Characterized By Materials Of Semiconductor Body (epo) Patents (Class 257/E29.068)

  • Patent number: 8716748
    Abstract: A semiconductor device includes: a substrate; a semiconductor stacked structure, provided over the substrate, including an electron transit layer and an electron supply layer; a gate electrode, a source electrode, and a drain electrode provided over the semiconductor stacked structure; a gate pad, a source pad, and a drain pad provided over the gate electrode, the source electrode, and the drain electrode, and connected to the gate electrode, the source electrode, and the drain electrode, respectively; and a conductive layer provided under the gate pad, the source pad, and the drain pad, wherein a distance between the gate pad and the source pad is smaller than a distance between the gate pad and the drain pad.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: May 6, 2014
    Assignee: Fujitsu Limited
    Inventors: Tadahiro Imada, Kazukiyo Joshin
  • Patent number: 8697510
    Abstract: A semiconductor device and the methods of forming the same are provided. The semiconductor device includes a low energy band-gap layer comprising a semiconductor material; a gate dielectric on the low energy band-gap layer; a gate electrode over the gate dielectric; a first source/drain region adjacent the gate dielectric, wherein the first source/drain region is of a first conductivity type; and a second source/drain region adjacent the gate dielectric. The second source/drain region is of a second conductivity type opposite the first conductivity type. The low energy band-gap layer is located between the first and the second source/drain regions.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Ken-Ichi Goto
  • Patent number: 8698122
    Abstract: A silicon nanowire including metal nanoclusters formed on a surface thereof at a high density. The metal nanocluster improves electrical and optical characteristics of the silicon nanowire, and thus can be usefully used in various electrical devices such as a lithium battery, a solar cell, a bio sensor, a memory device, or the like.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: April 15, 2014
    Assignees: Samsung Electronics Co., Ltd., Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Gyeong-su Park, In-yong Song, Sung Heo, Dong-wook Kwak, Hoon Young Cho, Han-su Kim, Jae-man Choi, Moon-seok Kwon
  • Publication number: 20140097441
    Abstract: Semiconductor devices and methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a stack of semiconductor materials from an epitaxial substrate, where the stack of semiconductor materials defines a heterojunction, and where the stack of semiconductor materials and the epitaxial substrate further define a bulk region that includes a portion of the semiconductor stack adjacent the epitaxial substrate. The method further includes attaching the stack of semiconductor materials to a carrier, where the carrier is configured to provide a signal path to the heterojunction. The method also includes exposing the bulk region by removing the epitaxial substrate.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 10, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Cem Basceri, Thomas Gehrke
  • Patent number: 8686415
    Abstract: An object is to provide a semiconductor memory device capable of shortening writing operation by concurrently determining potentials of memory cells on one word line. A plurality of transistors having switching characteristics are connected to one potential control circuit, whereby writing potentials are determined concurrently. A potential continues to be changed (raised or decreased) stepwise, a desired potential is determined while changing the potential, and whether data resulted from reading with respect to written data is correct or not is continuously checked, so that high-precision writing operation and high-precision reading operation can be achieved. In addition, favorable switching characteristics and holding characteristics of a transistor including an oxide semiconductor are utilized.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Kamata
  • Patent number: 8686386
    Abstract: Embodiments of the invention include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In some embodiments, the current limiting component comprises a varistor that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 1, 2014
    Assignees: SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
  • Patent number: 8686413
    Abstract: It is an object to provide a semiconductor device having a new productive semiconductor material and a new structure. The semiconductor device includes a first conductive layer over a substrate, a first insulating layer which covers the first conductive layer, an oxide semiconductor layer over the first insulating layer that overlaps with part of the first conductive layer and has a crystal region in a surface part, second and third conductive layers formed in contact with the oxide semiconductor layer, an insulating layer which covers the oxide semiconductor layer and the second and third conductive layers, and a fourth conductive layer over the insulating layer that overlaps with part of the oxide semiconductor layer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kei Takahashi, Yoshiaki Ito
  • Patent number: 8679949
    Abstract: A silicon nanowire includes metal nanoclusters formed on a surface thereof at a high density. The metal nanoclusters improve electrical and optical characteristics of the silicon nanowire, and thus can be usefully used in various electrical devices such as a lithium battery, a solar cell, a bio sensor, a memory device, or the like.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 25, 2014
    Assignees: Samsung Electronics Co., Ltd., Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Gyeong-su Park, In-yong Song, Sung Heo, Dong-wook Kwak, Hoon Young Cho, Han-su Kim, Jae-man Choi, Moon-seok Kwon
  • Publication number: 20140077224
    Abstract: The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Zhen-Yu Li, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo, Cindy Huichun Shu, Hsin-Chieh Huang
  • Publication number: 20140077338
    Abstract: An electronic device includes IV material grown on a silicon substrate. The device includes a crystalline silicon substrate and a rare earth structure epitaxially grown on the silicon substrate. The rare earth structure includes a layer of a rare earth oxide with electrical insulating characteristics so that the rare earth structure provides electrical insulation from the silicon substrate. A single crystal IV material film is epitaxially grown on the rare earth structure. The single crystal IV material film includes one of crystal lattice matching or crystal lattice mismatching the IV material film to the rare earth structure.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventors: Radek Roucka, Michael Lebby, Scott Semans
  • Patent number: 8674351
    Abstract: A data retention period of a memory circuit is lengthened, power consumption is reduced, and a circuit area is reduced. Further, the number of times written data can be read to one data writing operation is increased. A memory circuit has a first field-effect transistor, a second field-effect transistor, and a third field-effect transistor. A data signal is input to one of a source and a drain of the first field-effect transistor. A gate of the second field-effect transistor is electrically connected to the other of the source and the drain of the first field-effect transistor. One of a source and a drain of the third field-effect transistor is electrically connected to a source or a drain of the second field-effect transistor.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8669591
    Abstract: The present invention describes a transistor based on a Hetero junction FET structure, where the metal gate has been replaced by a stack formed by a highly doped compound semiconductor and an insulating layer in order to achieve enhancement mode operation and at the same time drastically reduce the gate current leakage. The combination of the insulating layer with a highly doped semiconductor allows the tuning of the threshold voltage of the device at the desired value by simply changing the composition of the semiconductor layer forming the gate region and/or its doping allowing a higher degree of freedom. In one of the embodiment, a back-barrier layer and a heavily doped threshold tuning layer are used to suppress Short Channel Effect phenomena and to adjust the threshold voltage of the device at the desired value. The present invention can be realized both with polar and non-polar (or semi-polar) materials.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: March 11, 2014
    Assignee: Eta Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8648353
    Abstract: Silicon carbide semiconductor device includes trench, in which connecting trench section is connected to straight trench section. Straight trench section includes first straight trench and second straight trench extending in parallel to each other. Connecting trench section includes first connecting trench perpendicular to straight trench section, second connecting trench that connects first straight trench and first connecting trench to each other, and third connecting trench that connects second straight trench and first connecting trench to each other. Second connecting trench extends at 30 degrees of angle with the extension of first straight trench. Third connecting trench extends at 30 degrees of angle with the extension of second straight trench. A manufacturing method according to the invention for manufacturing a silicon carbide semiconductor device facilitates preventing defects from being causes in a silicon carbide semiconductor device during the manufacture thereof.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: February 11, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasuyuki Kawada, Takeshi Tawara
  • Patent number: 8648349
    Abstract: A MOSFET which is a semiconductor device capable of achieving a stable reverse breakdown voltage and reduced on-resistance includes a SiC wafer of an n conductivity type, a plurality of p bodies of a p conductivity type formed to include a first main surface of the SiC wafer, and n+ source regions of the n conductivity type formed in regions surrounded by the plurality of p bodies, respectively, when viewed two-dimensionally. Each of the p bodies has a circular shape when viewed two-dimensionally, and each of the n+ source regions is arranged concentrically with each of the p bodies and has a circular shape when viewed two-dimensionally. Each of the plurality of p bodies is arranged to be positioned at a vertex of a regular hexagon when viewed two-dimensionally.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 11, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Misako Honaga
  • Patent number: 8643085
    Abstract: A high-voltage-resistant semiconductor component (1) has vertically conductive semiconductor areas (17) and a trench structure (5). These vertically conductive semiconductor areas are formed from semiconductor body areas (10) of a first conductivity type and are surrounded by a trench structure (5) on the upper face (6) of the semiconductor component. For this purpose the trench structure has a base (7) and a wall area (8) and is filled with a material (9) with a relatively high dielectric constant (?r). The base area (7) of the trench structure (5) is provided with a heavily doped semiconductor material (11) of the same conductivity type as the lightly doped semiconductor body areas (17), and/or having a metallically conductive material (12).
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventor: Frank Pfirsch
  • Patent number: 8637848
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8624357
    Abstract: Described herein are composite semiconductor substrates for use in semiconductor device fabrication and related devices and methods. In one embodiment, a composite substrate includes: (1) a bulk silicon layer; (2) a porous silicon layer adjacent to the bulk silicon layer, wherein the porous silicon layer has a Young's modulus value that is no greater than 110.5 GPa; (3) an epitaxial template layer, wherein the epitaxial template layer has a root-mean-square surface roughness value in the range of 0.2 nm to 1 nm; and (4) a set of silicon nitride layers disposed between the porous silicon layer and the epitaxial template layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 7, 2014
    Assignee: The Regents of the University of California
    Inventors: Monali B. Joshi, Mark S. Goorsky
  • Publication number: 20130312831
    Abstract: Techniques for enhancing energy conversion efficiency in chalcogenide-based photovoltaic devices by improved grain structure and film morphology through addition of urea into a liquid-based precursor are provided. In one aspect, a method of forming a chalcogenide film includes the following steps. Metal chalcogenides are contacted in a liquid medium to form a solution or a dispersion, wherein the metal chalcogenides include a Cu chalcogenide, an M1 and an M2 chalcogenide, and wherein M1 and M2 each include an element selected from the group consisting of: Ag, Mn, Mg, Fe, Co, Cd, Ni, Cr, Zn, Sn, In, Ga, Al, and Ge. At least one organic additive is contacted with the metal chalcogenides in the liquid medium. The solution or the dispersion is deposited onto a substrate to form a layer. The layer is annealed at a temperature, pressure and for a duration sufficient to form the chalcogenide film.
    Type: Application
    Filed: June 1, 2012
    Publication date: November 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: David Brian Mitzi, Xiaofeng Qiu
  • Publication number: 20130307021
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first region and a second region. The semiconductor device further includes a first buffer layer formed over the substrate and between first and second isolation regions in the first region and a second buffer layer formed over the substrate and between first and second isolation regions in the second region. The semiconductor device further includes a first fin structure formed over the first buffer layer and between the first and second isolation regions in the first region and a second fin structure formed over the second buffer layer and between the first and second isolation regions in the second region. The first buffer layer includes a top surface different from a top surface of the second buffer layer.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Cary Chia-Chiung Lo, Huicheng Chang, Chun Chung Su
  • Patent number: 8581245
    Abstract: There is provided a thin film transistor including: a gate electrode; a pair of source/drain electrodes; a first oxide semiconductor layer provided between the gate electrode, and the pair of source/drain electrodes, and forming a channel; and a second oxide semiconductor layer provided on the pair of source/drain electrodes side of the first oxide semiconductor layer, and having a polarity different from that of the first oxide semiconductor layer.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 12, 2013
    Assignee: Sony Corporation
    Inventor: Satoshi Taniguchi
  • Patent number: 8575608
    Abstract: An embodiment is a thin film transistor which includes a gate electrode layer, a gate insulating layer provided so as to cover the gate electrode layer; a first semiconductor layer entirely overlapped with the gate electrode layer; a second semiconductor layer provided over and in contact with the first semiconductor layer and having a lower carrier mobility than the first semiconductor layer; an impurity semiconductor layer provided in contact with the second semiconductor layer; a sidewall insulating layer provided so as to cover at least a sidewall of the first semiconductor layer; and a source and drain electrode layers provided in contact with at least the impurity semiconductor layer. The second semiconductor layer may consist of parts which are apart from each other over the first semiconductor layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Akihiro Ishizuka, Shinobu Furukawa, Motomu Kurata
  • Patent number: 8558277
    Abstract: A semiconductor device has an integrated passive device (IPD) formed over a substrate. The IPD can be a metal-insulator-metal capacitor or an inductor formed as a coiled conductive layer. A signal interconnect structure is formed over the first side or backside of the substrate. The signal interconnect structure is electrically connected to the IPD. A thin film ZnO layer is formed over the substrate as a part of an electrostatic discharge (ESD) protection structure. The thin film ZnO layer has a non-linear resistance as a function of a voltage applied to the layer. A conductive layer is formed over the substrate. The thin film ZnO layer is electrically connected between the signal interconnect structure and conductive layer to provide an ESD path to protect the IPD from an ESD transient. A ground interconnect structure is formed over the substrate and electrically connects the conductive layer to a ground point.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 15, 2013
    Assignee: STATS ChipPAC, Ltd
    Inventors: Robert C. Frye, Yaojian Lin, Rui Huang
  • Patent number: 8558214
    Abstract: An electronic component includes a first and a second electrode. A layer of nanoparticles is disposed between the first and second electrodes. The layer of nanoparticles includes an electrically conducting compound of a metal and an element of Main Group VI of the Periodic Table. A dimension of a majority of the nanoparticles ranges from 0.1 to 10 times a screening length of the electrically conductive compound. A dielectric layer has at least one common interface with at least a part of the nanoparticles.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 15, 2013
    Assignee: Karlsruher Institut fuer Technologie
    Inventor: Horst Hahn
  • Patent number: 8551811
    Abstract: A composite dielectric material doped with rare earth metal oxide and a manufacturing method thereof are provided. The composite dielectric material is doped with nano-crystalline rare metal oxide which is embedded in silicon dioxide glass matrix, and the composite dielectric material of the nano-crystalline rare metal oxide and the silicon dioxide glass matrix is synthesized by the manufacturing method using sol-gel route. The dielectric value of the glass composite dielectric material is greater than that of pure rare metal oxide or that of silicon dioxide. In presence of magnetic field, the dielectric value of the composite dielectric material is substantially enhanced compared with that of the composite dielectric material at zero field.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: October 8, 2013
    Assignee: National Sun Yat-Sen University
    Inventors: Hung-Duen Yang, Sudip Mukherjee, Ching-Hsuan Chen
  • Patent number: 8552426
    Abstract: A composite dielectric material doped with rare earth metal oxide and a manufacturing method thereof are provided. The composite dielectric material is doped with nano-crystalline rare metal oxide which is embedded in silicon dioxide glass matrix, and the composite dielectric material of the nano-crystalline rare metal oxide and the silicon dioxide glass matrix is synthesized by the manufacturing method using sol-gel route. The dielectric value of the glass composite dielectric material is greater than that of pure rare metal oxide or that of silicon dioxide. In presence of magnetic field, the dielectric value of the composite dielectric material is substantially enhanced compared with that of the composite dielectric material at zero field.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: October 8, 2013
    Assignee: National Sun Yat-Sen University
    Inventors: Hung-Duen Yang, Sudip Mukherjee, Ching-Hsuan Chen
  • Publication number: 20130256759
    Abstract: A fin structure for a fin field effect transistor (FinFET) device is provided. The device includes a substrate, a first semiconductor material disposed on the substrate, a shallow trench isolation (STI) region disposed over the substrate and formed on opposing sides of the first semiconductor material, and a second semiconductor material forming a first fin and a second fin disposed on the STI region, the first fin spaced apart from the second fin by a width of the first semiconductor material. The fin structure may be used to generate the FinFET device by forming a gate layer formed over the first fin, a top surface of the first semiconductor material disposed between the first and second fins, and the second fin.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Georgios Vellianitis, Mark van Dal, Blandine Duriez, Richard Oxland
  • Patent number: 8546797
    Abstract: In a ZnO based compound semiconductor device, nitrogen (N) doped (Mg)ZnO:N layer is inserted as a diffusion barrier layer 9 between a ZnO based n-type layer 3 to which n-type dopants are doped and an active layer 4 or a p-type layer 5. The diffusion barrier layer 9 prevents diffusion of the n-type dopants to the active layer 4 or the p-type layer 5. Crystalline quality of the active layer 4 of the ZnO based compound semiconductor device is not deteriorated by the diffusion of the n-type dopants.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 1, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Tomofumi Yamamuro, Hiroyuki Kato, Akio Ogawa
  • Patent number: 8546798
    Abstract: A composite dielectric material doped with rare earth metal oxide and a manufacturing method thereof are provided. The composite dielectric material is doped with nano-crystalline rare metal oxide which is embedded in silicon dioxide glass matrix, and the composite dielectric material of the nano-crystalline rare metal oxide and the silicon dioxide glass matrix is synthesized by the manufacturing method using sol-gel route. The dielectric value of the glass composite dielectric material is greater than that of pure rare metal oxide or that of silicon dioxide. In presence of magnetic field, the dielectric value of the composite dielectric material is substantially enhanced compared with that of the composite dielectric material at zero field.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 1, 2013
    Assignee: National Sun Yat-Sen University
    Inventors: Hung-duen Yang, Sudip Mukherjee, Ching-hsuan Chen
  • Patent number: 8541780
    Abstract: It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Kosei Noda, Masayuki Sakakura, Yoshiaki Oikawa, Hotaka Maruyama
  • Patent number: 8536570
    Abstract: Provided are a composition for an oxide semiconductor, a preparation method of the composition, a method for forming an oxide semiconductor thin film using the composition, and a method for forming an electronic device using the composition. The composition for an oxide semiconductor includes a compound for an oxide thin film and a stabilizer for adjusting conductivity of the oxide thin film. The stabilizer is included with the mole number of two to twelve times larger than the total mole number of the compound.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: September 17, 2013
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Hyun Jae Kim, Woong Hee Jeong, Jung Hyeon Bae, Kyung Min Kim
  • Patent number: 8530934
    Abstract: A method for pseudomorphic growth and integration of an in-situ doped, strain-compensated metastable compound base into an electronic device, such as, for example, a SiGe NPN HBT, by substitutional placement of strain-compensating atomic species. The invention also applies to strained layers in other electronic devices such as strained SiGe, Si in MOS applications, vertical thin film transistors (VTFT), and a variety of other electronic device types. Devices formed from compound semiconductors other than SiGe, such as, for example, GaAs, InP, and AlGaAs are also amenable to beneficial processes described herein.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: September 10, 2013
    Assignee: Atmel Corporation
    Inventors: Darwin G. Enicks, John Taylor Chaffee, Damian A. Carver
  • Patent number: 8525186
    Abstract: Disclosed are embodiments of a method of forming, on an SOI wafer, a planar FET with embedded and faceted source/drain stressors. The method incorporates a directional ion implant process to create amorphous regions at the bottom surfaces of source/drain recesses in a single crystalline semiconductor layer of an SOI wafer. Then, an etch process selective to different crystalline planes over others and further selective to single crystalline semiconductor material over amorphous semiconductor material can be performed in order to selectively adjust the shape (i.e., the profile) of the recess sidewalls without increasing the depth of the recesses. Subsequently, an anneal process can be performed to re-crystallize the amorphous regions and an epitaxial deposition process can be used to fill the recesses with source/drain stressor material. Also disclosed are embodiments of a planar FET structure and a design structure for the planar FET.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Johnathan E. Faltermeier, Toshiharu Furukawa, Xuefeng Hua
  • Patent number: 8525146
    Abstract: An electrical circuit component includes a first electrode, a plurality of second electrodes and a negative differential resistance (NDR) material. The first electrode and the plurality of second electrodes are connected to the NDR material and the NDR material is to electrically connect the first electrode to one of the plurality of second electrodes when a sufficient voltage is applied between the first electrode and the one of the plurality of second electrodes through the NDR material.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 3, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Wu, Matthew D. Pickett, Jianhua Yang, Qiangfei Xia, Gilberto Medeiros Ribeiro
  • Patent number: 8513660
    Abstract: A suspension or solution for organic optoelectronic device is disclosed in this invention. The composition of the suspension or solution includes at least one kind of micro/nano transition metal oxide and a solvent. The composition of the suspension or solution can selectively include at least one kind of transition metal oxide ions or a precursor of transition metal oxide. Moreover, the making method and applications of the suspension or solution is also disclosed in this invention.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 20, 2013
    Assignee: National Taiwan University
    Inventors: Jing-Shun Huang, Ching-Fuh Lin
  • Publication number: 20130207098
    Abstract: A semiconductor device including a first wafer assembly having a first substrate and a first oxide layer over the first substrate. The semiconductor device further includes a second wafer assembly having a second substrate and a second oxide layer over the second substrate. The first oxide layer and the second oxide layer are bonded together by van der Waals bonds or covalent bonds. A method of bonding a first wafer assembly and a second wafer assembly including forming a first oxide layer over a first substrate. The method further includes forming a second oxide layer over a second wafer assembly. The method further includes forming van der Waals bonds or covalent bonds between the first oxide layer and the second oxide layer.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung-Ti YEH, Chung-Yi HUANG, Ya Wen WU, Hui-Mei JAO, Ting-Chun WANG, Shiu-Ko JiangJian, Chia-Hung CHUNG
  • Patent number: 8507907
    Abstract: It is to provide a semiconductor memory device in which high voltage is not needed in writing, a defect is less likely to occur, the writing time is short, and data cannot be rewritten without an increase in cost. The semiconductor memory device includes a memory element which includes a diode-connected first transistor, a second transistor whose gate is connected to one terminal of a source electrode and a drain electrode of the diode-connected first transistor, and a capacitor connected to the one terminal of the source electrode and the drain electrode of the diode-connected first transistor and the gate of the second transistor.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 13, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Takahashi, Toshihiko Saito
  • Patent number: 8502218
    Abstract: The present invention provides continuous, free-standing metal oxide films and methods for making said films. The methods are able to produce large-area, flexible, thin films having one or more continuous, single-crystalline metal oxide domains. The methods include the steps of forming a surfactant monolayer at the surface of an aqueous solution, wherein the headgroups of the surfactant molecules provide a metal oxide film growth template. When metal ions in the aqueous solution are exposed to the metal oxide film growth template in the presence of hydroxide ions under suitable conditions, a continuous, free-standing metal oxide film can be grown from the film growth template downward into the aqueous solution.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xudong Wang, Zhenqiang Ma, Fei Wang, Jung-Hun Seo
  • Patent number: 8501600
    Abstract: Methods for depositing germanium-containing layers on silicon-containing layers are provided herein. In some embodiments, a method may include depositing a first layer atop an upper surface of the silicon-containing layer, wherein the first layer comprises predominantly germanium (Ge) and further comprises a lattice adjustment element having a concentration selected to enhance electrical activity of dopant elements, wherein the dopant elements are disposed in at least one of the first layer or in an optional second layer deposited atop of the first layer, wherein the optional second layer, if present, comprises predominantly germanium (Ge). In some embodiments, the second layer is deposited atop the first layer. In some embodiments, the second layer comprises germanium (Ge) and dopant elements.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Errol Sanchez, Yi-Chiau Huang, David K. Carlson
  • Publication number: 20130193445
    Abstract: Boron nitride is used as a buried dielectric of an SOI structure including an SOI layer and a handle substrate. The boron nitride is located between an SOI layer and a handle substrate. Boron nitride has a dielectric constant and a thermal expansion coefficient close to silicon dioxide. Yet, boron nitride has a wet as well as a dry etch resistance that is much better than silicon dioxide. In the SOI structure, there is a reduced material loss of boron nitride during multiple wet and dry etches so that the topography and/or bridging are not an obstacle for device integration. Boron nitride has a low dielectric constant so that devices built in SOI active regions do not suffer from a charging effect.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Alfred Grill, Effendi Leobandung, Deborah A. Neumayer, Dea-Gyu Park, Ghavam G. Shahidi, Leathen Shi
  • Publication number: 20130187171
    Abstract: A method for forming silicide contacts includes forming a dielectric layer on a gate spacer, a gate stack, and a first semiconductor layer. The first semiconductor layer comprises source/drain regions. Contact trenches are formed in the dielectric layer so as to expose at least a portion of the source/drain regions. A second semiconductor layer is formed within the contact trenches. A metallic layer is formed on the second semiconductor layer. An anneal is performed to form a silicide region between the second semiconductor layer and the metallic layer. A conductive contact layer is formed on the metallic layer or the silicide region.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicants: GLOBALFOUNDRIES Inc., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. GUILLORN, Christian LAVOIE, Ghavam G. SHAHIDI, Bin YANG, Zhen ZHANG
  • Patent number: 8492760
    Abstract: One of the objects of the present invention is to provide a thin film transistor using an oxide semiconductor film containing indium (In), gallium (Ga), and zinc (Zn), in which the contact resistance between the oxide semiconductor layer and a source and drain electrodes is reduced, and to provide a method for manufacturing the thin film transistor. An ohmic contact is formed by intentionally providing a buffer layer having a higher carrier concentration than the IGZO semiconductor layer between the IGZO semiconductor layer and the source and drain electrode layers.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Akiharu Miyanaga, Kengo Akimoto, Kojiro Shiraishi
  • Publication number: 20130181211
    Abstract: Provided is a metal oxide semiconductor device, including a substrate, a gate, a first-type first heavily doped region, a first-type drift region, a second-type first heavily doped region, a contact, a first electrode, and a second electrode. The gate is disposed on the substrate. The first-type first heavily doped region is disposed in the substrate at a side of the gate. The first-type drift region is disposed in the substrate at another side of the gate. The second-type first heavily doped region is disposed in the first-type drift region. The contact is electrically connected to the second-type first heavily doped region. The contact is the closest contact to the gate on the first-type drift region. The first electrode is electrically connected to the contact, and the second electrode is electrically connected to the first-type first heavily doped region and the gate.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: United Microelectronics Corp.
    Inventors: Lu-An Chen, Chang-Tzu Wang, Tai-Hsiang Lai, Tien-Hao Tang
  • Patent number: 8487356
    Abstract: The graphene device may include an upper oxide layer on at least one embedded gate, and a graphene channel and a plurality of electrodes on the upper oxide layer. The at least one embedded gate may be formed on the substrate. The graphene channel may be formed on the plurality of electrodes, or the plurality of electrodes may be formed on the graphene channel.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin seong Heo, Sun-ae Seo, Dong-chul Kim, Yun-sung Woo, Hyun-jong Chung
  • Publication number: 20130168666
    Abstract: A semiconductor device is provided. A first semiconductor layer is disposed on a substrate and has a channel region and two doped regions beside the channel region. A first dielectric layer is disposed on the substrate and covers the first semiconductor layer. A gate is disposed on the first dielectric layer and corresponds to the channel region of the first semiconductor layer. A second dielectric layer is disposed on the first dielectric layer and covers the gate. A second semiconductor layer is disposed on the second dielectric layer and corresponds to the gate. The boundary of the second semiconductor layer does not exceed that of the gate. At least one first conductive plug penetrates through the first and second dielectric layers and contacts one doped region of the first semiconductor layer. At least one contact contacts the second semiconductor layer. A method of forming a semiconductor device is also provided.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jing-Yi Yan, Chen-Wei Lin, Chih-Chieh Hsu, King-Yuan Ho
  • Publication number: 20130168635
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Application
    Filed: August 16, 2012
    Publication date: July 4, 2013
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20130168695
    Abstract: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dureseti Chidambarrao, Brian J. Greene, Yue Liang, Xiaojun Yu
  • Patent number: 8476739
    Abstract: A graphene-on-oxide substrate according to the present invention includes: a substrate having a metal oxide layer formed on its surface; and, formed on the metal oxide layer, a graphene layer including at least one atomic layer of the graphene. The graphene layer is grown generally parallel to the surface of the metal oxide layer, and the inter-atomic-layer distance between the graphene atomic layer adjacent to the surface of the metal oxide layer and the surface atomic layer of the metal oxide layer is 0.34 nm or less. Preferably, the arithmetic mean surface roughness Ra of the metal oxide layer is 1 nm or less.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 2, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Okai, Motoyuki Hirooka, Takashi Kyotani, Hironori Orikasa
  • Patent number: 8471267
    Abstract: A semiconductor device of the present invention has a semiconductor element region 17 that is provided in part of a silicon carbide layer 3 and a guard-ring region 18 that is provided in another part of the silicon carbide layer 3 surrounding the semiconductor element region 17 when seen in a direction perpendicular to a principal surface of the silicon carbide layer 3.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 25, 2013
    Assignee: Panasonic Corporation
    Inventors: Masashi Hayashi, Koichi Hashimoto, Kazuhiro Adachi
  • Publication number: 20130153886
    Abstract: The present invention relates to a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a III-V semiconductor layer; an aluminum oxide layer formed on the III-V semiconductor layer; and a lanthanide oxide layer formed on the aluminum oxide layer. The method of manufacturing a semiconductor device includes: forming an aluminum oxide layer between a III-V semiconductor layer and a lanthanide oxide layer so as to prevent an inter-reaction of atoms between the III-V semiconductor layer and the lanthanide oxide layer.
    Type: Application
    Filed: May 22, 2012
    Publication date: June 20, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi. Chang, Yueh-Chin Lin, Chia-Hua Chang, Hai-Dang Trinh
  • Patent number: RE44657
    Abstract: A circuit with a large load driving capability, which is structured by single polarity TFTs, is provided. With a capacitor (154) formed between a gate electrode and an output electrode of a TFT (152), the electric potential of the gate electrode of the TFT (152) is increased by a boot strap and normal output with respect to an input signal is obtained without amplitude attenuation of an output signal due to the TFT threshold value. In addition, a capacitor (155) formed between a gate electrode and an output electrode of a TFT (153) compensates for increasing the electric potential of the gate electrode of the TFT (152), and a larger load driving capability is obtained.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: December 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki Miyake, Yutaka Shionoiri