via hole. The interlayer dielectric comprises a bird beak portion near the through silicon via hole. The liner layer is formed on a bottom and a sidewall of the through silicon via hole. The conductor is filled in the through silicon via hole and the opening.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: December 20, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Xiao-Fei Han, Jun Qian, Ju-Bao Zhang
  • Patent number: 9515101
    Abstract: The present invention provides an array substrate and a method for manufacturing the same, and a display device. Wherein, after forming a pattern corresponding to a source/drain electrode layer, a transparent conducting layer is formed, and then a passivation layer is formed on the transparent conducting layer. Because the transparent conducting layer has a characteristic of anti-etching, it is hard to be damaged, so that the problem of damage of copper in the source/drain electrode layer is solved without increasing the process steps for forming the array substrate.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 6, 2016
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Xuehui Zhang
  • Patent number: 9487864
    Abstract: Before depositing a metal capping layer on a metal interconnect in a damascene structure, a remote plasma is used to reduce native oxide formed on the metal interconnect. Accordingly, a remote plasma reducing chamber is integrated in a processing platform for depositing a metal capping layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: November 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien Chi, Szu-Ping Tung, Huang-Yi Huang, Ching-Hua Hsieh
  • Patent number: 9484378
    Abstract: Semiconductor devices may include a semiconductor substrate comprising at least one of transistors and capacitors may be located at an active surface of the semiconductor substrate. An imperforate dielectric material may be located on the active surface, the imperforate dielectric material covering the at least one of transistors and the capacitors. Electrically conductive material in contact openings may be electrically connected to the at least one of transistors and capacitors and extend to a back side surface of the semiconductor substrate. Laterally extending conductive elements may extend over the back side surface of the semiconductor substrate and may be electrically connected to the conductive material in the contact openings.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 1, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Steve Oliver
  • Patent number: 9484543
    Abstract: A method of fabricating optical energy collection and conversion devices using carbon nanotubes (CNTs), and a method of anchoring CNT's into thin polymeric layers is disclosed. The basic method comprises an initial act of surrounding a plurality of substantially aligned nanostructures within at least one fluid layer of substantially uniform thickness such that a first end of the plurality of nanostructures protrudes from the fluid layer. Next, the fluid layer is altered to form an anchoring layer, thereby fastening the nanostructures within the primary anchoring layer with the first ends of the nanostructures protruding from a first surface of the primary anchoring layer. Finally, a portion of the anchoring layer is selectively removed such that a second end of the nanostructures is exposed and protrudes from the anchoring layer. The resulting product is an optically absorbent composite material having aligned nanostructures protruding from both sides of an anchoring layer.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: November 1, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Elijah Bodhi Sansom, Morteza Gharib, Derek Rinderknecht
  • Patent number: 9455188
    Abstract: Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress, thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Huang Liu, Sarasvathi Thangaraju, Chun Yu Wong
  • Patent number: 9422455
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, an ionic polymer of formula I: wherein X1 and X2, Z1 and Z2, R1, R2, R3, and R4, and n are as defined herein, a polyhydroxy aromatic compound, a polyvinyl alcohol, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 23, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Sudeep Pallikkara Kuttiatoor, Kevin Dockery, Prativa Pandey, Renhe Jia
  • Patent number: 9419086
    Abstract: A semiconductor nanowire device includes at least one semiconductor nanowire having a bottom surface and a top surface, an insulating material which surrounds the semiconductor nanowire, and an electrode ohmically contacting the top surface of the semiconductor nanowire. A contact of the electrode to the semiconductor material of the semiconductor nanowire is dominated by the contact to the top surface of the semiconductor nanowire.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 16, 2016
    Assignee: SOL VOLTAICS AB
    Inventors: Ingvar Åberg, Martin Magnusson, Damir Asoli, Lars Ivar Samuelson, Jonas Ohlsson
  • Patent number: 9401340
    Abstract: A semiconductor device comprises a circuit layer composed of a conductive material, and a semiconductor element mounted on the circuit layer, wherein an underlayer having a porosity in the range of 5 to 55% is formed on one surface of the circuit layer, a bonding layer composed of a sintered body of a bonding material including an organic substance and at least one of metal particles and metal oxide particles is formed on the underlayer, and the circuit layer and the semiconductor element are bonded together via the underlayer and the bonding layer.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 26, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shuji Nishimoto, Yoshiyuki Nagatomo, Toshiyuki Nagase
  • Patent number: 9390997
    Abstract: The disclosure relates to a semiconductor chip and a stacked type semiconductor package having the same. The semiconductor chip includes: a semiconductor chip body having a first surface formed with a plurality of bonding pads and a second surface which is opposite to the first surface, a plurality of first and second through electrodes that pass through the semiconductor chip body and one ends thereof are electrically connected to the bonding pads, an insulating layer formed over the second surface of the semiconductor chip body such that the other ends of the first and second through electrodes are not covered by the insulating layer, and a first heat spreading layer formed over the insulating layer.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: July 12, 2016
    Assignee: SK hynix, Inc.
    Inventors: Jong Hoon Kim, Jae Hyun Son, Byoung Do Lee, Kuk Jin Chun, Woong Kyu Choi
  • Patent number: 9331001
    Abstract: A semiconductor module includes a semiconductor device; a metal plate portion that includes a first surface on a side of the semiconductor device and has a fastening portion at an end thereof; a molded portion that is formed by molding a resin on the semiconductor device and the metal plate portion, a cooling plate portion that is a separate member from the metal plate portion, is provided on a side opposite to the first surface on the side of the semiconductor device, and includes fins on a side opposite to the side of the metal plate portion; wherein the fastening portion of the metal plate portion is exposed out of the molded portion, and the cooling plate portion includes a fastening portion at a position that corresponds to a position of the fastening portion of the metal plate portion.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 3, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Kadoguchi, Yoshikazu Suzuki, Masaya Kaji, Kiyofumi Nakajima, Tatsuya Miyoshi, Takanori Kawashima, Tomomi Okumura
  • Patent number: 9293531
    Abstract: A tensile strain state in semiconductor components is adjusted. A pretensioned (tensile strain) layer is applied to a substrate (FIG. 1, (A)). Bridge structures (FIG. 1, (B)) are introduced in the layers by lithography and etching. The bridges are connected to the layer on both sides and are thus continuous. The geometric shape of the bridges, formed with a cross-section modulation, is determined by the windows (FIG. 1 (C)) in the layer. When the substrate is etched selectively, the bridge is undercut through the windows. The geometric structuring of the cross-section (FIG. 1, (D)) causes a redistribution of the originally homogeneous strain when the bridges are detached from the substrate, with the larger cross-sections relaxing at the expense of the smaller cross-sections, where the pretension is increased. Only a multiplication of stresses (or strain) originally present in the sample is possible, with the multiplication factor determined by lengths, widths and depths, and/or the relationships thereof.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: March 22, 2016
    Assignees: PAUL SCHERRER INSTITUT, ETH ZUERICH
    Inventors: Jerome Faist, Gustav Schiefler, Hans Christian Sigg, Ralph Spolenak, Martin Süss
  • Patent number: 9257450
    Abstract: A method for making a semiconductor device may include forming, above a substrate, a stack of alternating layers of first and second semiconductor materials. The second semiconductor material may be different than the first semiconductor material. The method may further include forming fins from the stack, with each fin having alternating layers of the first and second semiconductor materials, and selectively removing sidewall portions of the second semiconductor material from the fins to define recesses therein. The method may also include forming a dielectric material within the recesses, forming additional first semiconductor material on sidewall portions of the first semiconductor material in the fins, and forming a dielectric layer overlying the fins to define nanowires including the first semiconductor material within the dielectric layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: February 9, 2016
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, James Kuss
  • Patent number: 9196607
    Abstract: A stack package includes a substrate having connection terminals and a first chip on the substrate. The first chip has first connectors on edges thereof. A second chip is stacked on the first chip to expose outer portions of the first connectors. The second chip has second connectors on edges thereof. Connection members to connect the exposed outer portions of the first connectors to the connection terminals. Sidewall interconnectors to connect the exposed outer portions of the first connectors to the second connectors. The sidewall interconnectors extend from the exposed outer portions of the first connectors along sidewalls of the second chip to cover the second connectors.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: November 24, 2015
    Assignee: SK Hynix Inc.
    Inventors: Jin Ho Bae, Han Jun Bae
  • Patent number: 9162303
    Abstract: A circuit board, associated assembly, and method of manufacture. The circuit board comprises an elongated groove, extending into the circuit board, for accommodating a footing of a large component such as an RF shield. The groove allows solder paste to be deposited therein via a stencil, to a depth greater than the stencil thickness. Thus the same stencil can be used for depositing solder paste for both small and large components.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: October 20, 2015
    Assignee: BLACKBERRY LIMITED
    Inventors: Fan Li, Jie Huang, Surinder Jassal
  • Patent number: 9165859
    Abstract: A semiconductor device includes a first conductive structure including a first conductive pattern that is formed over a substrate, a second conductive structure formed adjacent to a sidewall of the first conductive structure, and an insulation structure including an air gap that is formed between the first conductive structure and the second conductive structure, wherein the second conductive structure includes a second conductive pattern, an ohmic contact layer that is formed over the second conductive pattern, and a third conductive pattern that is formed over the ohmic contact layer and is separated from the first conductive pattern through the air gap.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 20, 2015
    Assignee: SK Hynix Inc.
    Inventors: Sung-Won Lim, Seung-Jin Yeom, Hyo-Seok Lee
  • Patent number: 9054253
    Abstract: Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: June 9, 2015
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, David Todd Emerson
  • Patent number: 9041201
    Abstract: An integrated circuit device including a substrate, a first internal bonding pad, a second internal bonding pad, an external bonding pad and a bonding wire is provided. A first circuit and a second circuit are embedded in the substrate. The first internal bonding pad is disposed on a surface of the substrate and electrically coupled to the first circuit. The second internal bonding pad is disposed on the surface of the substrate and electrically coupled to the second circuit. The second internal bonding pad is electrically coupled to the first internal bonding pad via the bonding wire. The external bonding pad is electrically coupled to the first internal bonding pad.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Novatek Microelectronics Corp.
    Inventors: Tai-Hung Lin, Chang-Tien Tsai
  • Publication number: 20150137369
    Abstract: A method of optical proximity correction executed by a computer system for modifying line patterns includes the following steps. First, providing an integrated circuit layout with parallel line patterns and interconnect patterns disposed corresponding to the parallel line patterns. Then, using the computer to modify the integrated circuit layout based on a position of the interconnect patterns so as to generate a convex portion and a concave portion respectively on two sides of each of the parallel line patterns. Portions of the line pattern in front of and behind the convex portion and the concave portion are straight lines and have an identical critical dimension.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 21, 2015
    Inventors: Kuan-Wen Fang, Chin-Lung Lin, Kuo-Chang Tien, Yi-Hsiu Lee, Chien-Hsiung Wang