Of Specified Material Other Than Unalloyed Aluminum Patents (Class 257/741)
  • Publication number: 20150137367
    Abstract: Provided are a method for forming a transparent electrode and a semiconductor device where the transparent electrode is formed by using the method. The method for forming a transparent electrode includes: forming a transparent electrode by using a transparent material of which resistance state is to be changed from a high resistance state into a low resistance state according to an applied electric field; and performing a forming process of changing the resistance state of the transparent electrode into the low resistance state by applying a voltage to the transparent electrode, so that the transparent electrode has conductivity. Accordingly, it is possible to form the transparent electrode having good ohmic characteristic with respect to the semiconductor layer formed above or below the transparent electrode and high transmittance with respect to the light having a short wavelength in a UV wavelength range as well as the light in visible wavelength range.
    Type: Application
    Filed: September 10, 2012
    Publication date: May 21, 2015
    Inventors: Tae Geun Kim, Hee-Dong Kim
  • Publication number: 20150137368
    Abstract: Embodiments of the present disclosure describe techniques and configurations associated with forming a landing structure for a through-silicon via (TSV) using interconnect structures of interconnect layers. In one embodiment, an apparatus includes a semiconductor substrate having a first surface and a second surface opposite to the first surface, a device layer disposed on the first surface of the semiconductor substrate, the device layer including one or more transistor devices, interconnect layers disposed on the device layer, the interconnect layers including a plurality of interconnect structures and one or more through-silicon vias disposed between the first surface and the second surface, wherein the plurality of interconnect structures include interconnect structures that are electrically coupled with the one or more TSVs and configured to provide one or more corresponding landing structures of the one or more TSVs. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 8, 2014
    Publication date: May 21, 2015
    Inventors: Christopher M. Pelto, Ruth A. Brain, Kevin J. Lee, Gerald S. Leatherman
  • Publication number: 20150137356
    Abstract: The present invention provides a non-cyanogen type electrolytic gold plating solution, which can form a plating film capable of maintaining a high hardness even when the plating film is subjected to a heat treatment. A non-cyanogen type electrolytic gold plating solution of the present invention includes: a gold source including an alkaline salt of gold sulfite or ammonium of gold sulfite; and a conductive salt including sulfite and sulfate. The non-cyanogen type electrolytic gold plating solution includes a salt of at least one of iridium, ruthenium, and rhodium in a metal concentration of 1 to 3000 mg/L. Further, the non-cyanogen type electrolytic gold plating solution preferably includes a crystal adjuster. The crystal adjuster is particularly preferably thallium.
    Type: Application
    Filed: September 19, 2013
    Publication date: May 21, 2015
    Applicant: ELECTROPLATING ENGINEERS OF JAPAN LIMITED
    Inventors: Junko Tsuyuki, Masahiro Ito
  • Patent number: 9034755
    Abstract: Embodiments of the present invention provide a method of forming contact structure for transistor. The method includes providing a semiconductor substrate having a first and a second gate structure of a first and a second transistor formed on top thereof, the first and second gate structures being embedded in a first inter-layer-dielectric (ILD) layer; epitaxially forming a first semiconductor region between the first and second gate structures inside the first ILD layer; epitaxially forming a second semiconductor region on top of the first semiconductor region, the second semiconductor region being inside a second ILD layer on top of the first ILD layer and having a width wider than a width of the first semiconductor region; and forming a silicide in a top portion of the second semiconductor region.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Reinaldo A. Vega
  • Patent number: 9035364
    Abstract: An active device and a fabricating method thereof are provided. The active device includes a buffer layer, a channel, a gate, a gate insulation layer, a source and a drain. The buffer layer is disposed on a substrate and has a positioning region. A thickness of a portion of the buffer layer in the positioning region is greater than a thickness of a portion of the buffer layer outside the positioning region. The channel is disposed on the buffer layer and in the positioning region. The gate is disposed above the channel. The gate insulation layer is disposed between the channel and the gate. The source and the drain are disposed above the channel and electrically connected to the channel.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 19, 2015
    Assignee: Au Optronics Corporation
    Inventors: Chih-Pang Chang, Hsing-Hung Hsieh
  • Publication number: 20150130062
    Abstract: Method for forming an interconnect structure, comprising the steps of: forming a recessed structure in a dielectric material on a substrate; at least partially filling said recessed structure with a metal chosen from the group consisting of copper, nickel and cobalt; introducing the substrate in a CVD reactor; bringing the substrate in the CVD reactor to a soak temperature and subsequently performing a soak treatment by supplying a germanium precursor gas to the CVD reactor at the soak temperature, thereby substantially completely converting the metal in the recessed structure to a germanide.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 14, 2015
    Applicant: IMEC VZW
    Inventors: Laure Elisa Carbonell, Antony Premkumar Peter, Marc Schaekers, Sven Van Elshocht, Zsolt Tokei
  • Patent number: 9030012
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate provided with a lower interconnect layer formed thereon, and having a device region and a mark formation region, a CNT via structure formed in the device region such that it contacts the lower interconnect layer, a first mark formed in the mark formation region, formed by embedding carbon nanotubes, and formed in the same layer as the CNT via structure, a second mark formed in the mark formation region of the semiconductor substrate, formed with no carbon nanotubes, and formed in the same layer as the CNT via structure and the first mark, and an interconnect layer formed on the CNT via structure and the first and second marks, and electrically connected to the CNT via structure.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Akihiro Kajita, Atsunobu Isobayashi, Tatsuro Saito, Tadashi Sakai, Taishi Ishikura
  • Publication number: 20150115393
    Abstract: Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. To avoid warpage, the tensile stress of a conductive layer deposited onto a GaAs substrate can be offset by depositing a compensating layer having negative stress over the GaAs substrate. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 30, 2015
    Inventor: Hong Shen
  • Publication number: 20150115445
    Abstract: Methods of manufacturing semiconductor devices and semiconductor devices with through-substrate vias (TSVs). One embodiment of a method of manufacturing a semiconductor device includes forming an opening through a dielectric structure and at least a portion of a semiconductor substrate, and forming a dielectric liner material having a first portion lining the opening and a second portion on an outer surface of the dielectric structure laterally outside of the opening. The method further includes removing the conductive material such that the second portion of the dielectric liner material is exposed, and forming a damascene conductive line in the second portion of the dielectric liner material that is electrically coupled to the TSV.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Anurag Jindal, Jian He, Lalapet Rangan Vasudevan, Kyle K. Kirby, Hongqi Li
  • Publication number: 20150115453
    Abstract: A bonded device having at least one porosified surface is disclosed. The porosification process introduces nanoporous holes into the microstructure of the bonding surfaces of the devices. The material property of a porosified material is softer as compared to a non-porosified material. For the same bonding conditions, the use of the porosified bonding surfaces enhances the bond strength of the bonded interface as compared to the non-porosified material.
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Inventors: Rama Krishna KOTLANKA, Rakesh KUMAR, Premachandran CHIRAYARIKATHUVEEDU SANKARAPILLAI, Huamao LIN, Pradeep YELEHANKA
  • Publication number: 20150115444
    Abstract: According to various embodiments, a wafer arrangement may be provided, the wafer arrangement may include: a wafer including at least one electronic component having at least one electronic contact exposed on a surface of the wafer; an adhesive layer structure disposed over the surface of the wafer, the adhesive layer structure covering the at least one electronic contact; and a carrier adhered to the wafer via the adhesive layer structure, wherein the carrier may include a contact structure at a surface of the carrier aligned with the at least one electronic contact so that by pressing the wafer in direction of the carrier, the contact structure can be brought into electrical contact with the at least one electronic contact of the at least one electronic component.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: Infineon Technologies Dresden GmbH
    Inventors: Peter Brockhaus, Uwe Koeckritz
  • Patent number: 9013041
    Abstract: There are disclosed herein various implementations of semiconductor packages including an interposer without through-semiconductor vias (TSVs). One exemplary implementation includes a first active die situated over an interposer. The interposer includes an interposer dielectric having intra-interposer routing traces. The first active die communicates electrical signals to a package substrate situated below the interposer utilizing the intra-interposer routing traces and without utilizing TSVs. In one implementation, the semiconductor package includes a second active die situated over the interposer, the second active die communicating electrical signals to the package substrate utilizing the intra-interposer routing traces and without utilizing TSVs. Moreover, in one implementation, the first active die and the second active die communicate chip-to-chip signals through the interposer.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 21, 2015
    Assignee: Broadcom Corporation
    Inventors: Sampath K. V. Karikalan, Sam Ziqun Zhao, Kevin Kunzhong Hu, Rezaur Rahman Khan, Pieter Vorenkamp, Xiangdong Chen
  • Patent number: 9006857
    Abstract: An IR sensor includes a suspended micro-platform having a support layer and a device layer disposed thereon. IR absorbers are disposed in or on the device layer. IR radiation received by the IR absorbers heats an on-platform junction of each of a plurality of series-connected thermoelectric devices operating in a Seebeck mode, the devices producing a voltage indicative of the received IR. Other thermoelectric devices are used to cool the platform, and a pressure sensing arrangement is used to detect loss of vacuum or pressure leaks.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 14, 2015
    Inventor: William N. Carr
  • Patent number: 9006911
    Abstract: A method for forming patterns of dense conductor lines and their contact pads is described. Parallel base line patterns are formed over a substrate. Each of the base line patterns is trimmed. Derivative line patterns and derivative transverse patterns are formed as spaces on the sidewalls of the trimmed base line patterns, wherein the derivative transverse patterns are formed between the ends of the derivative line patterns and adjacent to the ends of the trimmed base line patterns. The trimmed base line patterns are removed. At least end portions of the derivative line patterns are removed, such that the derivative line patterns are separated from each other and all or portions of the derivative transverse patterns become patterns of contact pads each connected with a derivative line pattern.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 14, 2015
    Assignee: Nanya Technology Corporation
    Inventors: Jonathan Doebler, Scott Sills
  • Publication number: 20150097288
    Abstract: A method of manufacturing an integrated circuit device includes forming an inter-level dielectric layer over a semiconductor substrate, forming a transformative layer over the inter-level dielectric layer, forming a protective layer over the transformative layer without allowing the transformative layer to undergo a substantive transformation, and after forming the protective layer, causing the transformative layer to undergo a volume-increasing transformation. The volume-increasing transformation produces a high density material that provides an effective etch stop.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Joung-Wei Liou, Han-Ti Hsiaw, Keng-Chu Lin
  • Publication number: 20150091171
    Abstract: Integrated circuits are packaged by placing a plurality of semiconductor dies on a support substrate, each one of the semiconductor dies having a plurality of terminals at a side facing the support substrate and covering the semiconductor dies with a molding compound to form a molded structure. The support substrate is then removed from the molded structure to expose the side of the semiconductor dies with the terminals, and a metal redistribution layer is formed on the molded structure and in direct contact with the terminals of the semiconductor dies and the molding compound. The redistribution layer is formed without first forming a dielectric layer on a side of the molded structure with the terminals of the semiconductor dies. A corresponding molded substrate and individual molded semiconductor packages are also disclosed.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Inventors: Ulrich Wachter, Dominic Maier, Thomas Kilger
  • Publication number: 20150091172
    Abstract: The present disclosure relates to a method of forming pore sealing layer for porous low-k dielectric interconnects. The method is performed by removing hard mask layer before pore sealing and/or applying pore sealing layer before etching etch stop layer (ESL). These methods at least have advantages that aspect ratio is improved, line distortion introduced by the hard mask layer is avoided, and critical dimension is less affected by pore sealing layer.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Chi Ko, Pei-Wen Huang, Chun-Yi Lee, Kuang-Yuan Hsu, Tze-Liang Lee
  • Patent number: 8994176
    Abstract: Methods and apparatus for an interposer with dams used in packaging dies are disclosed. An interposer may comprise a metal layer above a substrate. A plurality of dams may be formed above the metal layer around each corner of the metal layer. Dams may be formed on both sides of the interposer substrate. A dam surrounds an area where connectors such as solder balls may be located to connect to other packages. A non-conductive dam may be formed above the dam. An underfill may be formed under the package connected to the connector, above the metal layer, and contained within the area surrounded by the dams at the corner, so that the connectors are well protected by the underfill. Such dams may be further formed on a printed circuit board as well.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: March 31, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chiang Wu, Hsien-Wei Chen, Yu-Feng Chen, Chun-Hung Lin, Ming-Kai Liu, Chun-Lin Lu
  • Publication number: 20150084193
    Abstract: Embodiments of the invention include a semiconductor structure containing a back end of line randomly patterned interconnect structure for implementing a physical unclonable function (PUF), a method for forming the semiconductor device, and a circuit for enabling the interconnect structure to implement the physical unclonable function. The method includes forming a semiconductor substrate and a dielectric layer on the substrate. The randomly patterned interconnect structure is formed in the dielectric layer. The random pattern of the interconnect structure is used to implement the physical unclonable function and is a result of defect occurrences during the manufacturing of the semiconductor structure. The circuit includes n-channel and p-channel metal oxide semiconductor field effect transistors (MOSFETs) and the randomly patterned interconnect structure, which acts as electrical connections between the MOSFETs.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kai D. Feng, Wai-Kin Li, Ping-Chuan Wang, Zhijian Yang
  • Publication number: 20150084194
    Abstract: Via are described for radio frequency antenna connections related to a package. In one example, a package has a package substrate, a die attached to the package substrate, and a conductive via from the package substrate to an external surface of the package to make a radio frequency connection between the antenna and the package substrate.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Inventors: Wolfgang Molzer, Edmund Goetz, Reinhard Mahnkopf, Bernd Memmler
  • Publication number: 20150084168
    Abstract: A microelectronic device package including a package substrate, microelectronic component disposed on a first surface of a first portion of the substrate, and encapsulant material surrounding the microelectronic electronic component. An exposed surface of the first portion of the substrate is exposed through an opening in a first major surface of the encapsulant material. The exposed surface of the first portion has an edge. Encapsulant material is adjacent to the edge at the first major surface. The exposed surface is opposite the first surface. A stress relief feature located in one of the first major surface or a second major surface of the encapsulant material. The second major surface is opposite the first major surface. The stress relief feature reduces an amount of the encapsulant material and is 1 mm or less of a plane of the edge of the exposed surface. The plane is generally perpendicular to the exposed surface.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Inventors: MIN DING, Tim V. Pham
  • Patent number: 8987905
    Abstract: A semiconductor package includes a semiconductor device and a substrate, the semiconductor device including a straight line portion on an outer periphery and the substrate supporting the semiconductor device. A foil positioning pattern is formed on a front surface of the substrate, the positioning pattern touching the straight line portion of the semiconductor device to regulate a position of the semiconductor device.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Mitutoyo Corporation
    Inventors: Toru Yaku, Ken Mizuno
  • Patent number: 8987918
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations of interconnect structures having a polymer core in integrated circuit (IC) package assemblies. In one embodiment, an apparatus includes a first die having a plurality of transistor devices disposed on an active side of the first die and a plurality of interconnect structures electrically coupled with the first die, wherein individual interconnect structures of the plurality of interconnect structures have a polymer core, and an electrically conductive material disposed on the polymer core, the electrically conductive material being configured to route electrical signals between the transistor devices of the first die and a second die. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Sandeep Razdan, Edward R. Prack, Sairam Agraharam, Robert L. Sankman, Shan Zhong, Robert M. Nickerson
  • Publication number: 20150076693
    Abstract: A semiconductor device includes a substrate having a plurality of contact surfaces, an interlayer dielectric layer formed over the substrate and having a first open portion which exposes a part of the contact surfaces and a second open portion which exposes the other contact surfaces, a storage node contact (SNC) plug filling the first open portion, and a damascene structure filing the second open portion and including a bit line, a spacer formed on both sidewalls of the bit line, a capping layer formed over the bit line and the spacer, and an air gap formed between the bit line and the spacer. The bit line includes a conductive material of which the volume is contracted by a heat treatment to form the air gap.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventor: Nam-Yeal LEE
  • Patent number: 8981561
    Abstract: According to one embodiment, a semiconductor device in which CNTs are used for a contact via comprise a substrate including a contact via groove, a catalyst layer for CNT growth which is formed at the bottom of the groove, and a CNT via formed by filling the CNTs into the groove in which the catalyst layer is formed. Each of the CNTs is formed by stacking a plurality of graphene layers in a state in which they are inclined depthwise with respect to the groove, and formed such that ends of the graphene layers are exposed on a sidewall of the CNT. Further, the CNT is doped with at least one element from the sidewall of the CNT.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuro Saito, Makoto Wada, Atsunobu Isobayashi, Akihiro Kajita, Hisao Miyazaki, Tadashi Sakai
  • Publication number: 20150069610
    Abstract: In one embodiment, a method for forming a semiconductor device having a shield electrode includes forming first and second shield electrode contact portions within a contact trench. The first shield electrode contact portion can be formed recessed within the contact trench and includes a flat portion. The second shield electrode contact portion can be formed within the contact trench and makes contact to the first shield electrode contact portion along the flat portion.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventor: Gordon M. Grivna
  • Publication number: 20150069608
    Abstract: An improved through-silicon via (TSV) and method of fabrication are disclosed. A back-end-of-line (BEOL) stack is formed on a semiconductor substrate. A TSV cavity is formed in the BEOL stack and semiconductor substrate. A conformal protective layer is disposed on the interior surface of the TSV cavity, along the BEOL stack and partway into the semiconductor substrate. The conformal protective layer serves to protect the dielectric layers within the BEOL stack during subsequent processing, improving the integrated circuit quality and product yield.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher Collins, Troy Lawrence Graves-Abe, Mukta G. Farooq, Tze-man Ko, William Francis Landers, Youbo Lin, Son Van Nguyen, Jennifer Ann Oakley, Deepika Priyadarshini
  • Publication number: 20150069609
    Abstract: Embodiments of the present invention provide a crackstop and seal ring for 3D chip stacked wafers. A continuous through-silicon trench (TST) spans multiple wafers of a 3D chip stacked wafer, and forms a closed shape around a functional circuit or die, protecting the chip during subsequent fabrication such as dicing and packaging.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Erdem Kaltalioglu
  • Publication number: 20150061131
    Abstract: According to one embodiment, a semiconductor device in which CNTs are used for a contact via comprises a substrate includes a contact via groove, a catalyst layer for CNT growth which is formed at the bottom of the groove, and a CNT via formed by filling the CNTs into the groove in which the catalyst layer is formed. Each of the CNTs is formed by stacking a plurality of graphene layers in a state in which they are inclined depthwise with respect to the groove, and formed such that ends of the graphene layers are exposed on a sidewall of the CNT. Further, the CNT is doped with at least one element from the sidewall of the CNT.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 5, 2015
    Inventors: Tatsuro SAITO, Makoto WADA, Atsunobu ISOBAYASHI, Akihiro KAJITA, Hisao MIYAZAKI, Tadashi SAKAI
  • Publication number: 20150061147
    Abstract: A device including a first dielectric layer on a semiconductor substrate, a gate electrode formed in the first dielectric layer, and a through-substrate via (TSV) structure penetrating the first dielectric layer and extending into the semiconductor substrate. The TSV structure includes a conductive layer, a diffusion barrier layer surrounding the conductive layer and an isolation layer surrounding the diffusion barrier layer. A capping layer including cobalt is formed on the top surface of the conductive layer of the TSV structure.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Lin, Yen-Hung Chen, Yin-Hua Chen, Ebin Liao, Ku-Feng Yang, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Publication number: 20150061132
    Abstract: Conductive line structures, and methods of forming the same, include first and second pattern structures, insulation layer patterns and an insulating interlayer. The first pattern structure includes a conductive line pattern and a hard mask stacked, and extends in a first direction. The second pattern structure includes a second conductive line pattern and another hard mask stacked, and at least a portion of the pattern structure extends in the first direction. The insulation layer patterns contact end portions of the pattern structures. The first pattern structure and an insulation layer pattern form a closed curve shape in plan view, and the second pattern structure and another insulation layer pattern form another closed curve shape in plan view. The insulating interlayer covers upper portions of the pattern structures and the insulation layer patterns, an air gap between the pattern structures, and another air gap between the insulation layer patterns.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 5, 2015
    Inventors: Sok-Won LEE, Joon-Hee LEE, Jung-Dal CHOI, Seong-Min JO
  • Publication number: 20150061134
    Abstract: A spacer covering a sidewall of a contact plug includes a relatively more damaged first portion and a relatively less damaged second portion. An interface of the first and second portions of the spacer is spaced apart from a metal silicide layer of the contact plug. Thus reliability of the semiconductor device may be improved. Related fabrication methods are also described.
    Type: Application
    Filed: May 29, 2014
    Publication date: March 5, 2015
    Inventors: EUN-OK LEE, NAM-GUN KIM, GYUHWAN OH, HEESOOK PARK, HYUN-JUNG LEE, KYUNGHO JANG
  • Patent number: 8970037
    Abstract: A preferred terminal structure comprises a base material; an electrode formed on the base material; an insulating covering layer formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under bump metal layer containing Ni, filling the opening on the electrode; and a dome-shaped bump containing Sn and Ti, covering the under bump metal layer, wherein at least part of the under bump metal layer has a portion sandwiched between the external electrode and the insulating covering layer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: March 3, 2015
    Assignee: TDK Corporation
    Inventors: Kenichi Yoshida, Makoto Orikasa, Hideyuki Seike, Yuhei Horikawa, Hisayuki Abe
  • Publication number: 20150054156
    Abstract: A method is provided for fabricating a semiconductor structure. The method includes providing a substrate; and forming a conductive layer in one surface of the substrate. The method also includes forming a dielectric layer on the surface of the substrate; and forming an opening exposing a portion of the conductive layer in the dielectric layer. Further, the method includes forming a passivation layer for protecting the portion of the conductive layer on a surface of the portion of the conductive layer on the bottom of the opening using a passivation solution; and cleaning inner surface of the opening using a cleaning solution not reacting with the passivation layer. Further, the method also includes removing the passivation layer; and forming a metal layer connecting with the conductive layer in the opening.
    Type: Application
    Filed: July 7, 2014
    Publication date: February 26, 2015
    Inventor: CHUNZHOU HU
  • Publication number: 20150054157
    Abstract: An electronic circuit unit includes a circuit substrate having a rectangular shape and is obtained by cutting an integral substrate along a vertical cut line and a horizontal cut line to be separated; a copper foil land soldered to components; and a substrate outer edge, which is formed by cutting, of two sides orthogonal to each other. The copper foil land and the substrate outer edge are positioned in the vicinity of a corner of the circuit substrate. Solder resist is provided around the copper foil land. A plurality of substrate exposure portions without the solder resist is provided in the vicinity of the substrate outer edge.
    Type: Application
    Filed: July 16, 2014
    Publication date: February 26, 2015
    Inventors: Ryo IWASAKI, Shoji KAI, Shunji KUWANA, Shiro IKEDA
  • Publication number: 20150041974
    Abstract: A sintered body of silver fine particles for a bonding member to bond components of a semiconductor device, wherein an activation energy for creep of the sintered body of the silver fine particles is from 0.4 to 0.75 times that of an activation energy for a lattice diffusion of bulk silver.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 12, 2015
    Inventors: Makoto Kobayashi, Koji Sasaki
  • Patent number: 8951445
    Abstract: A bridging arrangement for coupling a first terminal to a second terminal includes a plurality of particles of a first type forming at least one path between the first terminal and the second terminal, wherein the particles of the first type are attached to each other; a plurality of particles of a second type arranged in a vicinity of a contact region between a first particle of the first type and a second particle of the first type, wherein at least a portion of the plurality of particles of the second type is attached to the first particle of the first type and the second particle of the first type.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Javier V. Goicochea, Cyrill Kuemin, Walter H. Riess, Heiko Wolf
  • Patent number: 8952550
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Publication number: 20150035149
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate provided with a lower interconnect layer formed thereon, and having a device region and a mark formation region, a CNT via structure formed in the device region such that it contacts the lower interconnect layer, a first mark formed in the mark formation region, formed by embedding carbon nanotubes, and formed in the same layer as the CNT via structure, a second mark formed in the mark formation region of the semiconductor substrate, formed with no carbon nanotubes, and formed in the same layer as the CNT via structure and the first mark, and an interconnect layer formed on the CNT via structure and the first and second marks, and electrically connected to the CNT via structure.
    Type: Application
    Filed: January 14, 2014
    Publication date: February 5, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto WADA, Akihiro KAJITA, Atsunobu ISOBAYASHI, Tatsuro SAITO, Tadashi SAKAI, Taishi ISHIKURA
  • Publication number: 20150035017
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface; a fin structure extending upward from the substrate major surface, wherein the fin structure comprises a first fin, a second fin, and a third fin between the first fin and second fin; a first germanide over the first fin, wherein a first bottom surface of the first germanide has a first acute angle to the major surface; a second germanide over the second fin on a side of the third fin opposite to first germanide substantially mirror-symmetrical to each other; and a third germanide over the third fin, wherein a third bottom surface of the third germanide has a third acute angle to the major surface less than the first acute angle.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
  • Publication number: 20150028482
    Abstract: Approaches for reducing through-silicon via (TSV) stress are provided. Specifically, provided is a device comprising a substrate and a TSV formed in the substrate, the TSV having an element patterned therein. The TSV further comprises a set of openings adjacent the element that are subsequently filled with a TSV fill material. The element may be patterned according to any number of shapes (e.g., circle, oval, rectangle, etc.) to optimize the stress distribution for the TSV. The element is patterned and provided within the TSV in order to reduce or compensate for stress forces caused by a change in volume of the conductive fill materials of the openings of the TSV. These approaches apply to both single TSVs and a plurality of TSVs (e.g., arranged as a matrix).
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Guoxiang Ning, Ming Lei, Paul Ackmann
  • Publication number: 20150028484
    Abstract: A method and structure for preventing integrated circuit failure due to electromigration and time dependent dielectric breakdown is disclosed. A randomly patterned metal cap layer is selectively formed on the metal interconnect lines (typically copper (Cu)) with an interspace distance between metal cap segments that is less than the critical length (for short-length effects). Since the diffusivity is lower for the Cu/metal cap interface than for the Cu/dielectric cap interface, the region with a metal cap serves as a diffusion barrier.
    Type: Application
    Filed: August 21, 2014
    Publication date: January 29, 2015
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Wai-Kin Li, Ping-Chuan Wang, Lijuan Zhang
  • Publication number: 20150014848
    Abstract: A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
    Type: Application
    Filed: April 22, 2014
    Publication date: January 15, 2015
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Fu-Tang Huang
  • Patent number: 8933336
    Abstract: A coating having a layered structure including a palladium layer is provided to a conductor. The highly stable palladium layer is amorphous and contains phosphorus in a concentration ranging from 7.3% by mass to 11.0% by mass. An electronic component may include the conductor coated with the coating. The conductor coated with the coating has superior corrosion resistance and superior reliability in electrical connection with external apparatuses.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: January 13, 2015
    Assignee: TDK Corporation
    Inventors: Kenichi Yoshida, Yuhei Horikawa, Makoto Orikasa, Hideyuki Seike
  • Publication number: 20150001718
    Abstract: A semiconductor device includes a base substrate on which a substrate electrode is arranged, and a semiconductor element which includes a chip electrode electrically connected via solder to the substrate electrode and in which a light absorbing layer is formed on a lower surface side.
    Type: Application
    Filed: June 17, 2014
    Publication date: January 1, 2015
    Inventors: Izuho Hatada, Hiizu Ootorii, Shuichi Oka, Shusaku Yanagawa
  • Publication number: 20150001727
    Abstract: The disclosure provides an embedded package structure comprising a metal substrate, a chip module, an insulation material layer, and at least one patterned metal layer. The metal substrate has a first surface and a second surface. The chip module is disposed on the first surface of the metal substrate, and comprises at least two stacked chips being electrically connected to each. The insulation material layer covers the first surface of the metal substrate and the stacked chips and has an electrical interconnection formed therein. The patterned metal layer is positioned on the insulation material layer, and is electrically connected the chip module through the electrical interconnection. The method for manufacturing the embedded package structure also provides.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Chia-Yen LEE, Hsin-Chang TSAI, Peng-Hsin LEE
  • Publication number: 20150001555
    Abstract: Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: Anh Duong, Tony Chiang, Zachary M. Fresco, Nitin Kumar, Chi-I Lang, Jinhong Tong, Anna Tsizelmon
  • Publication number: 20150001717
    Abstract: Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Omkar G. Karhade, Nitin A. Deshpande, Rajendra C. Dias, Edvin Cetegen, Lars D. Skoglund
  • Patent number: 8922015
    Abstract: Provided is a semiconductor device characterized by that first to fourth semiconductor chips are mounted on first to fourth electrodes formed by plating, respectively; the surface of the first semiconductor chip and the upper surface of a fifth electrode, the surface of the second semiconductor chip and the upper surface of the first electrode, the surface of the third semiconductor chip and the upper surface of the fourth electrode, the surface of the fourth semiconductor chip and the upper surface of the fifth electrode, and the upper surface of the second electrode and the upper surface of the third electrode are coupled to each other by first to fifth conductive members, respectively; and the back surfaces of the first to fifth electrodes are exposed from a resin molding. The invention makes it possible to reduce the size and the thickness of a semiconductor device configuring a diode bridge circuit.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: December 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Eiji Osugi
  • Publication number: 20140374904
    Abstract: The present disclosure provides a semiconductor device, including: an insulation layer and a wiring line layer, the wiring line layer including a wiring line having a line width and a line height, at least one of which is 15 nm or less, and containing Ni or Co as a main component thereof. In another embodiment, there is provided a semiconductor device manufacturing method for manufacturing a semiconductor device including an insulation layer and a wiring line layer, including: forming the wiring line layer on the insulation layer, the wiring line layer including a wiring line having a line width and a line height, at least one of which is 15 nm or less, and containing Ni or Co as a main component thereof.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Kenji MATSUMOTO, Kaoru MAEKAWA, Hiroaki KAWASAKI, Tatsufumi HAMADA